raise NotImplementedError when noun_chunks iterator is not implemented (#6711)

* raise NotImplementedError when noun_chunks iterator is not implemented

* bring back, fix and document span.noun_chunks

* formatting

Co-authored-by: Matthew Honnibal <honnibal+gh@gmail.com>
This commit is contained in:
Sofie Van Landeghem 2021-01-17 12:56:05 +01:00 committed by GitHub
parent bf0cdae8d4
commit fed8f48965
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
10 changed files with 93 additions and 52 deletions

View File

@ -463,6 +463,8 @@ class Errors:
"issue tracker: http://github.com/explosion/spaCy/issues")
# TODO: fix numbering after merging develop into master
E894 = ("The 'noun_chunks' syntax iterator is not implemented for language "
"'{lang}'.")
E895 = ("The 'textcat' component received gold-standard annotations with "
"multiple labels per document. In spaCy 3 you should use the "
"'textcat_multilabel' component for this instead. "

View File

@ -86,7 +86,7 @@ def like_num(text):
if text in _num_words:
return True
# CHeck ordinal number
# Check ordinal number
if text in _ordinal_words:
return True
return False

View File

@ -2,6 +2,8 @@ import pytest
import numpy
import logging
import mock
from spacy.lang.xx import MultiLanguage
from spacy.tokens import Doc, Span
from spacy.vocab import Vocab
from spacy.lexeme import Lexeme
@ -633,6 +635,14 @@ def test_doc_set_ents_invalid_spans(en_tokenizer):
doc.ents = spans
def test_doc_noun_chunks_not_implemented():
"""Test that a language without noun_chunk iterator, throws a NotImplementedError"""
text = "Může data vytvářet a spravovat, ale především je dokáže analyzovat, najít v nich nové vztahy a vše přehledně vizualizovat."
nlp = MultiLanguage()
doc = nlp(text)
with pytest.raises(NotImplementedError):
chunks = list(doc.noun_chunks)
def test_span_groups(en_tokenizer):
doc = en_tokenizer("Some text about Colombia and the Czech Republic")
doc.spans["hi"] = [Span(doc, 3, 4, label="bye")]

View File

@ -1,11 +1,16 @@
import numpy
from spacy.attrs import HEAD, DEP
from spacy.symbols import nsubj, dobj, amod, nmod, conj, cc, root
from spacy.lang.en.syntax_iterators import noun_chunks
from spacy.tokens import Doc
import pytest
@pytest.fixture
def doc(en_vocab):
words = ["Peter", "has", "chronic", "command", "and", "control", "issues"]
heads = [1, 1, 6, 6, 3, 3, 1]
deps = ["nsubj", "ROOT", "amod", "nmod", "cc", "conj", "dobj"]
pos = ["PROPN", "VERB", "ADJ", "NOUN", "CCONJ", "NOUN", "NOUN"]
return Doc(en_vocab, words=words, heads=heads, deps=deps, pos=pos)
def test_noun_chunks_is_parsed(en_tokenizer):
"""Test that noun_chunks raises Value Error for 'en' language if Doc is not parsed."""
doc = en_tokenizer("This is a sentence")
@ -13,31 +18,27 @@ def test_noun_chunks_is_parsed(en_tokenizer):
list(doc.noun_chunks)
def test_en_noun_chunks_not_nested(en_vocab):
words = ["Peter", "has", "chronic", "command", "and", "control", "issues"]
heads = [1, 1, 6, 6, 3, 3, 1]
deps = ["nsubj", "ROOT", "amod", "nmod", "cc", "conj", "dobj"]
doc = Doc(en_vocab, words=words, heads=heads, deps=deps)
doc.from_array(
[HEAD, DEP],
numpy.asarray(
[
[1, nsubj],
[0, root],
[4, amod],
[3, nmod],
[-1, cc],
[-2, conj],
[-5, dobj],
],
dtype="uint64",
),
)
doc.noun_chunks_iterator = noun_chunks
def test_en_noun_chunks_not_nested(doc, en_vocab):
"""Test that each token only appears in one noun chunk at most"""
word_occurred = {}
for chunk in doc.noun_chunks:
chunks = list(doc.noun_chunks)
assert len(chunks) > 1
for chunk in chunks:
for word in chunk:
word_occurred.setdefault(word.text, 0)
word_occurred[word.text] += 1
assert len(word_occurred) > 0
for word, freq in word_occurred.items():
assert freq == 1, (word, [chunk.text for chunk in doc.noun_chunks])
def test_noun_chunks_span(doc, en_tokenizer):
"""Test that the span.noun_chunks property works correctly"""
doc_chunks = list(doc.noun_chunks)
span = doc[0:3]
span_chunks = list(span.noun_chunks)
assert 0 < len(span_chunks) < len(doc_chunks)
for chunk in span_chunks:
assert chunk in doc_chunks
assert chunk.start >= 0
assert chunk.end <= 3

View File

@ -81,7 +81,8 @@ def test_issue3199():
"""
words = ["This", "is", "a", "sentence"]
doc = Doc(Vocab(), words=words, heads=[0] * len(words), deps=["dep"] * len(words))
assert list(doc[0:3].noun_chunks) == []
with pytest.raises(NotImplementedError):
list(doc[0:3].noun_chunks)
def test_issue3209():

View File

@ -816,8 +816,10 @@ cdef class Doc:
@property
def noun_chunks(self):
"""Iterate over the base noun phrases in the document. Yields base
noun-phrase #[code Span] objects, if the document has been
syntactically parsed. A base noun phrase, or "NP chunk", is a noun
noun-phrase #[code Span] objects, if the language has a noun chunk iterator.
Raises a NotImplementedError otherwise.
A base noun phrase, or "NP chunk", is a noun
phrase that does not permit other NPs to be nested within it so no
NP-level coordination, no prepositional phrases, and no relative
clauses.
@ -826,16 +828,17 @@ cdef class Doc:
DOCS: https://nightly.spacy.io/api/doc#noun_chunks
"""
if self.noun_chunks_iterator is None:
raise NotImplementedError(Errors.E894.format(lang=self.vocab.lang))
# Accumulate the result before beginning to iterate over it. This
# prevents the tokenisation from being changed out from under us
# prevents the tokenization from being changed out from under us
# during the iteration. The tricky thing here is that Span accepts
# its tokenisation changing, so it's okay once we have the Span
# its tokenization changing, so it's okay once we have the Span
# objects. See Issue #375.
spans = []
if self.noun_chunks_iterator is not None:
for start, end, label in self.noun_chunks_iterator(self):
spans.append(Span(self, start, end, label=label))
for start, end, label in self.noun_chunks_iterator(self):
spans.append(Span(self, start, end, label=label))
for span in spans:
yield span

View File

@ -487,30 +487,25 @@ cdef class Span:
"""
return "".join([t.text_with_ws for t in self])
@property
def noun_chunks(self):
"""Yields base noun-phrase `Span` objects, if the document has been
syntactically parsed. A base noun phrase, or "NP chunk", is a noun
"""Iterate over the base noun phrases in the span. Yields base
noun-phrase #[code Span] objects, if the language has a noun chunk iterator.
Raises a NotImplementedError otherwise.
A base noun phrase, or "NP chunk", is a noun
phrase that does not permit other NPs to be nested within it so no
NP-level coordination, no prepositional phrases, and no relative
clauses.
YIELDS (Span): Base noun-phrase `Span` objects.
YIELDS (Span): Noun chunks in the span.
DOCS: https://nightly.spacy.io/api/span#noun_chunks
"""
# Accumulate the result before beginning to iterate over it. This
# prevents the tokenisation from being changed out from under us
# during the iteration. The tricky thing here is that Span accepts
# its tokenisation changing, so it's okay once we have the Span
# objects. See Issue #375
spans = []
cdef attr_t label
if self.doc.noun_chunks_iterator is not None:
for start, end, label in self.doc.noun_chunks_iterator(self):
spans.append(Span(self.doc, start, end, label=label))
for span in spans:
yield span
for span in self.doc.noun_chunks:
if span.start >= self.start and span.end <= self.end:
yield span
@property
def root(self):

View File

@ -616,11 +616,15 @@ phrase, or "NP chunk", is a noun phrase that does not permit other NPs to be
nested within it so no NP-level coordination, no prepositional phrases, and no
relative clauses.
If the `noun_chunk` [syntax iterator](/usage/adding-languages#language-data) has
not been implemeted for the given language, a `NotImplementedError` is raised.
> #### Example
>
> ```python
> doc = nlp("A phrase with another phrase occurs.")
> chunks = list(doc.noun_chunks)
> assert len(chunks) == 2
> assert chunks[0].text == "A phrase"
> assert chunks[1].text == "another phrase"
> ```

View File

@ -187,7 +187,7 @@ the character indices don't map to a valid span.
| Name | Description |
| ------------------------------------ | ----------------------------------------------------------------------------------------- |
| `start` | The index of the first character of the span. ~~int~~ |
| `end` | The index of the last character after the span. ~~int~~ |
| `end` | The index of the last character after the span. ~~int~~ |
| `label` | A label to attach to the span, e.g. for named entities. ~~Union[int, str]~~ |
| `kb_id` <Tag variant="new">2.2</Tag> | An ID from a knowledge base to capture the meaning of a named entity. ~~Union[int, str]~~ |
| `vector` | A meaning representation of the span. ~~numpy.ndarray[ndim=1, dtype=float32]~~ |
@ -274,6 +274,31 @@ if the entity recognizer has been applied.
| ----------- | ----------------------------------------------------------------- |
| **RETURNS** | Entities in the span, one `Span` per entity. ~~Tuple[Span, ...]~~ |
## Span.noun_chunks {#noun_chunks tag="property" model="parser"}
Iterate over the base noun phrases in the span. Yields base noun-phrase `Span`
objects, if the document has been syntactically parsed. A base noun phrase, or
"NP chunk", is a noun phrase that does not permit other NPs to be nested within
it so no NP-level coordination, no prepositional phrases, and no relative
clauses.
If the `noun_chunk` [syntax iterator](/usage/adding-languages#language-data) has
not been implemeted for the given language, a `NotImplementedError` is raised.
> #### Example
>
> ```python
> doc = nlp("A phrase with another phrase occurs.")
> span = doc[3:5]
> chunks = list(span.noun_chunks)
> assert len(chunks) == 1
> assert chunks[0].text == "another phrase"
> ```
| Name | Description |
| ---------- | --------------------------------- |
| **YIELDS** | Noun chunks in the span. ~~Span~~ |
## Span.as_doc {#as_doc tag="method"}
Create a new `Doc` object corresponding to the `Span`, with a copy of the data.

View File

@ -221,7 +221,7 @@ Noun chunks are "base noun phrases" flat phrases that have a noun as their
head. You can think of noun chunks as a noun plus the words describing the noun
for example, "the lavish green grass" or "the worlds largest tech fund". To
get the noun chunks in a document, simply iterate over
[`Doc.noun_chunks`](/api/doc#noun_chunks)
[`Doc.noun_chunks`](/api/doc#noun_chunks).
```python
### {executable="true"}