mirror of
https://github.com/explosion/spaCy.git
synced 2024-12-25 17:36:30 +03:00
raise NotImplementedError when noun_chunks iterator is not implemented (#6711)
* raise NotImplementedError when noun_chunks iterator is not implemented * bring back, fix and document span.noun_chunks * formatting Co-authored-by: Matthew Honnibal <honnibal+gh@gmail.com>
This commit is contained in:
parent
bf0cdae8d4
commit
fed8f48965
|
@ -463,6 +463,8 @@ class Errors:
|
|||
"issue tracker: http://github.com/explosion/spaCy/issues")
|
||||
|
||||
# TODO: fix numbering after merging develop into master
|
||||
E894 = ("The 'noun_chunks' syntax iterator is not implemented for language "
|
||||
"'{lang}'.")
|
||||
E895 = ("The 'textcat' component received gold-standard annotations with "
|
||||
"multiple labels per document. In spaCy 3 you should use the "
|
||||
"'textcat_multilabel' component for this instead. "
|
||||
|
|
|
@ -86,7 +86,7 @@ def like_num(text):
|
|||
if text in _num_words:
|
||||
return True
|
||||
|
||||
# CHeck ordinal number
|
||||
# Check ordinal number
|
||||
if text in _ordinal_words:
|
||||
return True
|
||||
return False
|
||||
|
|
|
@ -2,6 +2,8 @@ import pytest
|
|||
import numpy
|
||||
import logging
|
||||
import mock
|
||||
|
||||
from spacy.lang.xx import MultiLanguage
|
||||
from spacy.tokens import Doc, Span
|
||||
from spacy.vocab import Vocab
|
||||
from spacy.lexeme import Lexeme
|
||||
|
@ -633,6 +635,14 @@ def test_doc_set_ents_invalid_spans(en_tokenizer):
|
|||
doc.ents = spans
|
||||
|
||||
|
||||
def test_doc_noun_chunks_not_implemented():
|
||||
"""Test that a language without noun_chunk iterator, throws a NotImplementedError"""
|
||||
text = "Může data vytvářet a spravovat, ale především je dokáže analyzovat, najít v nich nové vztahy a vše přehledně vizualizovat."
|
||||
nlp = MultiLanguage()
|
||||
doc = nlp(text)
|
||||
with pytest.raises(NotImplementedError):
|
||||
chunks = list(doc.noun_chunks)
|
||||
|
||||
def test_span_groups(en_tokenizer):
|
||||
doc = en_tokenizer("Some text about Colombia and the Czech Republic")
|
||||
doc.spans["hi"] = [Span(doc, 3, 4, label="bye")]
|
||||
|
|
|
@ -1,11 +1,16 @@
|
|||
import numpy
|
||||
from spacy.attrs import HEAD, DEP
|
||||
from spacy.symbols import nsubj, dobj, amod, nmod, conj, cc, root
|
||||
from spacy.lang.en.syntax_iterators import noun_chunks
|
||||
from spacy.tokens import Doc
|
||||
import pytest
|
||||
|
||||
|
||||
@pytest.fixture
|
||||
def doc(en_vocab):
|
||||
words = ["Peter", "has", "chronic", "command", "and", "control", "issues"]
|
||||
heads = [1, 1, 6, 6, 3, 3, 1]
|
||||
deps = ["nsubj", "ROOT", "amod", "nmod", "cc", "conj", "dobj"]
|
||||
pos = ["PROPN", "VERB", "ADJ", "NOUN", "CCONJ", "NOUN", "NOUN"]
|
||||
return Doc(en_vocab, words=words, heads=heads, deps=deps, pos=pos)
|
||||
|
||||
|
||||
def test_noun_chunks_is_parsed(en_tokenizer):
|
||||
"""Test that noun_chunks raises Value Error for 'en' language if Doc is not parsed."""
|
||||
doc = en_tokenizer("This is a sentence")
|
||||
|
@ -13,31 +18,27 @@ def test_noun_chunks_is_parsed(en_tokenizer):
|
|||
list(doc.noun_chunks)
|
||||
|
||||
|
||||
def test_en_noun_chunks_not_nested(en_vocab):
|
||||
words = ["Peter", "has", "chronic", "command", "and", "control", "issues"]
|
||||
heads = [1, 1, 6, 6, 3, 3, 1]
|
||||
deps = ["nsubj", "ROOT", "amod", "nmod", "cc", "conj", "dobj"]
|
||||
doc = Doc(en_vocab, words=words, heads=heads, deps=deps)
|
||||
doc.from_array(
|
||||
[HEAD, DEP],
|
||||
numpy.asarray(
|
||||
[
|
||||
[1, nsubj],
|
||||
[0, root],
|
||||
[4, amod],
|
||||
[3, nmod],
|
||||
[-1, cc],
|
||||
[-2, conj],
|
||||
[-5, dobj],
|
||||
],
|
||||
dtype="uint64",
|
||||
),
|
||||
)
|
||||
doc.noun_chunks_iterator = noun_chunks
|
||||
def test_en_noun_chunks_not_nested(doc, en_vocab):
|
||||
"""Test that each token only appears in one noun chunk at most"""
|
||||
word_occurred = {}
|
||||
for chunk in doc.noun_chunks:
|
||||
chunks = list(doc.noun_chunks)
|
||||
assert len(chunks) > 1
|
||||
for chunk in chunks:
|
||||
for word in chunk:
|
||||
word_occurred.setdefault(word.text, 0)
|
||||
word_occurred[word.text] += 1
|
||||
assert len(word_occurred) > 0
|
||||
for word, freq in word_occurred.items():
|
||||
assert freq == 1, (word, [chunk.text for chunk in doc.noun_chunks])
|
||||
|
||||
|
||||
def test_noun_chunks_span(doc, en_tokenizer):
|
||||
"""Test that the span.noun_chunks property works correctly"""
|
||||
doc_chunks = list(doc.noun_chunks)
|
||||
span = doc[0:3]
|
||||
span_chunks = list(span.noun_chunks)
|
||||
assert 0 < len(span_chunks) < len(doc_chunks)
|
||||
for chunk in span_chunks:
|
||||
assert chunk in doc_chunks
|
||||
assert chunk.start >= 0
|
||||
assert chunk.end <= 3
|
||||
|
|
|
@ -81,7 +81,8 @@ def test_issue3199():
|
|||
"""
|
||||
words = ["This", "is", "a", "sentence"]
|
||||
doc = Doc(Vocab(), words=words, heads=[0] * len(words), deps=["dep"] * len(words))
|
||||
assert list(doc[0:3].noun_chunks) == []
|
||||
with pytest.raises(NotImplementedError):
|
||||
list(doc[0:3].noun_chunks)
|
||||
|
||||
|
||||
def test_issue3209():
|
||||
|
|
|
@ -816,8 +816,10 @@ cdef class Doc:
|
|||
@property
|
||||
def noun_chunks(self):
|
||||
"""Iterate over the base noun phrases in the document. Yields base
|
||||
noun-phrase #[code Span] objects, if the document has been
|
||||
syntactically parsed. A base noun phrase, or "NP chunk", is a noun
|
||||
noun-phrase #[code Span] objects, if the language has a noun chunk iterator.
|
||||
Raises a NotImplementedError otherwise.
|
||||
|
||||
A base noun phrase, or "NP chunk", is a noun
|
||||
phrase that does not permit other NPs to be nested within it – so no
|
||||
NP-level coordination, no prepositional phrases, and no relative
|
||||
clauses.
|
||||
|
@ -826,16 +828,17 @@ cdef class Doc:
|
|||
|
||||
DOCS: https://nightly.spacy.io/api/doc#noun_chunks
|
||||
"""
|
||||
if self.noun_chunks_iterator is None:
|
||||
raise NotImplementedError(Errors.E894.format(lang=self.vocab.lang))
|
||||
|
||||
# Accumulate the result before beginning to iterate over it. This
|
||||
# prevents the tokenisation from being changed out from under us
|
||||
# prevents the tokenization from being changed out from under us
|
||||
# during the iteration. The tricky thing here is that Span accepts
|
||||
# its tokenisation changing, so it's okay once we have the Span
|
||||
# its tokenization changing, so it's okay once we have the Span
|
||||
# objects. See Issue #375.
|
||||
spans = []
|
||||
if self.noun_chunks_iterator is not None:
|
||||
for start, end, label in self.noun_chunks_iterator(self):
|
||||
spans.append(Span(self, start, end, label=label))
|
||||
for start, end, label in self.noun_chunks_iterator(self):
|
||||
spans.append(Span(self, start, end, label=label))
|
||||
for span in spans:
|
||||
yield span
|
||||
|
||||
|
|
|
@ -487,30 +487,25 @@ cdef class Span:
|
|||
"""
|
||||
return "".join([t.text_with_ws for t in self])
|
||||
|
||||
|
||||
@property
|
||||
def noun_chunks(self):
|
||||
"""Yields base noun-phrase `Span` objects, if the document has been
|
||||
syntactically parsed. A base noun phrase, or "NP chunk", is a noun
|
||||
"""Iterate over the base noun phrases in the span. Yields base
|
||||
noun-phrase #[code Span] objects, if the language has a noun chunk iterator.
|
||||
Raises a NotImplementedError otherwise.
|
||||
|
||||
A base noun phrase, or "NP chunk", is a noun
|
||||
phrase that does not permit other NPs to be nested within it – so no
|
||||
NP-level coordination, no prepositional phrases, and no relative
|
||||
clauses.
|
||||
|
||||
YIELDS (Span): Base noun-phrase `Span` objects.
|
||||
YIELDS (Span): Noun chunks in the span.
|
||||
|
||||
DOCS: https://nightly.spacy.io/api/span#noun_chunks
|
||||
"""
|
||||
# Accumulate the result before beginning to iterate over it. This
|
||||
# prevents the tokenisation from being changed out from under us
|
||||
# during the iteration. The tricky thing here is that Span accepts
|
||||
# its tokenisation changing, so it's okay once we have the Span
|
||||
# objects. See Issue #375
|
||||
spans = []
|
||||
cdef attr_t label
|
||||
if self.doc.noun_chunks_iterator is not None:
|
||||
for start, end, label in self.doc.noun_chunks_iterator(self):
|
||||
spans.append(Span(self.doc, start, end, label=label))
|
||||
for span in spans:
|
||||
yield span
|
||||
for span in self.doc.noun_chunks:
|
||||
if span.start >= self.start and span.end <= self.end:
|
||||
yield span
|
||||
|
||||
@property
|
||||
def root(self):
|
||||
|
|
|
@ -616,11 +616,15 @@ phrase, or "NP chunk", is a noun phrase that does not permit other NPs to be
|
|||
nested within it – so no NP-level coordination, no prepositional phrases, and no
|
||||
relative clauses.
|
||||
|
||||
If the `noun_chunk` [syntax iterator](/usage/adding-languages#language-data) has
|
||||
not been implemeted for the given language, a `NotImplementedError` is raised.
|
||||
|
||||
> #### Example
|
||||
>
|
||||
> ```python
|
||||
> doc = nlp("A phrase with another phrase occurs.")
|
||||
> chunks = list(doc.noun_chunks)
|
||||
> assert len(chunks) == 2
|
||||
> assert chunks[0].text == "A phrase"
|
||||
> assert chunks[1].text == "another phrase"
|
||||
> ```
|
||||
|
|
|
@ -187,7 +187,7 @@ the character indices don't map to a valid span.
|
|||
| Name | Description |
|
||||
| ------------------------------------ | ----------------------------------------------------------------------------------------- |
|
||||
| `start` | The index of the first character of the span. ~~int~~ |
|
||||
| `end` | The index of the last character after the span. ~~int~~ |
|
||||
| `end` | The index of the last character after the span. ~~int~~ |
|
||||
| `label` | A label to attach to the span, e.g. for named entities. ~~Union[int, str]~~ |
|
||||
| `kb_id` <Tag variant="new">2.2</Tag> | An ID from a knowledge base to capture the meaning of a named entity. ~~Union[int, str]~~ |
|
||||
| `vector` | A meaning representation of the span. ~~numpy.ndarray[ndim=1, dtype=float32]~~ |
|
||||
|
@ -274,6 +274,31 @@ if the entity recognizer has been applied.
|
|||
| ----------- | ----------------------------------------------------------------- |
|
||||
| **RETURNS** | Entities in the span, one `Span` per entity. ~~Tuple[Span, ...]~~ |
|
||||
|
||||
## Span.noun_chunks {#noun_chunks tag="property" model="parser"}
|
||||
|
||||
Iterate over the base noun phrases in the span. Yields base noun-phrase `Span`
|
||||
objects, if the document has been syntactically parsed. A base noun phrase, or
|
||||
"NP chunk", is a noun phrase that does not permit other NPs to be nested within
|
||||
it – so no NP-level coordination, no prepositional phrases, and no relative
|
||||
clauses.
|
||||
|
||||
If the `noun_chunk` [syntax iterator](/usage/adding-languages#language-data) has
|
||||
not been implemeted for the given language, a `NotImplementedError` is raised.
|
||||
|
||||
> #### Example
|
||||
>
|
||||
> ```python
|
||||
> doc = nlp("A phrase with another phrase occurs.")
|
||||
> span = doc[3:5]
|
||||
> chunks = list(span.noun_chunks)
|
||||
> assert len(chunks) == 1
|
||||
> assert chunks[0].text == "another phrase"
|
||||
> ```
|
||||
|
||||
| Name | Description |
|
||||
| ---------- | --------------------------------- |
|
||||
| **YIELDS** | Noun chunks in the span. ~~Span~~ |
|
||||
|
||||
## Span.as_doc {#as_doc tag="method"}
|
||||
|
||||
Create a new `Doc` object corresponding to the `Span`, with a copy of the data.
|
||||
|
|
|
@ -221,7 +221,7 @@ Noun chunks are "base noun phrases" – flat phrases that have a noun as their
|
|||
head. You can think of noun chunks as a noun plus the words describing the noun
|
||||
– for example, "the lavish green grass" or "the world’s largest tech fund". To
|
||||
get the noun chunks in a document, simply iterate over
|
||||
[`Doc.noun_chunks`](/api/doc#noun_chunks)
|
||||
[`Doc.noun_chunks`](/api/doc#noun_chunks).
|
||||
|
||||
```python
|
||||
### {executable="true"}
|
||||
|
|
Loading…
Reference in New Issue
Block a user