diff --git a/bin/init_model.py b/bin/init_model.py index e4f5225d7..4a2811256 100644 --- a/bin/init_model.py +++ b/bin/init_model.py @@ -28,7 +28,7 @@ from spacy.en.lemmatizer import Lemmatizer from spacy.vocab import Vocab from spacy.vocab import write_binary_vectors -from spacy.parts_of_speech import NOUN, VERB, ADJ +from spacy.parts_of_speech import NOUN, VERB, ADJ, ADV import spacy.senses @@ -80,19 +80,14 @@ def _read_probs(loc): def _read_senses(loc): lexicon = defaultdict(lambda: defaultdict(list)) - sense_names = dict((s, i) for i, s in enumerate(spacy.senses.STRINGS)) - pos_ids = {'noun': NOUN, 'verb': VERB, 'adjective': ADJ} + pos_tags = [None, NOUN, VERB, ADJ, ADV, None] for line in codecs.open(str(loc), 'r', 'utf8'): - sense_strings = line.split() - word = sense_strings.pop(0) - for sense in sense_strings: - pos, sense = sense[3:].split('.') - if pos[0].upper() == 'A': - continue - sense_name = '%s_%s' % (pos[0].upper(), sense.lower()) - if sense_name != 'N_tops': - sense_id = sense_names[sense_name] - lexicon[word][pos_ids[pos]].append(sense_id) + sense_key, synset_offset, sense_number, tag_cnt = line.split() + lemma, lex_sense = sense_key.split('%') + ss_type, lex_filenum, lex_id, head_word, head_id = lex_sense.split(':') + pos = pos_tags[int(ss_type)] + if pos is not None: + lexicon[lemma][pos].append(int(lex_filenum)) return lexicon @@ -105,7 +100,7 @@ def setup_vocab(src_dir, dst_dir): write_binary_vectors(str(vectors_src), str(dst_dir / 'vec.bin')) vocab = Vocab(data_dir=None, get_lex_props=get_lex_props) clusters = _read_clusters(src_dir / 'clusters.txt') - senses = _read_senses(src_dir / 'supersenses.txt') + senses = _read_senses(src_dir / 'wordnet' / 'index.sense') probs = _read_probs(src_dir / 'words.sgt.prob') for word in set(clusters).union(set(senses)): if word not in probs: