* Add split one token into several (resolves#2838)
* Improve error message for token splitting
* Make retokenizer.split() tests use a Token object
Change retokenizer.split() to use a Token object, instead of an index.
* Pass Token into retokenize.split()
Tweak retokenize.split() API so that we pass the `Token` object, not the index.
* Fix token.idx in retokenize.split()
* Test that token.idx is correct after split
* Fix token.idx for split tokens
* Fix retokenize.split()
* Fix retokenize.split
* Fix retokenize.split() test
Otherwise, the true error that happens within a Language subclass is swallowed, because if it's imported lazily like that, it'll always be an ImportError
* Add custom MatchPatternError
* Improve validators and add validation option to Matcher
* Adjust formatting
* Never validate in Matcher within PhraseMatcher
If we do decide to make validate default to True, the PhraseMatcher's Matcher shouldn't ever validate. Here, we create the patterns automatically anyways (and it's currently unclear whether the validation has performance impacts at a very large scale).
In most cases, the PhraseMatcher will match on the verbatim token text or as of v2.1, sometimes the lowercase text. This means that we only need a tokenized Doc, without any other attributes.
If phrase patterns are created by processing large terminology lists with the full `nlp` object, this easily can make things a lot slower, because all components will be applied, even if we don't actually need the attributes they set (like part-of-speech tags, dependency labels).
The warning message also includes a suggestion to use nlp.make_doc or nlp.tokenizer.pipe for even faster processing. For now, the validation has to be enabled explicitly by setting validate=True.
* Improved stop words list
* Removed some wrong stop words form list
* Improved stop words list
* Removed some wrong stop words form list
* Improved Polish Tokenizer (#38)
* Add tests for polish tokenizer
* Add polish tokenizer exceptions
* Don't split any words containing hyphens
* Fix test case with wrong model answer
* Remove commented out line of code until better solution is found
* Add source srx' license
* Rename exception_list.py to match spaCy conventionality
* Add a brief explanation of where the exception list comes from
* Add newline after reach exception
* Rename COPYING.txt to LICENSE
* Delete old files
* Add header to the license
* Agreements signed
* Stanisław Giziński agreement
* Krzysztof Kowalczyk - signed agreement
* Mateusz Olko agreement
* Add DoomCoder's contributor agreement
* Improve like number checking in polish lang
* like num tests added
* all from SI system added
* Final licence and removed splitting exceptions
* Added polish stop words to LEX_ATTRA
* Add encoding info to pl tokenizer exceptions
## Description
1. Added the same infix rule as in French (`d'une`, `j'ai`) for Italian (`c'è`, `l'ha`), bringing F-score on `it_isdt-ud-train.txt` from 96% to 99%. Added unit test to check this behaviour.
2. Added specific Urdu punctuation character as suffix, improving F-score on `ur_udtb-ud-train.txt` from 94% to 100%. Added unit test to check this behaviour.
### Types of change
Enhancement of Italian & Urdu tokenization
## Checklist
- [x] I have submitted the spaCy Contributor Agreement.
- [x] I ran the tests, and all new and existing tests passed.
- [x] My changes don't require a change to the documentation, or if they do, I've added all required information.