1
1
mirror of https://github.com/explosion/spaCy.git synced 2025-01-25 08:44:26 +03:00
Commit Graph

74 Commits

Author SHA1 Message Date
Adriane Boyd
5861308910 Generalize handling of tokenizer special cases
Handle tokenizer special cases more generally by using the Matcher
internally to match special cases after the affix/token_match
tokenization is complete.

Instead of only matching special cases while processing balanced or
nearly balanced prefixes and suffixes, this recognizes special cases in
a wider range of contexts:

* Allows arbitrary numbers of prefixes/affixes around special cases
* Allows special cases separated by infixes

Existing tests/settings that couldn't be preserved as before:

* The emoticon '")' is no longer a supported special case
* The emoticon ':)' in "example:)" is a false positive again

When merged with  (or the relevant cache bugfix), the affix and
token_match properties should be modified to flush and reload all
special cases to use the updated internal tokenization with the Matcher.
2019-09-08 20:35:16 +02:00
adrianeboyd
2d17b047e2 Check for is_tagged/is_parsed for Matcher attrs ()
Check for relevant components in the pipeline when Matcher is called,
similar to the checks for PhraseMatcher in .

* keep track of attributes seen in patterns

* when Matcher is called on a Doc, check for is_tagged for LEMMA, TAG,
POS and for is_parsed for DEP
2019-08-21 20:52:36 +02:00
adrianeboyd
8fe7bdd0fa Improve token pattern checking without validation ()
* Fix typo in rule-based matching docs

* Improve token pattern checking without validation

Add more detailed token pattern checks without full JSON pattern validation and
provide more detailed error messages.

Addresses  (also related: , ).

* Check whether top-level attributes in patterns and attr for PhraseMatcher are
  in token pattern schema

* Check whether attribute value types are supported in general (as opposed to
  per attribute with full validation)

* Report various internal error types (OverflowError, AttributeError, KeyError)
  as ValueError with standard error messages

* Check for tagger/parser in PhraseMatcher pipeline for attributes TAG, POS,
  LEMMA, and DEP

* Add error messages with relevant details on how to use validate=True or nlp()
  instead of nlp.make_doc()

* Support attr=TEXT for PhraseMatcher

* Add NORM to schema

* Expand tests for pattern validation, Matcher, PhraseMatcher, and EntityRuler

* Remove unnecessary .keys()

* Rephrase error messages

* Add another type check to Matcher

Add another type check to Matcher for more understandable error messages
in some rare cases.

* Support phrase_matcher_attr=TEXT for EntityRuler

* Don't use spacy.errors in examples and bin scripts

* Fix error code

* Auto-format

Also try get Azure pipelines to finally start a build :(

* Update errors.py


Co-authored-by: Ines Montani <ines@ines.io>
Co-authored-by: Matthew Honnibal <honnibal+gh@gmail.com>
2019-08-21 14:00:37 +02:00
Ines Montani
f580302673 Tidy up and auto-format 2019-08-20 17:36:34 +02:00
Ines Montani
104125edd2 Tidy up errors 2019-08-20 16:03:45 +02:00
Ines Montani
cc76a26fe8 Raise error for negative arc indices (closes ) 2019-08-20 15:51:37 +02:00
Ines Montani
009280fbc5 Tidy up and auto-format 2019-08-18 15:09:16 +02:00
adrianeboyd
2f9b28c218 Provide more info in cycle error message E069 ()
Provide the tokens in the cycle and the first 50 tokens from document in
the error message so it's easier to track down the location of the cycle
in the data.

Addresses feature request in .
2019-08-15 18:08:28 +02:00
Sofie Van Landeghem
0ba1b5eebc CLI scripts for entity linking (wikipedia & generic) ()
* document token ent_kb_id

* document span kb_id

* update pipeline documentation

* prior and context weights as bool's instead

* entitylinker api documentation

* drop for both models

* finish entitylinker documentation

* small fixes

* documentation for KB

* candidate documentation

* links to api pages in code

* small fix

* frequency examples as counts for consistency

* consistent documentation about tensors returned by predict

* add entity linking to usage 101

* add entity linking infobox and KB section to 101

* entity-linking in linguistic features

* small typo corrections

* training example and docs for entity_linker

* predefined nlp and kb

* revert back to similarity encodings for simplicity (for now)

* set prior probabilities to 0 when excluded

* code clean up

* bugfix: deleting kb ID from tokens when entities were removed

* refactor train el example to use either model or vocab

* pretrain_kb example for example kb generation

* add to training docs for KB + EL example scripts

* small fixes

* error numbering

* ensure the language of vocab and nlp stay consistent across serialization

* equality with =

* avoid conflict in errors file

* add error 151

* final adjustements to the train scripts - consistency

* update of goldparse documentation

* small corrections

* push commit

* turn kb_creator into CLI script (wip)

* proper parameters for training entity vectors

* wikidata pipeline split up into two executable scripts

* remove context_width

* move wikidata scripts in bin directory, remove old dummy script

* refine KB script with logs and preprocessing options

* small edits

* small improvements to logging of EL CLI script
2019-08-13 15:38:59 +02:00
Jeno
15be09ceb0 Raise error if annotation dict in simple training style has unexpected keys ()
* adding enhancement .

* modified behavior to strictly require top level dictionary keys - issue 

* pass expected keys to error message and add links as expected top level key
2019-08-06 11:01:25 +02:00
Sofie Van Landeghem
f7d950de6d ensure the lang of vocab and nlp stay consistent ()
* ensure the language of vocab and nlp stay consistent across serialization

* equality with =
2019-08-01 17:13:01 +02:00
Matthew Honnibal
73e095923f 💫 Improve error message when model.from_bytes() dies ()
* Improve error message when model.from_bytes() dies

When Thinc's model.from_bytes() is called with a mismatched model, often
we get a particularly ungraceful error,

e.g. "AttributeError: FunctionLayer has no attribute G"

This is because we're trying to load the parameters for something like
a LayerNorm layer, and the model architecture has some other layer there
instead. This is obviously terrible, especially since the error *type*
is wrong.

I've changed it to raise a ValueError. The error message is still
probably a bit terse, but it's hard to be sure exactly what's gone
wrong.

* Update spacy/pipeline/pipes.pyx

* Update spacy/pipeline/pipes.pyx

* Update spacy/pipeline/pipes.pyx

* Update spacy/syntax/nn_parser.pyx

* Update spacy/syntax/nn_parser.pyx

* Update spacy/pipeline/pipes.pyx

Co-Authored-By: Matthew Honnibal <honnibal+gh@gmail.com>

* Update spacy/pipeline/pipes.pyx

Co-Authored-By: Matthew Honnibal <honnibal+gh@gmail.com>


Co-authored-by: Ines Montani <ines@ines.io>
2019-07-24 11:27:34 +02:00
svlandeg
400ff342cf replace assert's with custom error messages 2019-07-23 11:52:48 +02:00
svlandeg
b1911f7105 Errors.E146 for IO error when FP is null 2019-07-22 14:56:13 +02:00
svlandeg
5d544f89ba Errors.E145 for IO errors when reading KB 2019-07-22 14:36:07 +02:00
svlandeg
6e809e9b8b proper error for missing cfg arguments 2019-07-15 11:42:50 +02:00
Matthew Honnibal
7369949d2e Add warning for 2019-07-11 14:46:47 +02:00
Sofie Van Landeghem
c4c21cb428 more friendly textcat errors ()
* more friendly textcat errors with require_model and require_labels

* update thinc version with recent bugfix
2019-07-10 19:39:38 +02:00
Ines Montani
e1be80e3ec Merge branch 'master' into pr/3864 2019-06-20 10:35:37 +02:00
Björn Böing
ebf5a04d6c Update pretrain docs and add unsupported loss_func error ()
* Add error to `get_vectors_loss` for unsupported loss function of `pretrain`

* Add missing "--loss-func" argument to pretrain docs. Update pretrain plac annotations to match docs.

* Add missing quotation marks
2019-06-20 10:30:44 +02:00
svlandeg
cc9ae28a52 custom error and warning messages 2019-06-19 12:35:26 +02:00
BreakBB
d8573ee715 Update error raising for CLI pretrain to fix ()
* Add check for empty input file to CLI pretrain

* Raise error if JSONL is not a dict or contains neither `tokens` nor `text` key

* Skip empty values for correct pretrain keys and log a counter as warning

* Add tests for CLI pretrain core function make_docs.

* Add a short hint for the `tokens` key to the CLI pretrain docs

* Add success message to CLI pretrain

* Update model loading to fix the tests

* Skip empty values and do not create docs out of it
2019-06-16 13:22:57 +02:00
Ines Montani
09e78b52cf Improve E024 text for incorrect GoldParse (closes ) 2019-06-01 14:37:27 +02:00
Ines Montani
a7fd42d937 Make jsonschema dependency optional () 2019-05-30 14:34:58 +02:00
BreakBB
ed18a6efbd Add check for callable to 'Language.replace_pipe' to fix () 2019-05-14 16:59:31 +02:00
svlandeg
46f4eb5db3 error and warning messages 2019-03-22 16:55:05 +01:00
svlandeg
5b1cd49222 error msg and unit tests for setting kb_id on span 2019-03-22 12:05:35 +01:00
Ines Montani
ae5b4d0e84 Fix formatting (hopefully also restarts build properly) 2019-03-20 09:55:45 +01:00
Bharat123Rox
f2547f02d6 Made changes suggested by @ines 2019-03-20 07:43:19 +05:30
Ines Montani
bec8db91e6 Add actual deprecation warning for n_threads (resolves ) 2019-03-15 16:38:44 +01:00
Sofie
c45ed32c74 label in span not writable anymore ()
* label in span not writable anymore

* more explicit unit test and error message for readonly label

* bit more explanation (view)

* error msg tailored to specific case

* fix None case
2019-03-15 00:46:45 +01:00
Ines Montani
7ba3a5d95c 💫 Make serialization methods consistent ()
* Make serialization methods consistent

exclude keyword argument instead of random named keyword arguments and deprecation handling

* Update docs and add section on serialization fields
2019-03-10 19:16:45 +01:00
Ines Montani
76764fcf59 💫 Improve converters and training data file formats ()
* Populate converter argument info automatically

* Add conversion option for msgpack

* Update docs

* Allow reading training data from JSONL
2019-03-08 23:15:23 +01:00
Ines Montani
296446a1c8
Tidy up and improve docs and docstrings ()
<!--- Provide a general summary of your changes in the title. -->

## Description
* tidy up and adjust Cython code to code style
* improve docstrings and make calling `help()` nicer
* add URLs to new docs pages to docstrings wherever possible, mostly to user-facing objects
* fix various typos and inconsistencies in docs

### Types of change
enhancement, docs

## Checklist
<!--- Before you submit the PR, go over this checklist and make sure you can
tick off all the boxes. [] -> [x] -->
- [x] I have submitted the spaCy Contributor Agreement.
- [x] I ran the tests, and all new and existing tests passed.
- [x] My changes don't require a change to the documentation, or if they do, I've added all required information.
2019-03-08 11:42:26 +01:00
Ines Montani
dfbed07d3b Remove unused temp errors 2019-02-24 22:26:08 +01:00
Ines Montani
df19e2bff6
💫 Allow setting of custom attributes during retokenization (closes ) ()
<!--- Provide a general summary of your changes in the title. -->

## Description

This PR adds the abilility to override custom extension attributes during merging. This will only work for attributes that are writable, i.e. attributes registered with a default value like `default=False` or attribute that have both a getter *and* a setter implemented.

```python
Token.set_extension('is_musician', default=False)

doc = nlp("I like David Bowie.")
with doc.retokenize() as retokenizer:
    attrs = {"LEMMA": "David Bowie", "_": {"is_musician": True}}
    retokenizer.merge(doc[2:4], attrs=attrs)

assert doc[2].text == "David Bowie"
assert doc[2].lemma_ == "David Bowie"
assert doc[2]._.is_musician
```

### Types of change
enhancement

## Checklist
<!--- Before you submit the PR, go over this checklist and make sure you can
tick off all the boxes. [] -> [x] -->
- [x] I have submitted the spaCy Contributor Agreement.
- [x] I ran the tests, and all new and existing tests passed.
- [x] My changes don't require a change to the documentation, or if they do, I've added all required information.
2019-02-24 18:38:47 +01:00
Ines Montani
6de81ae310 Fix formatting of errors 2019-02-24 15:11:28 +01:00
Ines Montani
1e252b129c Auto-format 2019-02-17 12:22:07 +01:00
Matthew Honnibal
92b6bd2977
Refinements to retokenize.split() function ()
* Change retokenize.split() API for heads

* Pass lists as values for attrs in split

* Fix test_doc_split filename

* Add error for mismatched tokens after split

* Raise error if new tokens don't match text

* Fix doc test

* Fix error

* Move deps under attrs

* Fix split tests

* Fix retokenize.split
2019-02-15 17:32:31 +01:00
Ines Montani
5651a0d052 💫 Replace {Doc,Span}.merge with Doc.retokenize ()
* Add deprecation warning to Doc.merge and Span.merge

* Replace {Doc,Span}.merge with Doc.retokenize
2019-02-15 10:29:44 +01:00
Ines Montani
f146121092 💫 Make handling of [Pipe].labels consistent ()
* Make handling of [Pipe].labels consistent

* Un-xfail passing test

* Update spacy/pipeline/pipes.pyx

Co-Authored-By: ines <ines@ines.io>

* Update spacy/pipeline/pipes.pyx

Co-Authored-By: ines <ines@ines.io>

* Update spacy/tests/pipeline/test_pipe_methods.py

Co-Authored-By: ines <ines@ines.io>

* Update spacy/pipeline/pipes.pyx

Co-Authored-By: ines <ines@ines.io>

* Move error message to spacy.errors

* Fix textcat labels and test

* Make EntityRuler.labels return tuple as well
2019-02-15 06:03:19 +11:00
Ines Montani
0cd01a8c5e Merge branch 'master' into develop 2019-02-14 15:35:20 +01:00
Grivaz
39815513e2 Add split one token into several (resolves ) ()
* Add split one token into several (resolves )

* Improve error message for token splitting

* Make retokenizer.split() tests use a Token object

Change retokenizer.split() to use a Token object, instead of an index.

* Pass Token into retokenize.split()

Tweak retokenize.split() API so that we pass the `Token` object, not the index.

* Fix token.idx in retokenize.split()

* Test that token.idx is correct after split

* Fix token.idx for split tokens

* Fix retokenize.split()

* Fix retokenize.split

* Fix retokenize.split() test
2019-02-15 01:27:13 +11:00
Ines Montani
60c2a3bb65 Also raise original error message in util.get_lang_class
Otherwise, the true error that happens within a Language subclass is swallowed, because if it's imported lazily like that, it'll always be an ImportError
2019-02-13 16:52:25 +01:00
Ines Montani
4d2438f985 Tidy up and auto-format 2019-02-13 15:29:08 +01:00
Ines Montani
fbf9f1edf1 Also raise error in Span.__reduce__ 2019-02-13 13:22:05 +01:00
Ines Montani
2d0c3c73f4
Raise better error if token is pickled (resolves ) () 2019-02-13 11:27:04 +01:00
Ines Montani
483dddc9bc 💫 Add token match pattern validation via JSON schemas ()
* Add custom MatchPatternError

* Improve validators and add validation option to Matcher

* Adjust formatting

* Never validate in Matcher within PhraseMatcher

If we do decide to make validate default to True, the PhraseMatcher's Matcher shouldn't ever validate. Here, we create the patterns automatically anyways (and it's currently unclear whether the validation has performance impacts at a very large scale).
2019-02-13 01:47:26 +11:00
Ines Montani
ad2a514cdf Show warning if phrase pattern Doc was overprocessed ()
In most cases, the PhraseMatcher will match on the verbatim token text or as of v2.1, sometimes the lowercase text. This means that we only need a tokenized Doc, without any other attributes.

If phrase patterns are created by processing large terminology lists with the full `nlp` object, this easily can make things a lot slower, because all components will be applied, even if we don't actually need the attributes they set (like part-of-speech tags, dependency labels).

The warning message also includes a suggestion to use nlp.make_doc or nlp.tokenizer.pipe for even faster processing. For now, the validation has to be enabled explicitly by setting validate=True.
2019-02-13 01:45:31 +11:00
Ines Montani
f4ce7bb7e9 Fix typo and deprecation message (resolves ) [ci skip] 2019-02-08 18:09:23 +01:00