* Change GPU efficient textcat to use CNN, not BOW
If you generate a config with a textcat component using GPU
(transformers), the defaut option (efficiency) uses a BOW architecture,
which does not use tok2vec features. While that can make sense as part
of a larger pipeline, in the case of just a transformer and a textcat,
that means the transformer is doing a lot of work for no purpose.
This changes it so that the CNN architecture is used instead. It could
also be changed to be the same as the accuracy config, which uses the
ensemble architecture.
* Add the transformer when using a textcat with GPU
* Switch ubuntu-latest to ubuntu-20.04 in main tests (#11928)
* Switch ubuntu-latest to ubuntu-20.04 in main tests
* Only use 20.04 for 3.6
* Require thinc v8.1.7
* Require thinc v8.1.8
* Break up longer expression
---------
Co-authored-by: Adriane Boyd <adrianeboyd@gmail.com>
* Parser: use C saxpy/sgemm provided by the Ops implementation
This is a backport of https://github.com/explosion/spaCy/pull/10747
from the parser refactor branch. It eliminates the explicit calls
to BLIS, instead using the saxpy/sgemm provided by the Ops
implementation.
This allows us to use Accelerate in the parser on M1 Macs (with
an updated thinc-apple-ops).
Performance of the de_core_news_lg pipe:
BLIS 0.7.0, no thinc-apple-ops: 6385 WPS
BLIS 0.7.0, thinc-apple-ops: 36455 WPS
BLIS 0.9.0, no thinc-apple-ops: 19188 WPS
BLIS 0.9.0, thinc-apple-ops: 36682 WPS
This PR, thinc-apple-ops: 38726 WPS
Performance of the de_core_news_lg pipe (only tok2vec -> parser):
BLIS 0.7.0, no thinc-apple-ops: 13907 WPS
BLIS 0.7.0, thinc-apple-ops: 73172 WPS
BLIS 0.9.0, no thinc-apple-ops: 41576 WPS
BLIS 0.9.0, thinc-apple-ops: 72569 WPS
This PR, thinc-apple-ops: 87061 WPS
* Require thinc >=8.1.0,<8.2.0
* Lower thinc lowerbound to 8.1.0.dev0
* Use best CPU ops for CBLAS when the parser model is on the GPU
* Fix another unguarded cblas() call
* Fix: use ops as a shorthand for self.model.ops
Co-authored-by: Madeesh Kannan <shadeMe@users.noreply.github.com>
Co-authored-by: Madeesh Kannan <shadeMe@users.noreply.github.com>
* Make changes to typing
* Correction
* Format with black
* Corrections based on review
* Bumped Thinc dependency version
* Bumped blis requirement
* Correction for older Python versions
* Update spacy/ml/models/textcat.py
Co-authored-by: Daniël de Kok <me@github.danieldk.eu>
* Corrections based on review feedback
* Readd deleted docstring line
Co-authored-by: Daniël de Kok <me@github.danieldk.eu>
* Tagger: use unnormalized probabilities for inference
Using unnormalized softmax avoids use of the relatively expensive exp function,
which can significantly speed up non-transformer models (e.g. I got a speedup
of 27% on a German tagging + parsing pipeline).
* Add spacy.Tagger.v2 with configurable normalization
Normalization of probabilities is disabled by default to improve
performance.
* Update documentation, models, and tests to spacy.Tagger.v2
* Move Tagger.v1 to spacy-legacy
* docs/architectures: run prettier
* Unnormalized softmax is now a Softmax_v2 option
* Require thinc 8.0.14 and spacy-legacy 3.0.9
* Update for python 3.10
* Update mac image
* Update build constraints for python 3.10
* Add extras for cupy cuda 11.3-11.5
* Remove cupy-cuda115 extra
* Require thinc>=8.0.12
* Switch CI to windows-2019
* Skip mypy for python 3.10
* Draft spancat model
* Add spancat model
* Add test for extract_spans
* Add extract_spans layer
* Upd extract_spans
* Add spancat model
* Add test for spancat model
* Upd spancat model
* Update spancat component
* Upd spancat
* Update spancat model
* Add quick spancat test
* Import SpanCategorizer
* Fix SpanCategorizer component
* Import SpanGroup
* Fix span extraction
* Fix import
* Fix import
* Upd model
* Update spancat models
* Add scoring, update defaults
* Update and add docs
* Fix type
* Update spacy/ml/extract_spans.py
* Auto-format and fix import
* Fix comment
* Fix type
* Fix type
* Update website/docs/api/spancategorizer.md
* Fix comment
Co-authored-by: Sofie Van Landeghem <svlandeg@users.noreply.github.com>
* Better defense
Co-authored-by: Sofie Van Landeghem <svlandeg@users.noreply.github.com>
* Fix labels list
Co-authored-by: Sofie Van Landeghem <svlandeg@users.noreply.github.com>
* Update spacy/ml/extract_spans.py
Co-authored-by: Sofie Van Landeghem <svlandeg@users.noreply.github.com>
* Update spacy/pipeline/spancat.py
Co-authored-by: Sofie Van Landeghem <svlandeg@users.noreply.github.com>
* Set annotations during update
* Set annotations in spancat
* fix imports in test
* Update spacy/pipeline/spancat.py
* replace MaxoutLogistic with LinearLogistic
* fix config
* various small fixes
* remove set_annotations parameter in update
* use our beloved tupley format with recent support for doc.spans
* bugfix to allow renaming the default span_key (scores weren't showing up)
* use different key in docs example
* change defaults to better-working parameters from project (WIP)
* register spacy.extract_spans.v1 for legacy purposes
* Upd dev version so can build wheel
* layers instead of architectures for smaller building blocks
* Update website/docs/api/spancategorizer.md
Co-authored-by: Adriane Boyd <adrianeboyd@gmail.com>
* Update website/docs/api/spancategorizer.md
Co-authored-by: Adriane Boyd <adrianeboyd@gmail.com>
* Include additional scores from overrides in combined score weights
* Parameterize spans key in scoring
Parameterize the `SpanCategorizer` `spans_key` for scoring purposes so
that it's possible to evaluate multiple `spancat` components in the same
pipeline.
* Use the (intentionally very short) default spans key `sc` in the
`SpanCategorizer`
* Adjust the default score weights to include the default key
* Adjust the scorer to use `spans_{spans_key}` as the prefix for the
returned score
* Revert addition of `attr_name` argument to `score_spans` and adjust
the key in the `getter` instead.
Note that for `spancat` components with a custom `span_key`, the score
weights currently need to be modified manually in
`[training.score_weights]` for them to be available during training. To
suppress the default score weights `spans_sc_p/r/f` during training, set
them to `null` in `[training.score_weights]`.
* Update website/docs/api/scorer.md
* Fix scorer for spans key containing underscore
* Increment version
* Add Spans to Evaluate CLI (#8439)
* Add Spans to Evaluate CLI
* Change to spans_key
* Add spans per_type output
Co-authored-by: Adriane Boyd <adrianeboyd@gmail.com>
* Fix spancat GPU issues (#8455)
* Fix GPU issues
* Require thinc >=8.0.6
* Switch to glorot_uniform_init
* Fix and test ngram suggester
* Include final ngram in doc for all sizes
* Fix ngrams for docs of the same length as ngram size
* Handle batches of docs that result in no ngrams
* Add tests
Co-authored-by: Ines Montani <ines@ines.io>
Co-authored-by: Sofie Van Landeghem <svlandeg@users.noreply.github.com>
Co-authored-by: svlandeg <sofie.vanlandeghem@gmail.com>
Co-authored-by: Adriane Boyd <adrianeboyd@gmail.com>
Co-authored-by: Nirant <NirantK@users.noreply.github.com>
* implement textcat resizing for TextCatCNN
* resizing textcat in-place
* simplify code
* ensure predictions for old textcat labels remain the same after resizing (WIP)
* fix for softmax
* store softmax as attr
* fix ensemble weight copy and cleanup
* restructure slightly
* adjust documentation, update tests and quickstart templates to use latest versions
* extend unit test slightly
* revert unnecessary edits
* fix typo
* ensemble architecture won't be resizable for now
* use resizable layer (WIP)
* revert using resizable layer
* resizable container while avoid shape inference trouble
* cleanup
* ensure model continues training after resizing
* use fill_b parameter
* use fill_defaults
* resize_layer callback
* format
* bump thinc to 8.0.4
* bump spacy-legacy to 3.0.6
* Dynamically include numpy headers
* Add `build-constraints.txt` with numpy version pins for building wheels with `pip` and `wheelwright`
* Update `setup.py` to add current numpy include directory
* Assume `cython` and `numpy` are installed for `setup.py`
* Remove included numpy headers
* Fix typo in requirements.txt
* Use script in CI
* Update blis and thinc version ranges
* Update thinc version range
* Update setup.cfg for python 3.9
* Adjust blis and thinc ranges
* Add python 3.9 classifier
* Update CI for python 3.9
* Add --prefer-binary to CI sdist install
* Update CI python 3.7 mac image
* Add --prefer-binary to Travis CI
* Update install instructions in README
* Specify blis versions separately for < / >= 3.6
* Update --prefer-binary in README
* Test cleaner sdist install
* Also upgrade pip
(This is kind of unnecessary given --prefer-binary but may avoid other
issues related to sdist installs in the future.)
* Compile with -j 2
* Remove wheel from setup_requires
* Update to have separate CI uninstall step
* Remove wheel from pyproject.toml
* Recommend upgrading setuptools in addition to pip
* Replace pytokenizations with internal alignment
Replace pytokenizations with internal alignment algorithm that is
restricted to only allow differences in whitespace and capitalization.
* Rename `spacy.training.align` to `spacy.training.alignment` to contain
the `Alignment` dataclass
* Implement `get_alignments` in `spacy.training.align`
* Refactor trailing whitespace handling
* Remove unnecessary exception for empty docs
Allow a non-empty whitespace-only doc to be aligned with an empty doc
* Remove empty docs exceptions completely
* ensure Language passes on valid examples for initialization
* fix tagger model initialization
* check for valid get_examples across components
* assume labels were added before begin_training
* fix senter initialization
* fix morphologizer initialization
* use methods to check arguments
* test textcat init, requires thinc>=8.0.0a31
* fix tok2vec init
* fix entity linker init
* use islice
* fix simple NER
* cleanup debug model
* fix assert statements
* fix tests
* throw error when adding a label if the output layer can't be resized anymore
* fix test
* add failing test for simple_ner
* UX improvements
* morphologizer UX
* assume begin_training gets a representative set and processes the labels
* remove assumptions for output of untrained NER model
* restore test for original purpose