* Fix most_similar for vectors with unused rows
Address issues related to the unused rows in the vector table and
`most_similar`:
* Update `most_similar()` to search only through rows that are in use
according to `key2row`.
* Raise an error when `most_similar(n=n)` is larger than the number of
vectors in the table.
* Set and restore `_unset` correctly when vectors are added or
deserialized so that new vectors are added in the correct row.
* Set data and keys to the same length in `Vocab.prune_vectors()` to
avoid spurious entries in `key2row`.
* Fix regression test using `most_similar`
Co-authored-by: Matthew Honnibal <honnibal+gh@gmail.com>
* Add warning for misaligned character offset spans
* Resolve conflict
* Filter warnings in example scripts
Filter warnings in example scripts to show warnings once, in particular
warnings about misaligned entities.
Co-authored-by: Ines Montani <ines@ines.io>
Update Polish tokenizer for UD_Polish-PDB, which is a relatively major
change from the existing tokenizer. Unused exceptions files and
conflicting test cases removed.
Co-authored-by: Matthew Honnibal <honnibal+gh@gmail.com>
* Reduce stored lexemes data, move feats to lookups
* Move non-derivable lexemes features (`norm / cluster / prob`) to
`spacy-lookups-data` as lookups
* Get/set `norm` in both lookups and `LexemeC`, serialize in lookups
* Remove `cluster` and `prob` from `LexemesC`, get/set/serialize in
lookups only
* Remove serialization of lexemes data as `vocab/lexemes.bin`
* Remove `SerializedLexemeC`
* Remove `Lexeme.to_bytes/from_bytes`
* Modify normalization exception loading:
* Always create `Vocab.lookups` table `lexeme_norm` for
normalization exceptions
* Load base exceptions from `lang.norm_exceptions`, but load
language-specific exceptions from lookups
* Set `lex_attr_getter[NORM]` including new lookups table in
`BaseDefaults.create_vocab()` and when deserializing `Vocab`
* Remove all cached lexemes when deserializing vocab to override
existing normalizations with the new normalizations (as a replacement
for the previous step that replaced all lexemes data with the
deserialized data)
* Skip English normalization test
Skip English normalization test because the data is now in
`spacy-lookups-data`.
* Remove norm exceptions
Moved to spacy-lookups-data.
* Move norm exceptions test to spacy-lookups-data
* Load extra lookups from spacy-lookups-data lazily
Load extra lookups (currently for cluster and prob) lazily from the
entry point `lg_extra` as `Vocab.lookups_extra`.
* Skip creating lexeme cache on load
To improve model loading times, do not create the full lexeme cache when
loading. The lexemes will be created on demand when processing.
* Identify numeric values in Lexeme.set_attrs()
With the removal of a special case for `PROB`, also identify `float` to
avoid trying to convert it with the `StringStore`.
* Skip lexeme cache init in from_bytes
* Unskip and update lookups tests for python3.6+
* Update vocab pickle to include lookups_extra
* Update vocab serialization tests
Check strings rather than lexemes since lexemes aren't initialized
automatically, account for addition of "_SP".
* Re-skip lookups test because of python3.5
* Skip PROB/float values in Lexeme.set_attrs
* Convert is_oov from lexeme flag to lex in vectors
Instead of storing `is_oov` as a lexeme flag, `is_oov` reports whether
the lexeme has a vector.
Co-authored-by: Matthew Honnibal <honnibal+gh@gmail.com>
* Limiting noun_chunks for specific langauges
* Limiting noun_chunks for specific languages
Contributor Agreement
* Addressing review comments
* Removed unused fixtures and imports
* Add fa_tokenizer in test suite
* Use fa_tokenizer in test
* Undo extraneous reformatting
Co-authored-by: adrianeboyd <adrianeboyd@gmail.com>
Check that row is within bounds for the vector data array when adding a
vector.
Don't add vectors with rank OOV_RANK in `init-model` (change is due to
shift from OOV as 0 to OOV as OOV_RANK).
Remove `TAG` value from Danish and Swedish tokenizer exceptions because
it may not be included in a tag map (and these settings are problematic
as tokenizer exceptions anyway).
Instead of treating `'d` in contractions like `I'd` as `would` in all
cases in the tokenizer exceptions, leave the tagging and lemmatization
up to later components.
To fix the slow tokenizer URL (#4374) and allow `token_match` to take
priority over prefixes and suffixes by default, introduce a new
tokenizer option for a token match pattern that's applied after prefixes
and suffixes but before infixes.
* simplify creation of KB by skipping dim reduction
* small fixes to train EL example script
* add KB creation and NEL training example scripts to example section
* update descriptions of example scripts in the documentation
* moving wiki_entity_linking folder from bin to projects
* remove test for wiki NEL functionality that is being moved
# Conflicts:
# bin/wiki_entity_linking/wikipedia_processor.py
* Initialize lower flag explicitly
* Handle whitespace words from GoldParse correctly when creating raw
text with orth variants
* Return the text with original casing if anything goes wrong
* `debug-data`: determine coverage of provided vectors
* `evaluate`: support `blank:lg` model to make it possible to just evaluate
tokenization
* `init-model`: add option to truncate vectors to N most frequent vectors
from word2vec file
* `train`:
* if training on GPU, only run evaluation/timing on CPU in the first
iteration
* if training is aborted, exit with a non-0 exit status
* simplify creation of KB by skipping dim reduction
* small fixes to train EL example script
* add KB creation and NEL training example scripts to example section
* update descriptions of example scripts in the documentation
* moving wiki_entity_linking folder from bin to projects
* remove test for wiki NEL functionality that is being moved