I'm not sure if this is the most elegant solution. But what should
happen is that the _make_span_group function MUST return an empty
SpanGroup if there are no suggestions.
The error happens when the 'scores' variable is empty. We cannot
get the 'predicted' and other downstream vars.
Strings in replacement nodes where not added to the `StringStore`
when `EditTreeLemmatizer` was initialized from a set of labels. The
corresponding test did not capture this because it added the strings
through the examples that were passed to the initialization.
This change fixes both this bug in the initialization as the 'shadowing'
of the bug in the test.
Whenever I remove model.scorer.init_w and model.scorer.init_b,
I encounter an error in the test:
SystemError: <method '__getitem__' of 'dict' objects> returned a result
with an error set.
My Thinc version is 8.1.5, but I can't seem to check what's causing the
error.
To ensure that spancat / spancat_exclusive cannot be resized after
initialization, I inherited the _allow_extra_label() method from
spacy/pipeline/trainable_pipe.pyx and used self._n_labels instead
of len(self.labels) for checking.
I think that changing it locally is a better solution rather than
forcing each class that inherits TrainablePipe to use the self._n_labels
attribute.
Also note that I turned-off black formatting in this block of code
because it reads better without the overhang.
* Check textcat values for validity
* Fix error numbers
* Clean up vals reference
* Check category value validity through training
The _validate_categories is called in update, which for multilabel is
inherited from the single label component.
* Formatting
* Update textcat scorer threshold behavior
For `textcat` (with exclusive classes) the scorer should always use a
threshold of 0.0 because there should be one predicted label per doc and
the numeric score for that particular label should not matter.
* Rename to test_textcat_multilabel_threshold
* Remove all uses of threshold for multi_label=False
* Update Scorer.score_cats API docs
* Add tests for score_cats with thresholds
* Update textcat API docs
* Fix types
* Convert threshold back to float
* Fix threshold type in docstring
* Improve formatting in Scorer API docs
This commit changes the inheritance structure of Exclusive_Spancat,
now it's inheriting from SpanCategorizer than TrainablePipe. This
allows me to remove duplicate methods that are already present in
the parent function.
Instead of using len(self.labels) in initialize() I am using a private
property self._n_labels. This achieves implementation parity and allows
me to delete the whole initialize() method for spancat_exclusive (since
it's now the same with spancat).
* replicate bug with tok2vec in annotating components
* add overfitting test with a frozen tok2vec
* remove broadcast from predict and check doc.tensor instead
* remove broadcast
* proper error
* slight rephrase of documentation
* Enable Cython<->Python bindings for `Pipe` and `TrainablePipe` methods
* `pipes_with_nvtx_range`: Skip hooking methods whose signature cannot be ascertained
When loading pipelines from a config file, the arguments passed to individual pipeline components is validated by `pydantic` during init. For this, the validation model attempts to parse the function signature of the component's c'tor/entry point so that it can check if all mandatory parameters are present in the config file.
When using the `models_and_pipes_with_nvtx_range` as a `after_pipeline_creation` callback, the methods of all pipeline components get replaced by a NVTX range wrapper **before** the above-mentioned validation takes place. This can be problematic for components that are implemented as Cython extension types - if the extension type is not compiled with Python bindings for its methods, they will have no signatures at runtime. This resulted in `pydantic` matching the *wrapper's* parameters with the those in the config and raising errors.
To avoid this, we now skip applying the wrapper to any (Cython) methods that do not have signatures.