* Remove blis version constraints
After updating the blis sdist in v0.7.4, remove python version
constraints for blis build and install dependencies.
* Install sdist with --prefer-binary for python 3.5
* Fix duplicate sdist install steps
* Fix sdist install step types
* Fix blis pins in requirements.txt
* Remove wheel hack for python 3.5 from CI
Remove the non-working `--use-chars` option from the train CLI. The
implementation of the option across component types and the CLI settings
could be fixed, but the `CharacterEmbed` model does not work on GPU in
v2 so it's better to remove it.
* Fix blis build dependencies
* Add blis with python_version constraints to pyproject.toml
* Add blis to setup_requires
* Remove --only-binary from CI
* Reduce number of builds to speed up CI
* Add hack to install wheel for python 3.5 in linux
* Remove os spec from CI
* Remove detailed numpy build constraints
* Remove detailed numpy build constraints from `pyproject.toml` because
it is too difficult to maintain for many architectures
* These constraints are more a reflection of what is available on
pypi as binary wheels rather than any real build requirements that
it is necessary for users to follow when building from source
* Users building their own binary packages will need to enforce the
constraints that make sense in their environments, e.g., the `conda`
compatible numpy pins
* Keep the build constraints in `build-constraints.txt` for use with our
builds
* Our builds with wheelwright are built against the earliest
compatible binary versions of numpy on pypi
* These constraints are documented within the distribution
* Revert "Remove os spec from CI"
This reverts commit 7489476688.
* Only set NORM on Token in retokenizer
Instead of setting `NORM` on both the token and lexeme, set `NORM` only
on the token.
The retokenizer tries to set all possible attributes with
`Token/Lexeme.set_struct_attr` so that it doesn't have to enumerate
which attributes are available for each. `NORM` is the only attribute
that's stored on both and for most cases it doesn't make sense to set
the global norms based on a individual retokenization. For lexeme-only
attributes like `IS_STOP` there's no way to avoid the global side
effects, but I think that `NORM` would be better only on the token.
* Fix test
* Dynamically include numpy headers
* Add `build-constraints.txt` with numpy version pins for building wheels with `pip` and `wheelwright`
* Update `setup.py` to add current numpy include directory
* Assume `cython` and `numpy` are installed for `setup.py`
* Remove included numpy headers
* Fix typo in requirements.txt
* Use script in CI
* Update blis and thinc version ranges
* Update thinc version range
* Update setup.cfg for python 3.9
* Adjust blis and thinc ranges
* Add python 3.9 classifier
* Update CI for python 3.9
* Add --prefer-binary to CI sdist install
* Update CI python 3.7 mac image
* Add --prefer-binary to Travis CI
* Update install instructions in README
* Specify blis versions separately for < / >= 3.6
* Update --prefer-binary in README
* Test cleaner sdist install
* Also upgrade pip
(This is kind of unnecessary given --prefer-binary but may avoid other
issues related to sdist installs in the future.)
* Compile with -j 2
* Remove wheel from setup_requires
* Update to have separate CI uninstall step
* Remove wheel from pyproject.toml
* Recommend upgrading setuptools in addition to pip
* Avoid a SyntaxError in self-attentive-parser
Fix a usage of quotation marks in the example of spaCy Universe self-attentive-parser
* Create forest1988.md
Fill in the spaCy contributor agreement
* Update pip in CI
* Use --prefer-binary
* Use `--prefer-binary`
* Delete all installed packages before testing source install
* sdist install with --only-binary :all:
For the `DependencyMatcher`:
* Fix on_match callback so that it is called once per matched pattern
* Fix results so that patterns with empty match lists are not returned
Modify the internal pattern representation in `Matcher` patterns to
identify the final ID state using a unique quantifier rather than a
combination of other attributes.
It was insufficient to identify the final ID node based on an
uninitialized `quantifier` (coincidentally being the same as the `ZERO`)
with `nr_attr` as 0. (In addition, it was potentially bug-prone that
`nr_attr` was set to 0 even though attrs were allocated.)
In the case of `{"OP": "!"}` (a valid, if pointless, pattern), `nr_attr`
is 0 and the quantifier is ZERO, so the previous methods for
incrementing to the ID node at the end of the pattern weren't able to
distinguish the final ID node from the `{"OP": "!"}` pattern.
* added single and paired orth variants
* added token match
* added long text tokenization test
* inverted init
* normalized lemmas to lowercase
* more abbrevs
* tests for ordinals and abbrevs
* separated period abbvrevs to another list
* fiex typo
* added ordinal and abbrev tests
* added number tests for dates
* minor refinement
* added inflected abbrevs regex
* added percentage and inflection
* cosmetics
* added token match
* added url inflection tests
* excluded url tokens from custom pattern
* removed url match import
* Adding Mindmeld to Universe JSON
Mindmeld is a conversational AI platform for deep-domain voice interfaces and chatbots. https://www.mindmeld.com/
* Signing contribution agreement.
Co-authored-by: kunshar2 <kunshar2@cisco.com>