Before this patch, half-width spaces between words were simply lost in
Japanese text. This wasn't immediately noticeable because much Japanese
text never uses spaces at all.
* Improve load_language_data helper
* WIP: Add Lookups implementation
* Start moving lemma data over to JSON
* WIP: move data over for more languages
* Convert more languages
* Fix lemmatizer fixtures in tests
* Finish conversion
* Auto-format JSON files
* Fix test for now
* Make sure tables are stored on instance
* Update docstrings
* Update docstrings and errors
* Update test
* Add Lookups.__len__
* Add serialization methods
* Add Lookups.remove_table
* Use msgpack for serialization to disk
* Fix file exists check
* Try using OrderedDict for everything
* Update .flake8 [ci skip]
* Try fixing serialization
* Update test_lookups.py
* Update test_serialize_vocab_strings.py
* Lookups / Tables now work
This implements the stubs in the Lookups/Table classes. Currently this
is in Cython but with no type declarations, so that could be improved.
* Add lookups to setup.py
* Actually add lookups pyx
The previous commit added the old py file...
* Lookups work-in-progress
* Move from pyx back to py
* Add string based lookups, fix serialization
* Update tests, language/lemmatizer to work with string lookups
There are some outstanding issues here:
- a pickling-related test fails due to the bloom filter
- some custom lemmatizers (fr/nl at least) have issues
More generally, there's a question of how to deal with the case where
you have a string but want to use the lookup table. Currently the table
allows access by string or id, but that's getting pretty awkward.
* Change lemmatizer lookup method to pass (orth, string)
* Fix token lookup
* Fix French lookup
* Fix lt lemmatizer test
* Fix Dutch lemmatizer
* Fix lemmatizer lookup test
This was using a normal dict instead of a Table, so checks for the
string instead of an integer key failed.
* Make uk/nl/ru lemmatizer lookup methods consistent
The mentioned tokenizers all have their own implementation of the
`lookup` method, which accesses a `Lookups` table. The way that was
called in `token.pyx` was changed so this should be updated to have the
same arguments as `lookup` in `lemmatizer.py` (specificially (orth/id,
string)).
Prior to this change tests weren't failing, but there would probably be
issues with normal use of a model. More tests should proably be added.
Additionally, the language-specific `lookup` implementations seem like
they might not be needed, since they handle things like lower-casing
that aren't actually language specific.
* Make recently added Greek method compatible
* Remove redundant class/method
Leftovers from a merge not cleaned up adequately.
* Allow copying the user_data with as_doc + unit test
* add option to docs
* add typing
* import fix
* workaround to avoid bool clashing ...
* bint instead of bool
* document token ent_kb_id
* document span kb_id
* update pipeline documentation
* prior and context weights as bool's instead
* entitylinker api documentation
* drop for both models
* finish entitylinker documentation
* small fixes
* documentation for KB
* candidate documentation
* links to api pages in code
* small fix
* frequency examples as counts for consistency
* consistent documentation about tensors returned by predict
* add entity linking to usage 101
* add entity linking infobox and KB section to 101
* entity-linking in linguistic features
* small typo corrections
* training example and docs for entity_linker
* predefined nlp and kb
* revert back to similarity encodings for simplicity (for now)
* set prior probabilities to 0 when excluded
* code clean up
* bugfix: deleting kb ID from tokens when entities were removed
* refactor train el example to use either model or vocab
* pretrain_kb example for example kb generation
* add to training docs for KB + EL example scripts
* small fixes
* error numbering
* ensure the language of vocab and nlp stay consistent across serialization
* equality with =
* avoid conflict in errors file
* add error 151
* final adjustements to the train scripts - consistency
* update of goldparse documentation
* small corrections
* push commit
* typo fix
* add candidate API to kb documentation
* update API sidebar with EntityLinker and KnowledgeBase
* remove EL from 101 docs
* remove entity linker from 101 pipelines / rephrase
* custom el model instead of existing model
* set version to 2.2 for EL functionality
* update documentation for 2 CLI scripts
* Improve load_language_data helper
* WIP: Add Lookups implementation
* Start moving lemma data over to JSON
* WIP: move data over for more languages
* Convert more languages
* Fix lemmatizer fixtures in tests
* Finish conversion
* Auto-format JSON files
* Fix test for now
* Make sure tables are stored on instance
* Update docstrings
* Update docstrings and errors
* Update test
* Add Lookups.__len__
* Add serialization methods
* Add Lookups.remove_table
* Use msgpack for serialization to disk
* Fix file exists check
* Try using OrderedDict for everything
* Update .flake8 [ci skip]
* Try fixing serialization
* Update test_lookups.py
* Update test_serialize_vocab_strings.py
* Fix serialization for lookups
* Fix lookups
* Fix lookups
* Fix lookups
* Try to fix serialization
* Try to fix serialization
* Try to fix serialization
* Try to fix serialization
* Give up on serialization test
* Xfail more serialization tests for 3.5
* Fix lookups for 2.7
* Modify retokenizer to use span root attributes
* tag/pos/morph are set to root tag/pos/morph
* lemma and norm are reset and end up as orth (not ideal, but better
than orth of first token)
* Also handle individual merge case
* Add test
* Attempt to handle ent_iob and ent_type in merges
* Fix check for whether B-ENT should become I-ENT
* Move IOB consistency check to after attrs
Move all IOB consistency checks after attrs are set and simplify to
check entire document, modifying I to B at the beginning of the document
or if the entity type of the previous token isn't the same.
* Move IOB consistency check for single merge
Move IOB consistency check after the token array is compressed for the
single merge case.
* Update spacy/tokens/_retokenize.pyx
Co-Authored-By: Matthew Honnibal <honnibal+gh@gmail.com>
* Remove single vs. multiple merge distinction
Remove original single-instance `_merge()` and use `_bulk_merge()` (now
renamed `_merge()`) for all merges.
* Add out-of-bound check in previous entity check