* Add spacy.TextCatParametricAttention.v1
This layer provides is a simplification of the ensemble classifier that
only uses paramteric attention. We have found empirically that with a
sufficient amount of training data, using the ensemble classifier with
BoW does not provide significant improvement in classifier accuracy.
However, plugging in a BoW classifier does reduce GPU training and
inference performance substantially, since it uses a GPU-only kernel.
* Fix merge fallout
* Add TextCatReduce.v1
This is a textcat classifier that pools the vectors generated by a
tok2vec implementation and then applies a classifier to the pooled
representation. Three reductions are supported for pooling: first, max,
and mean. When multiple reductions are enabled, the reductions are
concatenated before providing them to the classification layer.
This model is a generalization of the TextCatCNN model, which only
supports mean reductions and is a bit of a misnomer, because it can also
be used with transformers. This change also reimplements TextCatCNN.v2
using the new TextCatReduce.v1 layer.
* Doc fixes
Co-authored-by: Sofie Van Landeghem <svlandeg@users.noreply.github.com>
* Fully specify `TextCatCNN` <-> `TextCatReduce` equivalence
* Move TextCatCNN docs to legacy, in prep for moving to spacy-legacy
* Add back a test for TextCatCNN.v2
* Replace TextCatCNN in pipe configurations and templates
* Add an infobox to the `TextCatReduce` section with an `TextCatCNN` anchor
* Add last reduction (`use_reduce_last`)
* Remove non-working TextCatCNN Netlify redirect
* Revert layer changes for the quickstart
* Revert one more quickstart change
* Remove unused import
* Fix docstring
* Fix setting name in error message
---------
Co-authored-by: Sofie Van Landeghem <svlandeg@users.noreply.github.com>
Co-authored-by: Adriane Boyd <adrianeboyd@gmail.com>
* Update `TextCatBOW` to use the fixed `SparseLinear` layer
A while ago, we fixed the `SparseLinear` layer to use all available
parameters: https://github.com/explosion/thinc/pull/754
This change updates `TextCatBOW` to `v3` which uses the new
`SparseLinear_v2` layer. This results in a sizeable improvement on a
text categorization task that was tested.
While at it, this `spacy.TextCatBOW.v3` also adds the `length_exponent`
option to make it possible to change the hidden size. Ideally, we'd just
have an option called `length`. But the way that `TextCatBOW` uses
hashes results in a non-uniform distribution of parameters when the
length is not a power of two.
* Replace TexCatBOW `length_exponent` parameter by `length`
We now round up the length to the next power of two if it isn't
a power of two.
* Remove some tests for TextCatBOW.v2
* Fix missing import
* add language extensions for norwegian nynorsk and faroese
* update docstring for nn/examples.py
* use relative imports
* add fo and nn tokenizers to pytest fixtures
* add unittests for fo and nn and fix bug in nn
* remove module docstring from fo/__init__.py
* add comments about example sentences' origin
* add license information to faroese data credit
* format unittests using black
* add __init__ files to test/lang/nn and tests/lang/fo
* fix import order and use relative imports in fo/__nit__.py and nn/__init__.py
* Make the tests a bit more compact
* Add fo and nn to website languages
* Add note about jul.
* Add "jul." as exception
---------
Co-authored-by: Adriane Boyd <adrianeboyd@gmail.com>
* Update the "Missing factory" error message
This accounts for model installations that took place during the current Python session.
* Add a note about Jupyter notebooks
* Move error to `spacy.cli.download`
Add extra message for Jupyter sessions
* Add additional note for interactive sessions
* Remove note about `spacy-transformers` from error message
* `isort`
* Improve checks for colab (also helps displacy)
* Update warning messages
* Improve flow for multiple checks
---------
Co-authored-by: Adriane Boyd <adrianeboyd@gmail.com>
* Update Tokenizer.explain for special cases with whitespace
Update `Tokenizer.explain` to skip special case matches if the exact
text has not been matched due to intervening whitespace.
Enable fuzzy `Tokenizer.explain` tests with additional whitespace
normalization.
* Add unit test for special cases with whitespace, xfail fuzzy tests again
* Fix displacy span stacking.
* Format. Remove counter.
* Remove test files.
* Add unit test. Refactor to allow for unit test.
* Fix off-by-one error in tests.
* Load the cli module lazily for spacy.info
This avoids that the `spacy` module cannot be imported when the
users chooses not to install `typer`/`requests`.
* Add test
---------
Co-authored-by: Adriane Boyd <adrianeboyd@gmail.com>
* add span key option for CLI evaluation
* Rephrase CLI help to refer to Doc.spans instead of spancat
* Rephrase docs to refer to Doc.spans instead of spancat
---------
Co-authored-by: Adriane Boyd <adrianeboyd@gmail.com>
SpaCy's HashEmbedCNN layer performs convolutions over tokens to produce
contextualized embeddings using a `MaxoutWindowEncoder` layer. These
convolutions are implemented using Thinc's `expand_window` layer, which
concatenates `window_size` neighboring sequence items on either side of
the sequence item being processed. This is repeated across `depth`
convolutional layers.
For example, consider the sequence "ABCDE" and a `MaxoutWindowEncoder`
layer with a context window of 1 and a depth of 2. We'll focus on the
token "C". We can visually represent the contextual embedding produced
for "C" as:
```mermaid
flowchart LR
A0(A<sub>0</sub>)
B0(B<sub>0</sub>)
C0(C<sub>0</sub>)
D0(D<sub>0</sub>)
E0(E<sub>0</sub>)
B1(B<sub>1</sub>)
C1(C<sub>1</sub>)
D1(D<sub>1</sub>)
C2(C<sub>2</sub>)
A0 --> B1
B0 --> B1
C0 --> B1
B0 --> C1
C0 --> C1
D0 --> C1
C0 --> D1
D0 --> D1
E0 --> D1
B1 --> C2
C1 --> C2
D1 --> C2
```
Described in words, this graph shows that before the first layer of the
convolution, the "receptive field" centered at each token consists only
of that same token. That is to say, that we have a receptive field of 1.
The first layer of the convolution adds one neighboring token on either
side to the receptive field. Since this is done on both sides, the
receptive field increases by 2, giving the first layer a receptive field
of 3. The second layer of the convolutions adds an _additional_
neighboring token on either side to the receptive field, giving a final
receptive field of 5.
However, this doesn't match the formula currently given in the docs,
which read:
> The receptive field of the CNN will be
> `depth * (window_size * 2 + 1)`, so a 4-layer network with a window
> size of `2` will be sensitive to 20 words at a time.
Substituting in our depth of 2 and window size of 1, this formula gives
us a receptive field of:
```
depth * (window_size * 2 + 1)
= 2 * (1 * 2 + 1)
= 2 * (2 + 1)
= 2 * 3
= 6
```
This not only doesn't match our computations from above, it's also an
even number! This is suspicious, since the receptive field is supposed
to be centered on a token, and not between tokens. Generally, this
formula results in an even number for any even value of `depth`.
The error in this formula is that the adjustment for the center token
is multiplied by the depth, when it should occur only once. The
corrected formula, `depth * window_size * 2 + 1`, gives the correct
value for our small example from above:
```
depth * window_size * 2 + 1
= 2 * 1 * 2 + 1
= 4 + 1
= 5
```
These changes update the docs to correct the receptive field formula and
the example receptive field size.
* feat: add example stubs
* fix: add required annotations
* fix: mypy issues
* fix: use Py36-compatible Portocol
* Minor reformatting
* adding further type specifications and removing internal methods
* black formatting
* widen type to iterable
* add private methods that are being used by the built-in convertors
* revert changes to corpus.py
* fixes
* fixes
* fix typing of PlainTextCorpus
---------
Co-authored-by: Basile Dura <basile@bdura.me>
Co-authored-by: Adriane Boyd <adrianeboyd@gmail.com>
* Support registered vectors
* Format
* Auto-fill [nlp] on load from config and from bytes/disk
* Only auto-fill [nlp]
* Undo all changes to Language.from_disk
* Expand BaseVectors
These methods are needed in various places for training and vector
similarity.
* isort
* More linting
* Only fill [nlp.vectors]
* Update spacy/vocab.pyx
Co-authored-by: Sofie Van Landeghem <svlandeg@users.noreply.github.com>
* Revert changes to test related to auto-filling [nlp]
* Add vectors registry
* Rephrase error about vocab methods for vectors
* Switch to dummy implementation for BaseVectors.to_ops
* Add initial draft of docs
* Remove example from BaseVectors docs
* Apply suggestions from code review
Co-authored-by: Sofie Van Landeghem <svlandeg@users.noreply.github.com>
* Update website/docs/api/basevectors.mdx
Co-authored-by: Sofie Van Landeghem <svlandeg@users.noreply.github.com>
* Fix type and lint bpemb example
* Update website/docs/api/basevectors.mdx
---------
Co-authored-by: Sofie Van Landeghem <svlandeg@users.noreply.github.com>
* remove migration support form
* initial test commit
* add fixture
* add combo test
* pull out parameter example data
* fix formatting on examples
* remove unused import
* remove unncessary fmt:off instructions
* only set logger level if verbose flag is explicitly set
---------
Co-authored-by: svlandeg <svlandeg@github.com>
* Add data structures to docs
* Adjusted descriptions for more consistency
* Add _optional_ flag to parameters
* Add tests and adjust optional title key in doc
* Add title to dep visualizations
* fix typo
---------
Co-authored-by: thomashacker <EdwardSchmuhl@web.de>
* Add cli for finding locations of registered func
* fixes: naming and typing
* isort
* update naming
* remove to find-function
* remove file:// bit
* use registry name if given and exit gracefully if a registry was not found
* clean up failure msg
* specify registry_name options
* mypy fixes
* return location for internal usage
* add documentation
* more mypy fixes
* clean up example
* add section to menu
* add tests
---------
Co-authored-by: svlandeg <svlandeg@github.com>
* Update numpy build constraints for numpy 1.25
Starting in numpy 1.25 (see
https://github.com/numpy/numpy/releases/tag/v1.25.0), the numpy C API is
backwards-compatible by default.
For python 3.9+, we should be able to drop the specific numpy build
requirements and use `numpy>=1.25`, which is currently
backwards-compatible to `numpy>=1.19`.
In the future, the python <3.9 requirements could be dropped and the
lower numpy pin could correspond to the oldest supported version for the
current lower python pin.
* Turn off fail-fast
* Revert "Turn off fail-fast"
This reverts commit 4306f516bc.
* Update for python 3.6
* Fix typo
* Update universe.json
* Update universe.json
add some missing commas in the greCy's description.
* Update punctuation.py
Add mathematical left and right angle brackets as punctuation for ancient Greek for better tokenization.