Compare commits

...

46 Commits

Author SHA1 Message Date
Adriane Boyd
fa9d24e9fd
Merge pull request #12671 from adrianeboyd/backport/v3.3.3
Backports and other fixes for v3.3.3
2023-05-25 08:27:22 +02:00
Adriane Boyd
f645747553 Set version to v3.3.3 2023-05-24 21:15:05 +02:00
Adriane Boyd
b4117be7d0 Format 2023-05-24 21:15:05 +02:00
Adriane Boyd
f82950657e Add typing_extensions requirement for pydantic 2023-05-24 21:15:05 +02:00
Adriane Boyd
515c2394c4 Remove #egg from download URLs
The current URLs will become invalid in pip 25.0. According to the pip
docs, the egg= URLs are currently only needed for editable VCS installs.
2023-05-24 21:15:05 +02:00
kadarakos
2f2c23384c Spancat speed improvement (#12577)
* avoid nesting then flattening

* mypy fix

* Apply suggestions from code review

* Add type for indices

* Run full matrix for mypy

* Add back modified type: ignore

* Revert "Run full matrix for mypy"

This reverts commit e218873d04.

---------

Co-authored-by: Adriane Boyd <adrianeboyd@gmail.com>
2023-05-24 21:15:05 +02:00
Adriane Boyd
15466c9c1d Switch from azure to GHA 2023-05-24 21:15:05 +02:00
Adriane Boyd
4e032da3b9
Merge pull request #11958 from adrianeboyd/backport/v3.3.2
Backport bug fixes to v3.3.x
2022-12-14 16:15:14 +01:00
Adriane Boyd
5b3b18d626 Set version to v3.3.2 2022-12-13 13:19:48 +01:00
Adriane Boyd
b0fb316ca9 CI: Install thinc-apple-ops through extra (#11963) 2022-12-13 13:19:35 +01:00
Adriane Boyd
4297340d8c CI and precommit hooks: switch to flake8==5.0.4 2022-12-13 13:19:35 +01:00
Adriane Boyd
9c794644ab CI: Test thinc-apple-ops for python 3.10 2022-12-13 13:19:35 +01:00
Adriane Boyd
4e050330a8 Modernize and simplify CI steps (#11738)
* Use `build` instead of `python setup.py sdist`
* Remove in-place build with `setup.py`
* Remove `gpu` parameter and GPU tests
* Keep `architecture` and `num_build_jobs` in azure steps with CI
  defaults
* Fix use of `num_build_jobs` parameters
* Remove now-unused `prefix` parameter
* Test imports and CLI before installing test requirements
  * Remove `*.egg-info` directory in addition to source directory for an
    warning-free `import spacy`
* Switch `thinc-apple-ops` test to python 3.11 (as most recent python
  that is tested across platforms)
2022-12-13 13:19:35 +01:00
Adriane Boyd
279749a9d9 Cast to uint64 for all array-based doc representations (#11933)
* Convert all individual values explicitly to uint64 for array-based doc representations

* Temporarily test with latest numpy v1.24.0rc

* Remove unnecessary conversion from attr_t

* Reduce number of individual casts

* Convert specifically from int32 to uint64

* Revert "Temporarily test with latest numpy v1.24.0rc"

This reverts commit eb0e3c5006.

* Also use int32 in tests
2022-12-13 13:19:35 +01:00
Adriane Boyd
289ed4fa43 Modify similarity tests to avoid spurious warnings 2022-12-13 13:19:35 +01:00
Paul O'Leary McCann
cc0c7dab29 Add in errors used in the beam code that were removed at some point (#11935)
I don't think there's any way to use the beam code at the moment, but as
long as it's around the errors it refers to should also be present.
2022-12-09 14:27:43 +01:00
Daniël de Kok
809887a925 EditTreeLemmatizer: correctly add strings when initializing from labels (#11934)
Strings in replacement nodes where not added to the `StringStore`
when `EditTreeLemmatizer` was initialized from a set of labels. The
corresponding test did not capture this because it added the strings
through the examples that were passed to the initialization.

This change fixes both this bug in the initialization as the 'shadowing'
of the bug in the test.
2022-12-09 14:27:43 +01:00
Paul O'Leary McCann
062bd27f22 Switch ubuntu-latest to ubuntu-20.04 in main tests (#11928)
* Switch ubuntu-latest to ubuntu-20.04 in main tests

* Only use 20.04 for 3.6
2022-12-09 14:27:43 +01:00
Adriane Boyd
1e701c8bee Fix spancat for zero suggestions (#11860)
* Add test for spancat predict with zero suggestions

* Fix spancat for zero suggestions

* Undo changes to extract_spans

* Use .sum() as in update
2022-12-09 14:27:43 +01:00
Paul O'Leary McCann
2201459603 Don't throw an error if using displacy on an unset span key (#11845)
* Don't throw an error if using displacy on an unset span key

* List available keys in W117
2022-12-09 14:27:43 +01:00
Adriane Boyd
07026337d2 Add smart_open requirement, update deprecated options (#11864)
* Switch from deprecated `ignore_ext` to `compression`
* Add upload/download test for local files
2022-12-09 14:27:43 +01:00
Adriane Boyd
76449e07a0 Rename test helper method with non-test_ name (#11701) 2022-12-09 14:27:43 +01:00
Adriane Boyd
7fefb39e58 Fix regex invalid escape sequences (#11276) 2022-12-09 14:23:59 +01:00
Adriane Boyd
7d12262145 Clean up warnings in the test suite (#11331) 2022-12-09 14:23:59 +01:00
Daniël de Kok
c900f8573d Fix compatibility with CuPy 9.x (#11194)
After the precomputable affine table of shape [nB, nF, nO, nP] is
computed, padding with shape [1, nF, nO, nP] is assigned to the first
row of the precomputed affine table. However, when we are indexing the
precomputed table, we get a row of shape [nF, nO, nP]. CuPy versions
before 10.0 cannot paper over this shape difference.

This change fixes compatibility with CuPy < 10.0 by squeezing the first
dimension of the padding before assignment.
2022-12-09 14:19:03 +01:00
github-actions[bot]
9b9b743e8b Auto-format code with black (#10977)
Co-authored-by: explosion-bot <explosion-bot@users.noreply.github.com>
2022-12-09 14:19:03 +01:00
Daniël de Kok
4c56dd5fb8 precomputable_biaffine: avoid concatenation (#10911)
The `forward` of `precomputable_biaffine` performs matrix multiplication
and then `vstack`s the result with padding. This creates a temporary
array used for the output of matrix concatenation.

This change avoids the temporary by pre-allocating an array that is
large enough for the output of matrix multiplication plus padding and
fills the array in-place.

This gave me a small speedup (a bit over 100 WPS) on de_core_news_lg on
M1 Max (after changing thinc-apple-ops to support in-place gemm as BLIS
does).
2022-12-09 13:51:22 +01:00
Adriane Boyd
1cb197e8d9 Support env var for num build jobs (#11073) 2022-07-04 20:50:52 +02:00
Adriane Boyd
838d2ff5e7 Extend build constraints for aarch64 2022-07-04 13:29:39 +02:00
Adriane Boyd
5fb597f778
Set version to v3.3.1 (#10901) 2022-06-03 09:51:48 +02:00
Adriane Boyd
f2219b1fd8
Merge pull request #10897 from adrianeboyd/chore/backports-v3.3.1
Backports for v3.3.1
2022-06-02 21:07:31 +02:00
Madeesh Kannan
0926a0993a Avoid pickling Doc inputs passed to Language.pipe() (#10864)
* `Language.pipe()`: Serialize `Doc` objects to bytes when using multiprocessing to avoid pickling overhead

* `Doc.to_dict()`: Serialize `_context` attribute (keeping in line with `(un)pickle_doc()`

* Correct type annotations

* Fix typo

* `Doc`: Do not serialize `_context`

* `Language.pipe`: Send context objects to child processes, Simplify `as_tuples` handling

* Fix type annotation

* `Language.pipe`: Simplify `as_tuple` multiprocessor handling

* Cleanup code, fix typos

* MyPy fixes

* Move doc preparation function into `_multiprocessing_pipe`
Whitespace changes

* Remove superfluous comma

* Rename `prepare_doc` to `prepare_input`

* Update spacy/errors.py

* Undo renaming for error

Co-authored-by: Adriane Boyd <adrianeboyd@gmail.com>
2022-06-02 20:07:07 +02:00
Adriane Boyd
0bf367dfc2 Extend typing_extensions to <4.2.0 (#10899) 2022-06-02 17:22:57 +02:00
single-fingal
7c0d582224 Fix: De/Serialize SpanGroups including the SpanGroup keys (#10707)
* fix: De/Serialize `SpanGroups` including the SpanGroup keys

This prevents the loss of `SpanGroup`s that have the same .name as other `SpanGroup`s within the same `SpanGroups` object (upon de/serialization of the `SpanGroups`).

Fixes #10685

* Maintain backwards compatibility for serialized `SpanGroups`

(serialized as: a list of `SpanGroup`s, or b'')

* Add tests for `SpanGroups` deserialization backwards-compatibility

* Move a `SpanGroups` de/serialization test (test_issue10685)
  to tests/serialize/test_serialize_spangroups.py

* Output a warning if deserializing a `SpanGroups` with duplicate .name-d `SpanGroup`s

* Minor refactor

* `SpanGroups.from_bytes` handles only `list` and `dict` types with
`dict` as the expected default
* For lists, keep first rather than last value encountered
* Update error message
* Rename and update tests

* Update to preserve list serialization of SpanGroups

To avoid breaking compatibility of serialized `Doc` and `DocBin` with
earlier versions of spacy v3, revert back to a list-only serialization,
but update the names just for serialization so that the SpanGroups keys
override the SpanGroup names.

* Preserve object identity and current key overwrite

* Preserve SpanGroup object identity
* Preserve last rather than first span group from SpanGroup list
  format without SpanGroups keys

* Update inline comments

* Fix types

* Add type info for SpanGroup.copy

* Deserialize `SpanGroup`s as copies

when a single SpanGroup is the value for more than 1 `SpanGroups` key.
This is because we serialize `SpanGroups` as dicts (to maintain backward-
and forward-compatibility) and we can't assume `SpanGroup`s with the same
bytes/serialization were the same (identical) object, pre-serialization.

* Update spacy/tokens/_dict_proxies.py

* Add more SpanGroups serialization tests

Test that serialized SpanGroups maintain their Span order

* small clarification on older spaCy version

* Update spacy/tests/serialize/test_serialize_span_groups.py

Co-authored-by: Adriane Boyd <adrianeboyd@gmail.com>
Co-authored-by: Sofie Van Landeghem <svlandeg@users.noreply.github.com>
2022-06-02 15:56:43 +02:00
Adriane Boyd
7fe0594898 Fix schemas import in Doc (#10898) 2022-06-02 15:53:49 +02:00
Raphael Mitsch
1ec2ff41e2 Add Doc.from_json() (#10688)
* Implement Doc.from_json: rough draft.

* Implement Doc.from_json: first draft with tests.

* Implement Doc.from_json: added documentation on website for Doc.to_json(), Doc.from_json().

* Implement Doc.from_json: formatting changes.

* Implement Doc.to_json(): reverting unrelated formatting changes.

* Implement Doc.to_json(): fixing entity and span conversion. Moving fixture and doc <-> json conversion tests into single file.

* Implement Doc.from_json(): replaced entity/span converters with doc.char_span() calls.

* Implement Doc.from_json(): handling sentence boundaries in spans.

* Implementing Doc.from_json(): added parser-free sentence boundaries transfer.

* Implementing Doc.from_json(): added parser-free sentence boundaries transfer.

* Implementing Doc.from_json(): incorporated various PR feedback.

* Renaming fixture for document without dependencies.

Co-authored-by: Adriane Boyd <adrianeboyd@gmail.com>

* Implementing Doc.from_json(): using two sent_starts instead of one.

Co-authored-by: Adriane Boyd <adrianeboyd@gmail.com>

* Implementing Doc.from_json(): doc_without_dependency_parser() -> doc_without_deps.

Co-authored-by: Adriane Boyd <adrianeboyd@gmail.com>

* Implementing Doc.from_json(): incorporating various PR feedback. Rebased on latest master.

* Implementing Doc.from_json(): refactored Doc.from_json() to work with annotation IDs instead of their string representations.

* Implement Doc.from_json(): reverting unwanted formatting/rebasing changes.

* Implement Doc.from_json(): added check for char_span() calculation for entities.

* Update spacy/tokens/doc.pyx

Co-authored-by: Adriane Boyd <adrianeboyd@gmail.com>

* Implement Doc.from_json(): minor refactoring, additional check for token attribute consistency with corresponding test.

* Implement Doc.from_json(): removed redundancy in annotation type key naming.

Co-authored-by: Adriane Boyd <adrianeboyd@gmail.com>

* Implement Doc.from_json(): Simplifying setting annotation values.

Co-authored-by: Adriane Boyd <adrianeboyd@gmail.com>

* Implement doc.from_json(): renaming annot_types to token_attrs.

Co-authored-by: Adriane Boyd <adrianeboyd@gmail.com>

* Implement Doc.from_json(): adjustments for renaming of annot_types to token_attrs.

* Implement Doc.from_json(): removing default categories.

Co-authored-by: Adriane Boyd <adrianeboyd@gmail.com>

* Implement Doc.from_json(): simplifying lexeme initialization.

Co-authored-by: Adriane Boyd <adrianeboyd@gmail.com>

* Implement Doc.from_json(): simplifying lexeme initialization.

Co-authored-by: Adriane Boyd <adrianeboyd@gmail.com>

* Implement Doc.from_json(): refactoring to only have keys for present annotations.

* Implement Doc.from_json(): fix check for tokens' HEAD attributes.

Co-authored-by: Adriane Boyd <adrianeboyd@gmail.com>

* Implement Doc.from_json(): refactoring Doc.from_json().

* Implement Doc.from_json(): fixing span_group retrieval.

Co-authored-by: Adriane Boyd <adrianeboyd@gmail.com>

* Implement Doc.from_json(): fixing span retrieval.

* Implement Doc.from_json(): added schema for Doc JSON format. Minor refactoring in Doc.from_json().

* Implement Doc.from_json(): added comment regarding Token and Span extension support.

* Implement Doc.from_json(): renaming inconsistent_props to partial_attrs..

Co-authored-by: Adriane Boyd <adrianeboyd@gmail.com>

* Implement Doc.from_json(): adjusting error message.

Co-authored-by: Adriane Boyd <adrianeboyd@gmail.com>

* Implement Doc.from_json(): extending E1038 message.

Co-authored-by: Adriane Boyd <adrianeboyd@gmail.com>

* Implement Doc.from_json(): added params to E1038 raises.

* Implement Doc.from_json(): combined attribute collection with partial attributes check.

* Implement Doc.from_json(): added optional schema validation.

* Implement Doc.from_json(): fixed optional fields in schema, tests.

* Implement Doc.from_json(): removed redundant None check for DEP.

* Implement Doc.from_json(): added passing of schema validatoin message to E1037..

* Implement Doc.from_json(): removing redundant error E1040.

Co-authored-by: Adriane Boyd <adrianeboyd@gmail.com>

* Implement Doc.from_json(): changing message for E1037.

Co-authored-by: Adriane Boyd <adrianeboyd@gmail.com>

* Implement Doc.from_json(): adjusted website docs and docstring of Doc.from_json().

* Update spacy/tests/doc/test_json_doc_conversion.py

* Implement Doc.from_json(): docstring update.

Co-authored-by: Adriane Boyd <adrianeboyd@gmail.com>

* Implement Doc.from_json(): docstring update.

Co-authored-by: Adriane Boyd <adrianeboyd@gmail.com>

* Implement Doc.from_json(): website docs update.

Co-authored-by: Adriane Boyd <adrianeboyd@gmail.com>

* Implement Doc.from_json(): docstring formatting.

Co-authored-by: Adriane Boyd <adrianeboyd@gmail.com>

* Implement Doc.from_json(): docstring formatting.

Co-authored-by: Adriane Boyd <adrianeboyd@gmail.com>

* Implement Doc.from_json(): fixing Doc reference in website docs.

Co-authored-by: Adriane Boyd <adrianeboyd@gmail.com>

* Implement Doc.from_json(): reformatted website/docs/api/doc.md.

* Implement Doc.from_json(): bumped IDs of new errors to avoid merge conflicts.

* Implement Doc.from_json(): fixing bug in tests.

Co-authored-by: Adriane Boyd <adrianeboyd@gmail.com>

* Implement Doc.from_json(): fix setting of sentence starts for docs without DEP.

* Implement Doc.from_json(): add check for valid char spans when manually setting sentence boundaries. Refactor sentence boundary setting slightly. Move error message for lack of support for partial token annotations to errors.py.

* Implement Doc.from_json(): simplify token sentence start manipulation.

Co-authored-by: Adriane Boyd <adrianeboyd@gmail.com>

* Combine related error messages

* Update spacy/tests/doc/test_json_doc_conversion.py

Co-authored-by: Adriane Boyd <adrianeboyd@gmail.com>
2022-06-02 14:04:07 +02:00
Adriane Boyd
e61c8d2975 Add SpanRuler component (#9880)
* Add SpanRuler component

Add a `SpanRuler` component similar to `EntityRuler` that saves a list
of matched spans to `Doc.spans[spans_key]`. The matches from the token
and phrase matchers are deduplicated and sorted before assignment but
are not otherwise filtered.

* Update spacy/pipeline/span_ruler.py

Co-authored-by: Sofie Van Landeghem <svlandeg@users.noreply.github.com>

* Fix cast

* Add self.key property

* Use number of patterns as length

* Remove patterns kwarg from init

* Update spacy/tests/pipeline/test_span_ruler.py

Co-authored-by: Sofie Van Landeghem <svlandeg@users.noreply.github.com>

* Add options for spans filter and setting to ents

* Add `spans_filter` option as a registered function'
* Make `spans_key` optional and if `None`, set to `doc.ents` instead of
`doc.spans[spans_key]`.

* Update and generalize tests

* Add test for setting doc.ents, fix key property type

* Fix typing

* Allow independent doc.spans and doc.ents

* If `spans_key` is set, set `doc.spans` with `spans_filter`.
* If `annotate_ents` is set, set `doc.ents` with `ents_fitler`.
  * Use `util.filter_spans` by default as `ents_filter`.
  * Use a custom warning if the filter does not work for `doc.ents`.

* Enable use of SpanC.id in Span

* Support id in SpanRuler as Span.id

* Update types

* `id` can only be provided as string (already by `PatternType`
definition)

* Update all uses of Span.id/ent_id in Doc

* Rename Span id kwarg to span_id

* Update types and docs

* Add ents filter to mimic EntityRuler overwrite_ents

* Refactor `ents_filter` to take `entities, spans` args for more
  filtering options
* Give registered filters more descriptive names
* Allow registered `filter_spans` filter
  (`spacy.first_longest_spans_filter.v1`) to take any number of
  `Iterable[Span]` objects as args so it can be used for spans filter
  or ents filter

* Implement future entity ruler as span ruler

Implement a compatible `entity_ruler` as `future_entity_ruler` using
`SpanRuler` as the underlying component:
* Add `sort_key` and `sort_reverse` to allow the sorting behavior to be
  customized. (Necessary for the same sorting/filtering as in
  `EntityRuler`.)
* Implement `overwrite_overlapping_ents_filter` and
  `preserve_existing_ents_filter` to support
  `EntityRuler.overwrite_ents` settings.
* Add `remove_by_id` to support `EntityRuler.remove` functionality.
* Refactor `entity_ruler` tests to parametrize all tests to test both
  `entity_ruler` and `future_entity_ruler`
* Implement `SpanRuler.token_patterns` and `SpanRuler.phrase_patterns`
  properties.

Additional changes:

* Move all config settings to top-level attributes to avoid duplicating
  settings in the config vs. `span_ruler/cfg`. (Also avoids a lot of
  casting.)

* Format

* Fix filter make method name

* Refactor to use same error for removing by label or ID

* Also provide existing spans to spans filter

* Support ids property

* Remove token_patterns and phrase_patterns

* Update docstrings

* Add span ruler docs

* Fix types

* Apply suggestions from code review

Co-authored-by: Sofie Van Landeghem <svlandeg@users.noreply.github.com>

* Move sorting into filters

* Check for all tokens in seen tokens in entity ruler filters

* Remove registered sort key

* Set Token.ent_id in a backwards-compatible way in Doc.set_ents

* Remove sort options from API docs

* Update docstrings

* Rename entity ruler filters

* Fix and parameterize scoring

* Add id to Span API docs

* Fix typo in API docs

* Include explicit labeled=True for scorer

Co-authored-by: Sofie Van Landeghem <svlandeg@users.noreply.github.com>
2022-06-02 13:36:11 +02:00
Sofie Van Landeghem
7d30e6620e fix typo + CI slow testing (#10835)
* fix typo

* one more typo
2022-06-02 08:18:19 +02:00
Madeesh Kannan
34261f628f Add test_slow_gpu explosion-bot command (#10858) 2022-06-02 08:18:11 +02:00
richardpaulhudson
1bf18b85e4 Update Holmes entry in universe.json 2022-06-02 08:17:30 +02:00
Max Tarlov
f6b39fce2c Update documentation for displacy style kwargs (#10841)
* Update docs for displacy style kwargs

Added "span" to the accepted values for the style kwarg in the displacy.serve and displacy.render top-level functions. These styles are new as of SpaCy 3.3, so I added the "new" tag for that option only

* restored alpha ordering
2022-06-02 08:17:17 +02:00
Peter Baumgartner
ecd4343990 add doc cleaner to menu (#10862) 2022-06-02 08:17:09 +02:00
Freddy Heppell
985cf8eb64 Fix misspelt keyword in StringStore example 2022-06-02 08:16:39 +02:00
github-actions[bot]
de6607fc9b Auto-format code with black (#10857)
Co-authored-by: explosion-bot <explosion-bot@users.noreply.github.com>
2022-06-02 08:16:24 +02:00
kadarakos
31a00ad7e0 Better errors for has_annotation and Matcher (#10830)
* Show input argument instead of None

* catch invalid attr early

* moved error message from code to errors.py

* Update spacy/errors.py

Co-authored-by: Adriane Boyd <adrianeboyd@gmail.com>

* Update spacy/errors.py

* update E153 and E154

Co-authored-by: Adriane Boyd <adrianeboyd@gmail.com>
2022-06-02 08:16:08 +02:00
Sofie Van Landeghem
4619a99185 Remove NBSP's across tables in the docs (#10842) 2022-06-02 08:15:53 +02:00
71 changed files with 2919 additions and 647 deletions

View File

@ -1,117 +0,0 @@
parameters:
python_version: ''
architecture: ''
prefix: ''
gpu: false
num_build_jobs: 1
steps:
- task: UsePythonVersion@0
inputs:
versionSpec: ${{ parameters.python_version }}
architecture: ${{ parameters.architecture }}
- bash: |
echo "##vso[task.setvariable variable=python_version]${{ parameters.python_version }}"
displayName: 'Set variables'
- script: |
${{ parameters.prefix }} python -m pip install -U pip setuptools
${{ parameters.prefix }} python -m pip install -U -r requirements.txt
displayName: "Install dependencies"
- script: |
${{ parameters.prefix }} python setup.py build_ext --inplace -j ${{ parameters.num_build_jobs }}
${{ parameters.prefix }} python setup.py sdist --formats=gztar
displayName: "Compile and build sdist"
- script: python -m mypy spacy
displayName: 'Run mypy'
condition: ne(variables['python_version'], '3.10')
- task: DeleteFiles@1
inputs:
contents: "spacy"
displayName: "Delete source directory"
- script: |
${{ parameters.prefix }} python -m pip freeze --exclude torch --exclude cupy-cuda110 > installed.txt
${{ parameters.prefix }} python -m pip uninstall -y -r installed.txt
displayName: "Uninstall all packages"
- bash: |
${{ parameters.prefix }} SDIST=$(python -c "import os;print(os.listdir('./dist')[-1])" 2>&1)
${{ parameters.prefix }} python -m pip install dist/$SDIST
displayName: "Install from sdist"
- script: |
${{ parameters.prefix }} python -m pip install -U -r requirements.txt
displayName: "Install test requirements"
- script: |
${{ parameters.prefix }} python -m pip install -U cupy-cuda110 -f https://github.com/cupy/cupy/releases/v9.0.0
${{ parameters.prefix }} python -m pip install "torch==1.7.1+cu110" -f https://download.pytorch.org/whl/torch_stable.html
displayName: "Install GPU requirements"
condition: eq(${{ parameters.gpu }}, true)
- script: |
${{ parameters.prefix }} python -m pytest --pyargs spacy
displayName: "Run CPU tests"
condition: eq(${{ parameters.gpu }}, false)
- script: |
${{ parameters.prefix }} python -m pytest --pyargs spacy -p spacy.tests.enable_gpu
displayName: "Run GPU tests"
condition: eq(${{ parameters.gpu }}, true)
- script: |
python -m spacy download ca_core_news_sm
python -m spacy download ca_core_news_md
python -c "import spacy; nlp=spacy.load('ca_core_news_sm'); doc=nlp('test')"
displayName: 'Test download CLI'
condition: eq(variables['python_version'], '3.8')
- script: |
python -m spacy convert extra/example_data/ner_example_data/ner-token-per-line-conll2003.json .
displayName: 'Test convert CLI'
condition: eq(variables['python_version'], '3.8')
- script: |
python -m spacy init config -p ner -l ca ner.cfg
python -m spacy debug config ner.cfg --paths.train ner-token-per-line-conll2003.spacy --paths.dev ner-token-per-line-conll2003.spacy
displayName: 'Test debug config CLI'
condition: eq(variables['python_version'], '3.8')
- script: |
# will have errors due to sparse data, check for summary in output
python -m spacy debug data ner.cfg --paths.train ner-token-per-line-conll2003.spacy --paths.dev ner-token-per-line-conll2003.spacy | grep -q Summary
displayName: 'Test debug data CLI'
condition: eq(variables['python_version'], '3.8')
- script: |
python -m spacy train ner.cfg --paths.train ner-token-per-line-conll2003.spacy --paths.dev ner-token-per-line-conll2003.spacy --training.max_steps 10 --gpu-id -1
displayName: 'Test train CLI'
condition: eq(variables['python_version'], '3.8')
- script: |
python -c "import spacy; config = spacy.util.load_config('ner.cfg'); config['components']['ner'] = {'source': 'ca_core_news_sm'}; config.to_disk('ner_source_sm.cfg')"
PYTHONWARNINGS="error,ignore::DeprecationWarning" python -m spacy assemble ner_source_sm.cfg output_dir
displayName: 'Test assemble CLI'
condition: eq(variables['python_version'], '3.8')
- script: |
python -c "import spacy; config = spacy.util.load_config('ner.cfg'); config['components']['ner'] = {'source': 'ca_core_news_md'}; config.to_disk('ner_source_md.cfg')"
python -m spacy assemble ner_source_md.cfg output_dir 2>&1 | grep -q W113
displayName: 'Test assemble CLI vectors warning'
condition: eq(variables['python_version'], '3.8')
- script: |
python .github/validate_universe_json.py website/meta/universe.json
displayName: 'Test website/meta/universe.json'
condition: eq(variables['python_version'], '3.8')
- script: |
${{ parameters.prefix }} python -m pip install thinc-apple-ops
${{ parameters.prefix }} python -m pytest --pyargs spacy
displayName: "Run CPU tests with thinc-apple-ops"
condition: and(startsWith(variables['imageName'], 'macos'), eq(variables['python.version'], '3.9'))

View File

@ -23,5 +23,5 @@ jobs:
env:
INPUT_TOKEN: ${{ secrets.EXPLOSIONBOT_TOKEN }}
INPUT_BK_TOKEN: ${{ secrets.BUILDKITE_SECRET }}
ENABLED_COMMANDS: "test_gpu,test_slow"
ENABLED_COMMANDS: "test_gpu,test_slow,test_slow_gpu"
ALLOWED_TEAMS: "spaCy"

170
.github/workflows/tests.yml vendored Normal file
View File

@ -0,0 +1,170 @@
name: tests
on:
push:
branches-ignore:
- "spacy.io"
- "nightly.spacy.io"
- "v2.spacy.io"
paths-ignore:
- "*.md"
- "*.mdx"
- "website/**"
- ".github/workflows/**"
pull_request:
types: [opened, synchronize, reopened, edited]
paths-ignore:
- "*.md"
- "*.mdx"
- "website/**"
jobs:
validate:
name: Validate
if: github.repository_owner == 'explosion'
runs-on: ubuntu-latest
steps:
- name: Check out repo
uses: actions/checkout@v3
- name: Configure Python version
uses: actions/setup-python@v4
with:
python-version: "3.7"
architecture: x64
- name: black
run: |
python -m pip install black -c requirements.txt
python -m black spacy --check
- name: flake8
run: |
python -m pip install flake8==5.0.4
python -m flake8 spacy --count --select=E901,E999,F821,F822,F823,W605 --show-source --statistics
tests:
name: Test
needs: Validate
strategy:
fail-fast: false
matrix:
os: [ubuntu-latest, windows-latest, macos-latest]
python_version: ["3.10"]
include:
- os: ubuntu-20.04
python_version: "3.6"
- os: windows-latest
python_version: "3.7"
- os: macos-latest
python_version: "3.8"
- os: ubuntu-latest
python_version: "3.9"
runs-on: ${{ matrix.os }}
steps:
- name: Check out repo
uses: actions/checkout@v3
- name: Configure Python version
uses: actions/setup-python@v4
with:
python-version: ${{ matrix.python_version }}
architecture: x64
- name: Install dependencies
run: |
python -m pip install -U build pip setuptools
python -m pip install -U -r requirements.txt
- name: Build sdist
run: |
python -m build --sdist
- name: Run mypy
run: |
# Install older numpy for mypy (bug with newer numpy+mypy not fixed
# until mypy 0.981)
python -m pip install "numpy<1.22"
python -m mypy spacy
if: matrix.python_version != '3.6'
- name: Delete source directory and .egg-info
run: |
rm -rf spacy *.egg-info
shell: bash
- name: Uninstall all packages
run: |
python -m pip freeze
python -m pip freeze --exclude pywin32 > installed.txt
python -m pip uninstall -y -r installed.txt
- name: Install from sdist
run: |
SDIST=$(python -c "import os;print(os.listdir('./dist')[-1])" 2>&1)
SPACY_NUM_BUILD_JOBS=2 python -m pip install dist/$SDIST
shell: bash
- name: Test import
run: python -W error -c "import spacy"
- name: "Test download CLI"
run: |
python -m spacy download ca_core_news_sm
python -m spacy download ca_core_news_md
python -c "import spacy; nlp=spacy.load('ca_core_news_sm'); doc=nlp('test')"
if: matrix.python_version == '3.9'
- name: "Test no warnings on load (#11713)"
run: |
python -W error -c "import ca_core_news_sm; nlp = ca_core_news_sm.load(); doc=nlp('test')"
if: matrix.python_version == '3.9'
- name: "Test convert CLI"
run: |
python -m spacy convert extra/example_data/ner_example_data/ner-token-per-line-conll2003.json .
if: matrix.python_version == '3.9'
- name: "Test debug config CLI"
run: |
python -m spacy init config -p ner -l ca ner.cfg
python -m spacy debug config ner.cfg --paths.train ner-token-per-line-conll2003.spacy --paths.dev ner-token-per-line-conll2003.spacy
if: matrix.python_version == '3.9'
- name: "Test debug data CLI"
run: |
# will have errors due to sparse data, check for summary in output
python -m spacy debug data ner.cfg --paths.train ner-token-per-line-conll2003.spacy --paths.dev ner-token-per-line-conll2003.spacy | grep -q Summary
if: matrix.python_version == '3.9'
- name: "Test train CLI"
run: |
python -m spacy train ner.cfg --paths.train ner-token-per-line-conll2003.spacy --paths.dev ner-token-per-line-conll2003.spacy --training.max_steps 10 --gpu-id -1
if: matrix.python_version == '3.9'
- name: "Test assemble CLI"
run: |
python -c "import spacy; config = spacy.util.load_config('ner.cfg'); config['components']['ner'] = {'source': 'ca_core_news_sm'}; config.to_disk('ner_source_sm.cfg')"
PYTHONWARNINGS="error,ignore::DeprecationWarning" python -m spacy assemble ner_source_sm.cfg output_dir
if: matrix.python_version == '3.9'
- name: "Test assemble CLI vectors warning"
run: |
python -c "import spacy; config = spacy.util.load_config('ner.cfg'); config['components']['ner'] = {'source': 'ca_core_news_md'}; config.to_disk('ner_source_md.cfg')"
python -m spacy assemble ner_source_md.cfg output_dir 2>&1 | grep -q W113
if: matrix.python_version == '3.9'
- name: "Install test requirements"
run: |
python -m pip install -U -r requirements.txt
- name: "Run CPU tests"
run: |
python -m pytest --pyargs spacy -W error
if: "!(startsWith(matrix.os, 'macos') && matrix.python_version == '3.10')"
- name: "Run CPU tests with thinc-apple-ops"
run: |
python -m pip install 'spacy[apple]'
python -m pytest --pyargs spacy
if: startsWith(matrix.os, 'macos') && matrix.python_version == '3.10'

View File

@ -6,7 +6,7 @@ repos:
language_version: python3.7
additional_dependencies: ['click==8.0.4']
- repo: https://gitlab.com/pycqa/flake8
rev: 3.9.2
rev: 5.0.4
hooks:
- id: flake8
args:

View File

@ -1,111 +0,0 @@
trigger:
batch: true
branches:
include:
- "*"
exclude:
- "spacy.io"
- "nightly.spacy.io"
- "v2.spacy.io"
paths:
exclude:
- "website/*"
- "*.md"
- ".github/workflows/*"
pr:
paths:
exclude:
- "*.md"
- "website/docs/*"
- "website/src/*"
- ".github/workflows/*"
jobs:
# Perform basic checks for most important errors (syntax etc.) Uses the config
# defined in .flake8 and overwrites the selected codes.
- job: "Validate"
pool:
vmImage: "ubuntu-latest"
steps:
- task: UsePythonVersion@0
inputs:
versionSpec: "3.7"
- script: |
pip install flake8==3.9.2
python -m flake8 spacy --count --select=E901,E999,F821,F822,F823 --show-source --statistics
displayName: "flake8"
- job: "Test"
dependsOn: "Validate"
strategy:
matrix:
# We're only running one platform per Python version to speed up builds
Python36Linux:
imageName: "ubuntu-latest"
python.version: "3.6"
# Python36Windows:
# imageName: "windows-latest"
# python.version: "3.6"
# Python36Mac:
# imageName: "macos-latest"
# python.version: "3.6"
# Python37Linux:
# imageName: "ubuntu-latest"
# python.version: "3.7"
Python37Windows:
imageName: "windows-latest"
python.version: "3.7"
# Python37Mac:
# imageName: "macos-latest"
# python.version: "3.7"
# Python38Linux:
# imageName: "ubuntu-latest"
# python.version: "3.8"
# Python38Windows:
# imageName: "windows-latest"
# python.version: "3.8"
Python38Mac:
imageName: "macos-latest"
python.version: "3.8"
Python39Linux:
imageName: "ubuntu-latest"
python.version: "3.9"
# Python39Windows:
# imageName: "windows-latest"
# python.version: "3.9"
# Python39Mac:
# imageName: "macos-latest"
# python.version: "3.9"
Python310Linux:
imageName: "ubuntu-latest"
python.version: "3.10"
Python310Windows:
imageName: "windows-latest"
python.version: "3.10"
Python310Mac:
imageName: "macos-latest"
python.version: "3.10"
maxParallel: 4
pool:
vmImage: $(imageName)
steps:
- template: .github/azure-steps.yml
parameters:
python_version: '$(python.version)'
architecture: 'x64'
# - job: "TestGPU"
# dependsOn: "Validate"
# strategy:
# matrix:
# Python38LinuxX64_GPU:
# python.version: '3.8'
# pool:
# name: "LinuxX64_GPU"
# steps:
# - template: .github/azure-steps.yml
# parameters:
# python_version: '$(python.version)'
# architecture: 'x64'
# gpu: true
# num_build_jobs: 24

View File

@ -1,6 +1,8 @@
# build version constraints for use with wheelwright + multibuild
numpy==1.15.0; python_version<='3.7'
numpy==1.17.3; python_version=='3.8'
numpy==1.15.0; python_version<='3.7' and platform_machine!='aarch64'
numpy==1.19.2; python_version<='3.7' and platform_machine=='aarch64'
numpy==1.17.3; python_version=='3.8' and platform_machine!='aarch64'
numpy==1.19.2; python_version=='3.8' and platform_machine=='aarch64'
numpy==1.19.3; python_version=='3.9'
numpy==1.21.3; python_version=='3.10'
numpy; python_version>='3.11'

View File

@ -12,6 +12,7 @@ srsly>=2.4.3,<3.0.0
catalogue>=2.0.6,<2.1.0
typer>=0.3.0,<0.5.0
pathy>=0.3.5
smart-open>=5.2.1,<7.0.0
# Third party dependencies
numpy>=1.15.0
requests>=2.13.0,<3.0.0
@ -22,7 +23,9 @@ langcodes>=3.2.0,<4.0.0
# Official Python utilities
setuptools
packaging>=20.0
typing_extensions>=3.7.4.1,<4.0.0.0; python_version < "3.8"
# Require and pin typing_extensions for all python versions as a workaround
# for pydantic incompatibility with typing_extensions>=4.6.0
typing_extensions>=3.7.4.1,<4.6.0
# Development dependencies
pre-commit>=2.13.0
cython>=0.25,<3.0

View File

@ -51,9 +51,10 @@ install_requires =
wasabi>=0.9.1,<1.1.0
srsly>=2.4.3,<3.0.0
catalogue>=2.0.6,<2.1.0
# Third-party dependencies
typer>=0.3.0,<0.5.0
pathy>=0.3.5
# Third-party dependencies
smart-open>=5.2.1,<7.0.0
tqdm>=4.38.0,<5.0.0
numpy>=1.15.0
requests>=2.13.0,<3.0.0
@ -62,7 +63,9 @@ install_requires =
# Official Python utilities
setuptools
packaging>=20.0
typing_extensions>=3.7.4,<4.0.0.0; python_version < "3.8"
# Require and pin typing_extensions for all python versions as a workaround
# for pydantic incompatibility with typing_extensions>=4.6.0
typing_extensions>=3.7.4.1,<4.6.0
langcodes>=3.2.0,<4.0.0
[options.entry_points]

View File

@ -126,6 +126,8 @@ class build_ext_options:
class build_ext_subclass(build_ext, build_ext_options):
def build_extensions(self):
if not self.parallel:
self.parallel = int(os.environ.get("SPACY_NUM_BUILD_JOBS", 1))
build_ext_options.build_options(self)
build_ext.build_extensions(self)

View File

@ -1,6 +1,6 @@
# fmt: off
__title__ = "spacy"
__version__ = "3.3.0"
__version__ = "3.3.3"
__download_url__ = "https://github.com/explosion/spacy-models/releases/download"
__compatibility__ = "https://raw.githubusercontent.com/explosion/spacy-models/master/compatibility.json"
__projects__ = "https://github.com/explosion/projects"

View File

@ -358,7 +358,7 @@ def download_file(src: Union[str, "Pathy"], dest: Path, *, force: bool = False)
if dest.exists() and not force:
return None
src = str(src)
with smart_open.open(src, mode="rb", ignore_ext=True) as input_file:
with smart_open.open(src, mode="rb", compression="disable") as input_file:
with dest.open(mode="wb") as output_file:
shutil.copyfileobj(input_file, output_file)

View File

@ -50,7 +50,7 @@ def download(model: str, direct: bool = False, sdist: bool = False, *pip_args) -
)
pip_args = pip_args + ("--no-deps",)
suffix = SDIST_SUFFIX if sdist else WHEEL_SUFFIX
dl_tpl = "{m}-{v}/{m}-{v}{s}#egg={m}=={v}"
dl_tpl = "{m}-{v}/{m}-{v}{s}"
if direct:
components = model.split("-")
model_name = "".join(components[:-1])

View File

@ -227,12 +227,13 @@ def parse_spans(doc: Doc, options: Dict[str, Any] = {}) -> Dict[str, Any]:
"kb_id": span.kb_id_ if span.kb_id_ else "",
"kb_url": kb_url_template.format(span.kb_id_) if kb_url_template else "#",
}
for span in doc.spans[spans_key]
for span in doc.spans.get(spans_key, [])
]
tokens = [token.text for token in doc]
if not spans:
warnings.warn(Warnings.W117.format(spans_key=spans_key))
keys = list(doc.spans.keys())
warnings.warn(Warnings.W117.format(spans_key=spans_key, keys=keys))
title = doc.user_data.get("title", None) if hasattr(doc, "user_data") else None
settings = get_doc_settings(doc)
return {

View File

@ -195,11 +195,16 @@ class Warnings(metaclass=ErrorsWithCodes):
W117 = ("No spans to visualize found in Doc object with spans_key: '{spans_key}'. If this is "
"surprising to you, make sure the Doc was processed using a model "
"that supports span categorization, and check the `doc.spans[spans_key]` "
"property manually if necessary.")
"property manually if necessary.\n\nAvailable keys: {keys}")
W118 = ("Term '{term}' not found in glossary. It may however be explained in documentation "
"for the corpora used to train the language. Please check "
"`nlp.meta[\"sources\"]` for any relevant links.")
W119 = ("Overriding pipe name in `config` is not supported. Ignoring override '{name_in_config}'.")
W120 = ("Unable to load all spans in Doc.spans: more than one span group "
"with the name '{group_name}' was found in the saved spans data. "
"Only the last span group will be loaded under "
"Doc.spans['{group_name}']. Skipping span group with values: "
"{group_values}")
class Errors(metaclass=ErrorsWithCodes):
@ -330,6 +335,11 @@ class Errors(metaclass=ErrorsWithCodes):
"clear the existing vectors and resize the table.")
E074 = ("Error interpreting compiled match pattern: patterns are expected "
"to end with the attribute {attr}. Got: {bad_attr}.")
E079 = ("Error computing states in beam: number of predicted beams "
"({pbeams}) does not equal number of gold beams ({gbeams}).")
E080 = ("Duplicate state found in beam: {key}.")
E081 = ("Error getting gradient in beam: number of histories ({n_hist}) "
"does not equal number of losses ({losses}).")
E082 = ("Error deprojectivizing parse: number of heads ({n_heads}), "
"projective heads ({n_proj_heads}) and labels ({n_labels}) do not "
"match.")
@ -445,10 +455,10 @@ class Errors(metaclass=ErrorsWithCodes):
"same, but found '{nlp}' and '{vocab}' respectively.")
E152 = ("The attribute {attr} is not supported for token patterns. "
"Please use the option `validate=True` with the Matcher, PhraseMatcher, "
"or EntityRuler for more details.")
"EntityRuler or AttributeRuler for more details.")
E153 = ("The value type {vtype} is not supported for token patterns. "
"Please use the option validate=True with Matcher, PhraseMatcher, "
"or EntityRuler for more details.")
"EntityRuler or AttributeRuler for more details.")
E154 = ("One of the attributes or values is not supported for token "
"patterns. Please use the option `validate=True` with the Matcher, "
"PhraseMatcher, or EntityRuler for more details.")
@ -528,6 +538,8 @@ class Errors(metaclass=ErrorsWithCodes):
E202 = ("Unsupported {name} mode '{mode}'. Supported modes: {modes}.")
# New errors added in v3.x
E854 = ("Unable to set doc.ents. Check that the 'ents_filter' does not "
"permit overlapping spans.")
E855 = ("Invalid {obj}: {obj} is not from the same doc.")
E856 = ("Error accessing span at position {i}: out of bounds in span group "
"of length {length}.")
@ -899,8 +911,8 @@ class Errors(metaclass=ErrorsWithCodes):
E1022 = ("Words must be of type str or int, but input is of type '{wtype}'")
E1023 = ("Couldn't read EntityRuler from the {path}. This file doesn't "
"exist.")
E1024 = ("A pattern with ID \"{ent_id}\" is not present in EntityRuler "
"patterns.")
E1024 = ("A pattern with {attr_type} '{label}' is not present in "
"'{component}' patterns.")
E1025 = ("Cannot intify the value '{value}' as an IOB string. The only "
"supported values are: 'I', 'O', 'B' and ''")
E1026 = ("Edit tree has an invalid format:\n{errors}")
@ -914,6 +926,13 @@ class Errors(metaclass=ErrorsWithCodes):
E1034 = ("Node index {i} out of bounds ({length})")
E1035 = ("Token index {i} out of bounds ({length})")
E1036 = ("Cannot index into NoneNode")
E1037 = ("Invalid attribute value '{attr}'.")
E1038 = ("Invalid JSON input: {message}")
E1039 = ("The {obj} start or end annotations (start: {start}, end: {end}) "
"could not be aligned to token boundaries.")
E1040 = ("Doc.from_json requires all tokens to have the same attributes. "
"Some tokens do not contain annotation for: {partial_attrs}")
E1041 = ("Expected a string, Doc, or bytes as input, but got: {type}")
# Deprecated model shortcuts, only used in errors and warnings

View File

@ -3,7 +3,7 @@ from ..punctuation import TOKENIZER_INFIXES as BASE_TOKENIZER_INFIXES
_infixes = (
["·", "", "\(", "\)"]
["·", "", r"\(", r"\)"]
+ [r"(?<=[0-9])~(?=[0-9-])"]
+ LIST_QUOTES
+ BASE_TOKENIZER_INFIXES

View File

@ -1090,16 +1090,21 @@ class Language:
)
return self.tokenizer(text)
def _ensure_doc(self, doc_like: Union[str, Doc]) -> Doc:
"""Create a Doc if need be, or raise an error if the input is not a Doc or a string."""
def _ensure_doc(self, doc_like: Union[str, Doc, bytes]) -> Doc:
"""Create a Doc if need be, or raise an error if the input is not
a Doc, string, or a byte array (generated by Doc.to_bytes())."""
if isinstance(doc_like, Doc):
return doc_like
if isinstance(doc_like, str):
return self.make_doc(doc_like)
raise ValueError(Errors.E866.format(type=type(doc_like)))
if isinstance(doc_like, bytes):
return Doc(self.vocab).from_bytes(doc_like)
raise ValueError(Errors.E1041.format(type=type(doc_like)))
def _ensure_doc_with_context(self, doc_like: Union[str, Doc], context: Any) -> Doc:
"""Create a Doc if need be and add as_tuples context, or raise an error if the input is not a Doc or a string."""
def _ensure_doc_with_context(
self, doc_like: Union[str, Doc, bytes], context: _AnyContext
) -> Doc:
"""Call _ensure_doc to generate a Doc and set its context object."""
doc = self._ensure_doc(doc_like)
doc._context = context
return doc
@ -1519,7 +1524,6 @@ class Language:
DOCS: https://spacy.io/api/language#pipe
"""
# Handle texts with context as tuples
if as_tuples:
texts = cast(Iterable[Tuple[Union[str, Doc], _AnyContext]], texts)
docs_with_contexts = (
@ -1597,8 +1601,21 @@ class Language:
n_process: int,
batch_size: int,
) -> Iterator[Doc]:
def prepare_input(
texts: Iterable[Union[str, Doc]]
) -> Iterable[Tuple[Union[str, bytes], _AnyContext]]:
# Serialize Doc inputs to bytes to avoid incurring pickling
# overhead when they are passed to child processes. Also yield
# any context objects they might have separately (as they are not serialized).
for doc_like in texts:
if isinstance(doc_like, Doc):
yield (doc_like.to_bytes(), cast(_AnyContext, doc_like._context))
else:
yield (doc_like, cast(_AnyContext, None))
serialized_texts_with_ctx = prepare_input(texts) # type: ignore
# raw_texts is used later to stop iteration.
texts, raw_texts = itertools.tee(texts)
texts, raw_texts = itertools.tee(serialized_texts_with_ctx) # type: ignore
# for sending texts to worker
texts_q: List[mp.Queue] = [mp.Queue() for _ in range(n_process)]
# for receiving byte-encoded docs from worker
@ -1618,7 +1635,13 @@ class Language:
procs = [
mp.Process(
target=_apply_pipes,
args=(self._ensure_doc, pipes, rch, sch, Underscore.get_state()),
args=(
self._ensure_doc_with_context,
pipes,
rch,
sch,
Underscore.get_state(),
),
)
for rch, sch in zip(texts_q, bytedocs_send_ch)
]
@ -1631,12 +1654,12 @@ class Language:
recv.recv() for recv in cycle(bytedocs_recv_ch)
)
try:
for i, (_, (byte_doc, byte_context, byte_error)) in enumerate(
for i, (_, (byte_doc, context, byte_error)) in enumerate(
zip(raw_texts, byte_tuples), 1
):
if byte_doc is not None:
doc = Doc(self.vocab).from_bytes(byte_doc)
doc._context = byte_context
doc._context = context
yield doc
elif byte_error is not None:
error = srsly.msgpack_loads(byte_error)
@ -2163,7 +2186,7 @@ def _copy_examples(examples: Iterable[Example]) -> List[Example]:
def _apply_pipes(
ensure_doc: Callable[[Union[str, Doc]], Doc],
ensure_doc: Callable[[Union[str, Doc, bytes], _AnyContext], Doc],
pipes: Iterable[Callable[..., Iterator[Doc]]],
receiver,
sender,
@ -2184,17 +2207,19 @@ def _apply_pipes(
Underscore.load_state(underscore_state)
while True:
try:
texts = receiver.get()
docs = (ensure_doc(text) for text in texts)
texts_with_ctx = receiver.get()
docs = (
ensure_doc(doc_like, context) for doc_like, context in texts_with_ctx
)
for pipe in pipes:
docs = pipe(docs) # type: ignore[arg-type, assignment]
# Connection does not accept unpickable objects, so send list.
byte_docs = [(doc.to_bytes(), doc._context, None) for doc in docs]
padding = [(None, None, None)] * (len(texts) - len(byte_docs))
padding = [(None, None, None)] * (len(texts_with_ctx) - len(byte_docs))
sender.send(byte_docs + padding) # type: ignore[operator]
except Exception:
error_msg = [(None, None, srsly.msgpack_dumps(traceback.format_exc()))]
padding = [(None, None, None)] * (len(texts) - 1)
padding = [(None, None, None)] * (len(texts_with_ctx) - 1)
sender.send(error_msg + padding)

View File

@ -786,6 +786,7 @@ def _preprocess_pattern(token_specs, vocab, extensions_table, extra_predicates):
def _get_attr_values(spec, string_store):
attr_values = []
for attr, value in spec.items():
input_attr = attr
if isinstance(attr, str):
attr = attr.upper()
if attr == '_':
@ -814,7 +815,7 @@ def _get_attr_values(spec, string_store):
attr_values.append((attr, value))
else:
# should be caught in validation
raise ValueError(Errors.E152.format(attr=attr))
raise ValueError(Errors.E152.format(attr=input_attr))
return attr_values

View File

@ -22,9 +22,15 @@ def forward(model, X, is_train):
nP = model.get_dim("nP")
nI = model.get_dim("nI")
W = model.get_param("W")
Yf = model.ops.gemm(X, W.reshape((nF * nO * nP, nI)), trans2=True)
# Preallocate array for layer output, including padding.
Yf = model.ops.alloc2f(X.shape[0] + 1, nF * nO * nP)
model.ops.gemm(X, W.reshape((nF * nO * nP, nI)), trans2=True, out=Yf[1:])
Yf = Yf.reshape((Yf.shape[0], nF, nO, nP))
Yf = model.ops.xp.vstack((model.get_param("pad"), Yf))
# Set padding. Padding has shape (1, nF, nO, nP). Unfortunately, we cannot
# change its shape to (nF, nO, nP) without breaking existing models. So
# we'll squeeze the first dimension here.
Yf[0] = model.ops.xp.squeeze(model.get_param("pad"), 0)
def backward(dY_ids):
# This backprop is particularly tricky, because we get back a different

View File

@ -1,4 +1,4 @@
from typing import Tuple, Callable
from typing import List, Tuple, Callable
from thinc.api import Model, to_numpy
from thinc.types import Ragged, Ints1d
@ -52,14 +52,14 @@ def _get_span_indices(ops, spans: Ragged, lengths: Ints1d) -> Ints1d:
indices will be [5, 6, 7, 8, 8, 9].
"""
spans, lengths = _ensure_cpu(spans, lengths)
indices = []
indices: List[int] = []
offset = 0
for i, length in enumerate(lengths):
spans_i = spans[i].dataXd + offset
for j in range(spans_i.shape[0]):
indices.append(ops.xp.arange(spans_i[j, 0], spans_i[j, 1])) # type: ignore[call-overload, index]
indices.extend(range(spans_i[j, 0], spans_i[j, 1])) # type: ignore
offset += length
return ops.flatten(indices, dtype="i", ndim_if_empty=1)
return ops.asarray1i(indices)
def _ensure_cpu(spans: Ragged, lengths: Ints1d) -> Tuple[Ragged, Ints1d]:

View File

@ -13,6 +13,7 @@ from .sentencizer import Sentencizer
from .tagger import Tagger
from .textcat import TextCategorizer
from .spancat import SpanCategorizer
from .span_ruler import SpanRuler
from .textcat_multilabel import MultiLabel_TextCategorizer
from .tok2vec import Tok2Vec
from .functions import merge_entities, merge_noun_chunks, merge_subtokens
@ -30,6 +31,7 @@ __all__ = [
"SentenceRecognizer",
"Sentencizer",
"SpanCategorizer",
"SpanRuler",
"Tagger",
"TextCategorizer",
"Tok2Vec",

View File

@ -331,9 +331,9 @@ class EditTreeLemmatizer(TrainablePipe):
tree = dict(tree)
if "orig" in tree:
tree["orig"] = self.vocab.strings[tree["orig"]]
tree["orig"] = self.vocab.strings.add(tree["orig"])
if "orig" in tree:
tree["subst"] = self.vocab.strings[tree["subst"]]
tree["subst"] = self.vocab.strings.add(tree["subst"])
trees.append(tree)

View File

@ -182,10 +182,7 @@ class EntityRuler(Pipe):
if start not in seen_tokens and end - 1 not in seen_tokens:
if match_id in self._ent_ids:
label, ent_id = self._ent_ids[match_id]
span = Span(doc, start, end, label=label)
if ent_id:
for token in span:
token.ent_id_ = ent_id
span = Span(doc, start, end, label=label, span_id=ent_id)
else:
span = Span(doc, start, end, label=match_id)
new_entities.append(span)
@ -359,7 +356,9 @@ class EntityRuler(Pipe):
(label, eid) for (label, eid) in self._ent_ids.values() if eid == ent_id
]
if not label_id_pairs:
raise ValueError(Errors.E1024.format(ent_id=ent_id))
raise ValueError(
Errors.E1024.format(attr_type="ID", label=ent_id, component=self.name)
)
created_labels = [
self._create_label(label, eid) for (label, eid) in label_id_pairs
]

View File

@ -31,7 +31,7 @@ cdef class Pipe:
and returned. This usually happens under the hood when the nlp object
is called on a text and all components are applied to the Doc.
docs (Doc): The Doc to process.
doc (Doc): The Doc to process.
RETURNS (Doc): The processed Doc.
DOCS: https://spacy.io/api/pipe#call

View File

@ -0,0 +1,569 @@
from typing import Optional, Union, List, Dict, Tuple, Iterable, Any, Callable
from typing import Sequence, Set, cast
import warnings
from functools import partial
from pathlib import Path
import srsly
from .pipe import Pipe
from ..training import Example
from ..language import Language
from ..errors import Errors, Warnings
from ..util import ensure_path, SimpleFrozenList, registry
from ..tokens import Doc, Span
from ..scorer import Scorer
from ..matcher import Matcher, PhraseMatcher
from .. import util
PatternType = Dict[str, Union[str, List[Dict[str, Any]]]]
DEFAULT_SPANS_KEY = "ruler"
@Language.factory(
"future_entity_ruler",
assigns=["doc.ents"],
default_config={
"phrase_matcher_attr": None,
"validate": False,
"overwrite_ents": False,
"scorer": {"@scorers": "spacy.entity_ruler_scorer.v1"},
"ent_id_sep": "__unused__",
},
default_score_weights={
"ents_f": 1.0,
"ents_p": 0.0,
"ents_r": 0.0,
"ents_per_type": None,
},
)
def make_entity_ruler(
nlp: Language,
name: str,
phrase_matcher_attr: Optional[Union[int, str]],
validate: bool,
overwrite_ents: bool,
scorer: Optional[Callable],
ent_id_sep: str,
):
if overwrite_ents:
ents_filter = prioritize_new_ents_filter
else:
ents_filter = prioritize_existing_ents_filter
return SpanRuler(
nlp,
name,
spans_key=None,
spans_filter=None,
annotate_ents=True,
ents_filter=ents_filter,
phrase_matcher_attr=phrase_matcher_attr,
validate=validate,
overwrite=False,
scorer=scorer,
)
@Language.factory(
"span_ruler",
assigns=["doc.spans"],
default_config={
"spans_key": DEFAULT_SPANS_KEY,
"spans_filter": None,
"annotate_ents": False,
"ents_filter": {"@misc": "spacy.first_longest_spans_filter.v1"},
"phrase_matcher_attr": None,
"validate": False,
"overwrite": True,
"scorer": {
"@scorers": "spacy.overlapping_labeled_spans_scorer.v1",
"spans_key": DEFAULT_SPANS_KEY,
},
},
default_score_weights={
f"spans_{DEFAULT_SPANS_KEY}_f": 1.0,
f"spans_{DEFAULT_SPANS_KEY}_p": 0.0,
f"spans_{DEFAULT_SPANS_KEY}_r": 0.0,
f"spans_{DEFAULT_SPANS_KEY}_per_type": None,
},
)
def make_span_ruler(
nlp: Language,
name: str,
spans_key: Optional[str],
spans_filter: Optional[Callable[[Iterable[Span], Iterable[Span]], Iterable[Span]]],
annotate_ents: bool,
ents_filter: Callable[[Iterable[Span], Iterable[Span]], Iterable[Span]],
phrase_matcher_attr: Optional[Union[int, str]],
validate: bool,
overwrite: bool,
scorer: Optional[Callable],
):
return SpanRuler(
nlp,
name,
spans_key=spans_key,
spans_filter=spans_filter,
annotate_ents=annotate_ents,
ents_filter=ents_filter,
phrase_matcher_attr=phrase_matcher_attr,
validate=validate,
overwrite=overwrite,
scorer=scorer,
)
def prioritize_new_ents_filter(
entities: Iterable[Span], spans: Iterable[Span]
) -> List[Span]:
"""Merge entities and spans into one list without overlaps by allowing
spans to overwrite any entities that they overlap with. Intended to
replicate the overwrite_ents=True behavior from the EntityRuler.
entities (Iterable[Span]): The entities, already filtered for overlaps.
spans (Iterable[Span]): The spans to merge, may contain overlaps.
RETURNS (List[Span]): Filtered list of non-overlapping spans.
"""
get_sort_key = lambda span: (span.end - span.start, -span.start)
spans = sorted(spans, key=get_sort_key, reverse=True)
entities = list(entities)
new_entities = []
seen_tokens: Set[int] = set()
for span in spans:
start = span.start
end = span.end
if all(token.i not in seen_tokens for token in span):
new_entities.append(span)
entities = [e for e in entities if not (e.start < end and e.end > start)]
seen_tokens.update(range(start, end))
return entities + new_entities
@registry.misc("spacy.prioritize_new_ents_filter.v1")
def make_prioritize_new_ents_filter():
return prioritize_new_ents_filter
def prioritize_existing_ents_filter(
entities: Iterable[Span], spans: Iterable[Span]
) -> List[Span]:
"""Merge entities and spans into one list without overlaps by prioritizing
existing entities. Intended to replicate the overwrite_ents=False behavior
from the EntityRuler.
entities (Iterable[Span]): The entities, already filtered for overlaps.
spans (Iterable[Span]): The spans to merge, may contain overlaps.
RETURNS (List[Span]): Filtered list of non-overlapping spans.
"""
get_sort_key = lambda span: (span.end - span.start, -span.start)
spans = sorted(spans, key=get_sort_key, reverse=True)
entities = list(entities)
new_entities = []
seen_tokens: Set[int] = set()
seen_tokens.update(*(range(ent.start, ent.end) for ent in entities))
for span in spans:
start = span.start
end = span.end
if all(token.i not in seen_tokens for token in span):
new_entities.append(span)
seen_tokens.update(range(start, end))
return entities + new_entities
@registry.misc("spacy.prioritize_existing_ents_filter.v1")
def make_preverse_existing_ents_filter():
return prioritize_existing_ents_filter
def overlapping_labeled_spans_score(
examples: Iterable[Example], *, spans_key=DEFAULT_SPANS_KEY, **kwargs
) -> Dict[str, Any]:
kwargs = dict(kwargs)
attr_prefix = f"spans_"
kwargs.setdefault("attr", f"{attr_prefix}{spans_key}")
kwargs.setdefault("allow_overlap", True)
kwargs.setdefault("labeled", True)
kwargs.setdefault(
"getter", lambda doc, key: doc.spans.get(key[len(attr_prefix) :], [])
)
kwargs.setdefault("has_annotation", lambda doc: spans_key in doc.spans)
return Scorer.score_spans(examples, **kwargs)
@registry.scorers("spacy.overlapping_labeled_spans_scorer.v1")
def make_overlapping_labeled_spans_scorer(spans_key: str = DEFAULT_SPANS_KEY):
return partial(overlapping_labeled_spans_score, spans_key=spans_key)
class SpanRuler(Pipe):
"""The SpanRuler lets you add spans to the `Doc.spans` using token-based
rules or exact phrase matches.
DOCS: https://spacy.io/api/spanruler
USAGE: https://spacy.io/usage/rule-based-matching#spanruler
"""
def __init__(
self,
nlp: Language,
name: str = "span_ruler",
*,
spans_key: Optional[str] = DEFAULT_SPANS_KEY,
spans_filter: Optional[
Callable[[Iterable[Span], Iterable[Span]], Iterable[Span]]
] = None,
annotate_ents: bool = False,
ents_filter: Callable[
[Iterable[Span], Iterable[Span]], Iterable[Span]
] = util.filter_chain_spans,
phrase_matcher_attr: Optional[Union[int, str]] = None,
validate: bool = False,
overwrite: bool = False,
scorer: Optional[Callable] = partial(
overlapping_labeled_spans_score, spans_key=DEFAULT_SPANS_KEY
),
) -> None:
"""Initialize the span ruler. If patterns are supplied here, they
need to be a list of dictionaries with a `"label"` and `"pattern"`
key. A pattern can either be a token pattern (list) or a phrase pattern
(string). For example: `{'label': 'ORG', 'pattern': 'Apple'}`.
nlp (Language): The shared nlp object to pass the vocab to the matchers
and process phrase patterns.
name (str): Instance name of the current pipeline component. Typically
passed in automatically from the factory when the component is
added. Used to disable the current span ruler while creating
phrase patterns with the nlp object.
spans_key (Optional[str]): The spans key to save the spans under. If
`None`, no spans are saved. Defaults to "ruler".
spans_filter (Optional[Callable[[Iterable[Span], Iterable[Span]], List[Span]]):
The optional method to filter spans before they are assigned to
doc.spans. Defaults to `None`.
annotate_ents (bool): Whether to save spans to doc.ents. Defaults to
`False`.
ents_filter (Callable[[Iterable[Span], Iterable[Span]], List[Span]]):
The method to filter spans before they are assigned to doc.ents.
Defaults to `util.filter_chain_spans`.
phrase_matcher_attr (Optional[Union[int, str]]): Token attribute to
match on, passed to the internal PhraseMatcher as `attr`. Defaults
to `None`.
validate (bool): Whether patterns should be validated, passed to
Matcher and PhraseMatcher as `validate`.
overwrite (bool): Whether to remove any existing spans under this spans
key if `spans_key` is set, and/or to remove any ents under `doc.ents` if
`annotate_ents` is set. Defaults to `True`.
scorer (Optional[Callable]): The scoring method. Defaults to
spacy.pipeline.span_ruler.overlapping_labeled_spans_score.
DOCS: https://spacy.io/api/spanruler#init
"""
self.nlp = nlp
self.name = name
self.spans_key = spans_key
self.annotate_ents = annotate_ents
self.phrase_matcher_attr = phrase_matcher_attr
self.validate = validate
self.overwrite = overwrite
self.spans_filter = spans_filter
self.ents_filter = ents_filter
self.scorer = scorer
self._match_label_id_map: Dict[int, Dict[str, str]] = {}
self.clear()
def __len__(self) -> int:
"""The number of all labels added to the span ruler."""
return len(self._patterns)
def __contains__(self, label: str) -> bool:
"""Whether a label is present in the patterns."""
for label_id in self._match_label_id_map.values():
if label_id["label"] == label:
return True
return False
@property
def key(self) -> Optional[str]:
"""Key of the doc.spans dict to save the spans under."""
return self.spans_key
def __call__(self, doc: Doc) -> Doc:
"""Find matches in document and add them as entities.
doc (Doc): The Doc object in the pipeline.
RETURNS (Doc): The Doc with added entities, if available.
DOCS: https://spacy.io/api/spanruler#call
"""
error_handler = self.get_error_handler()
try:
matches = self.match(doc)
self.set_annotations(doc, matches)
return doc
except Exception as e:
return error_handler(self.name, self, [doc], e)
def match(self, doc: Doc):
self._require_patterns()
with warnings.catch_warnings():
warnings.filterwarnings("ignore", message="\\[W036")
matches = cast(
List[Tuple[int, int, int]],
list(self.matcher(doc)) + list(self.phrase_matcher(doc)),
)
deduplicated_matches = set(
Span(
doc,
start,
end,
label=self._match_label_id_map[m_id]["label"],
span_id=self._match_label_id_map[m_id]["id"],
)
for m_id, start, end in matches
if start != end
)
return sorted(list(deduplicated_matches))
def set_annotations(self, doc, matches):
"""Modify the document in place"""
# set doc.spans if spans_key is set
if self.key:
spans = []
if self.key in doc.spans and not self.overwrite:
spans = doc.spans[self.key]
spans.extend(
self.spans_filter(spans, matches) if self.spans_filter else matches
)
doc.spans[self.key] = spans
# set doc.ents if annotate_ents is set
if self.annotate_ents:
spans = []
if not self.overwrite:
spans = list(doc.ents)
spans = self.ents_filter(spans, matches)
try:
doc.ents = sorted(spans)
except ValueError:
raise ValueError(Errors.E854)
@property
def labels(self) -> Tuple[str, ...]:
"""All labels present in the match patterns.
RETURNS (set): The string labels.
DOCS: https://spacy.io/api/spanruler#labels
"""
return tuple(sorted(set([cast(str, p["label"]) for p in self._patterns])))
@property
def ids(self) -> Tuple[str, ...]:
"""All IDs present in the match patterns.
RETURNS (set): The string IDs.
DOCS: https://spacy.io/api/spanruler#ids
"""
return tuple(
sorted(set([cast(str, p.get("id")) for p in self._patterns]) - set([None]))
)
def initialize(
self,
get_examples: Callable[[], Iterable[Example]],
*,
nlp: Optional[Language] = None,
patterns: Optional[Sequence[PatternType]] = None,
):
"""Initialize the pipe for training.
get_examples (Callable[[], Iterable[Example]]): Function that
returns a representative sample of gold-standard Example objects.
nlp (Language): The current nlp object the component is part of.
patterns (Optional[Iterable[PatternType]]): The list of patterns.
DOCS: https://spacy.io/api/spanruler#initialize
"""
self.clear()
if patterns:
self.add_patterns(patterns) # type: ignore[arg-type]
@property
def patterns(self) -> List[PatternType]:
"""Get all patterns that were added to the span ruler.
RETURNS (list): The original patterns, one dictionary per pattern.
DOCS: https://spacy.io/api/spanruler#patterns
"""
return self._patterns
def add_patterns(self, patterns: List[PatternType]) -> None:
"""Add patterns to the span ruler. A pattern can either be a token
pattern (list of dicts) or a phrase pattern (string). For example:
{'label': 'ORG', 'pattern': 'Apple'}
{'label': 'ORG', 'pattern': 'Apple', 'id': 'apple'}
{'label': 'GPE', 'pattern': [{'lower': 'san'}, {'lower': 'francisco'}]}
patterns (list): The patterns to add.
DOCS: https://spacy.io/api/spanruler#add_patterns
"""
# disable the nlp components after this one in case they haven't been
# initialized / deserialized yet
try:
current_index = -1
for i, (name, pipe) in enumerate(self.nlp.pipeline):
if self == pipe:
current_index = i
break
subsequent_pipes = [pipe for pipe in self.nlp.pipe_names[current_index:]]
except ValueError:
subsequent_pipes = []
with self.nlp.select_pipes(disable=subsequent_pipes):
phrase_pattern_labels = []
phrase_pattern_texts = []
for entry in patterns:
p_label = cast(str, entry["label"])
p_id = cast(str, entry.get("id", ""))
label = repr((p_label, p_id))
self._match_label_id_map[self.nlp.vocab.strings.as_int(label)] = {
"label": p_label,
"id": p_id,
}
if isinstance(entry["pattern"], str):
phrase_pattern_labels.append(label)
phrase_pattern_texts.append(entry["pattern"])
elif isinstance(entry["pattern"], list):
self.matcher.add(label, [entry["pattern"]])
else:
raise ValueError(Errors.E097.format(pattern=entry["pattern"]))
self._patterns.append(entry)
for label, pattern in zip(
phrase_pattern_labels,
self.nlp.pipe(phrase_pattern_texts),
):
self.phrase_matcher.add(label, [pattern])
def clear(self) -> None:
"""Reset all patterns.
RETURNS: None
DOCS: https://spacy.io/api/spanruler#clear
"""
self._patterns: List[PatternType] = []
self.matcher: Matcher = Matcher(self.nlp.vocab, validate=self.validate)
self.phrase_matcher: PhraseMatcher = PhraseMatcher(
self.nlp.vocab,
attr=self.phrase_matcher_attr,
validate=self.validate,
)
def remove(self, label: str) -> None:
"""Remove a pattern by its label.
label (str): Label of the pattern to be removed.
RETURNS: None
DOCS: https://spacy.io/api/spanruler#remove
"""
if label not in self:
raise ValueError(
Errors.E1024.format(attr_type="label", label=label, component=self.name)
)
self._patterns = [p for p in self._patterns if p["label"] != label]
for m_label in self._match_label_id_map:
if self._match_label_id_map[m_label]["label"] == label:
m_label_str = self.nlp.vocab.strings.as_string(m_label)
if m_label_str in self.phrase_matcher:
self.phrase_matcher.remove(m_label_str)
if m_label_str in self.matcher:
self.matcher.remove(m_label_str)
def remove_by_id(self, pattern_id: str) -> None:
"""Remove a pattern by its pattern ID.
pattern_id (str): ID of the pattern to be removed.
RETURNS: None
DOCS: https://spacy.io/api/spanruler#remove_by_id
"""
orig_len = len(self)
self._patterns = [p for p in self._patterns if p.get("id") != pattern_id]
if orig_len == len(self):
raise ValueError(
Errors.E1024.format(
attr_type="ID", label=pattern_id, component=self.name
)
)
for m_label in self._match_label_id_map:
if self._match_label_id_map[m_label]["id"] == pattern_id:
m_label_str = self.nlp.vocab.strings.as_string(m_label)
if m_label_str in self.phrase_matcher:
self.phrase_matcher.remove(m_label_str)
if m_label_str in self.matcher:
self.matcher.remove(m_label_str)
def _require_patterns(self) -> None:
"""Raise a warning if this component has no patterns defined."""
if len(self) == 0:
warnings.warn(Warnings.W036.format(name=self.name))
def from_bytes(
self, bytes_data: bytes, *, exclude: Iterable[str] = SimpleFrozenList()
) -> "SpanRuler":
"""Load the span ruler from a bytestring.
bytes_data (bytes): The bytestring to load.
RETURNS (SpanRuler): The loaded span ruler.
DOCS: https://spacy.io/api/spanruler#from_bytes
"""
self.clear()
deserializers = {
"patterns": lambda b: self.add_patterns(srsly.json_loads(b)),
}
util.from_bytes(bytes_data, deserializers, exclude)
return self
def to_bytes(self, *, exclude: Iterable[str] = SimpleFrozenList()) -> bytes:
"""Serialize the span ruler to a bytestring.
RETURNS (bytes): The serialized patterns.
DOCS: https://spacy.io/api/spanruler#to_bytes
"""
serializers = {
"patterns": lambda: srsly.json_dumps(self.patterns),
}
return util.to_bytes(serializers, exclude)
def from_disk(
self, path: Union[str, Path], *, exclude: Iterable[str] = SimpleFrozenList()
) -> "SpanRuler":
"""Load the span ruler from a directory.
path (Union[str, Path]): A path to a directory.
RETURNS (SpanRuler): The loaded span ruler.
DOCS: https://spacy.io/api/spanruler#from_disk
"""
self.clear()
path = ensure_path(path)
deserializers = {
"patterns": lambda p: self.add_patterns(srsly.read_jsonl(p)),
}
util.from_disk(path, deserializers, {})
return self
def to_disk(
self, path: Union[str, Path], *, exclude: Iterable[str] = SimpleFrozenList()
) -> None:
"""Save the span ruler patterns to a directory.
path (Union[str, Path]): A path to a directory.
DOCS: https://spacy.io/api/spanruler#to_disk
"""
path = ensure_path(path)
serializers = {
"patterns": lambda p: srsly.write_jsonl(p, self.patterns),
}
util.to_disk(path, serializers, {})

View File

@ -269,6 +269,9 @@ class SpanCategorizer(TrainablePipe):
DOCS: https://spacy.io/api/spancategorizer#predict
"""
indices = self.suggester(docs, ops=self.model.ops)
if indices.lengths.sum() == 0:
scores = self.model.ops.alloc2f(0, 0)
else:
scores = self.model.predict((docs, indices)) # type: ignore
return indices, scores

View File

@ -485,3 +485,29 @@ class RecommendationSchema(BaseModel):
word_vectors: Optional[str] = None
transformer: Optional[RecommendationTrf] = None
has_letters: bool = True
class DocJSONSchema(BaseModel):
"""
JSON/dict format for JSON representation of Doc objects.
"""
cats: Optional[Dict[StrictStr, StrictFloat]] = Field(
None, title="Categories with corresponding probabilities"
)
ents: Optional[List[Dict[StrictStr, Union[StrictInt, StrictStr]]]] = Field(
None, title="Information on entities"
)
sents: Optional[List[Dict[StrictStr, StrictInt]]] = Field(
None, title="Indices of sentences' start and end indices"
)
text: StrictStr = Field(..., title="Document text")
spans: Dict[StrictStr, List[Dict[StrictStr, Union[StrictStr, StrictInt]]]] = Field(
None, title="Span information - end/start indices, label, KB ID"
)
tokens: List[Dict[StrictStr, Union[StrictStr, StrictInt]]] = Field(
..., title="Token information - ID, start, annotations"
)
_: Optional[Dict[StrictStr, Any]] = Field(
None, title="Any custom data stored in the document's _ attribute"
)

View File

@ -123,14 +123,14 @@ def test_doc_from_array_heads_in_bounds(en_vocab):
# head before start
arr = doc.to_array(["HEAD"])
arr[0] = -1
arr[0] = numpy.int32(-1).astype(numpy.uint64)
doc_from_array = Doc(en_vocab, words=words)
with pytest.raises(ValueError):
doc_from_array.from_array(["HEAD"], arr)
# head after end
arr = doc.to_array(["HEAD"])
arr[0] = 5
arr[0] = numpy.int32(5).astype(numpy.uint64)
doc_from_array = Doc(en_vocab, words=words)
with pytest.raises(ValueError):
doc_from_array.from_array(["HEAD"], arr)

View File

@ -3,6 +3,7 @@ import weakref
import numpy
from numpy.testing import assert_array_equal
import pytest
import warnings
from thinc.api import NumpyOps, get_current_ops
from spacy.attrs import DEP, ENT_IOB, ENT_TYPE, HEAD, IS_ALPHA, MORPH, POS
@ -529,9 +530,9 @@ def test_doc_from_array_sent_starts(en_vocab):
# no warning using default attrs
attrs = doc._get_array_attrs()
arr = doc.to_array(attrs)
with pytest.warns(None) as record:
with warnings.catch_warnings():
warnings.simplefilter("error")
new_doc.from_array(attrs, arr)
assert len(record) == 0
# only SENT_START uses SENT_START
attrs = [SENT_START]
arr = doc.to_array(attrs)

View File

@ -0,0 +1,191 @@
import pytest
import spacy
from spacy import schemas
from spacy.tokens import Doc, Span
@pytest.fixture()
def doc(en_vocab):
words = ["c", "d", "e"]
pos = ["VERB", "NOUN", "NOUN"]
tags = ["VBP", "NN", "NN"]
heads = [0, 0, 1]
deps = ["ROOT", "dobj", "dobj"]
ents = ["O", "B-ORG", "O"]
morphs = ["Feat1=A", "Feat1=B", "Feat1=A|Feat2=D"]
return Doc(
en_vocab,
words=words,
pos=pos,
tags=tags,
heads=heads,
deps=deps,
ents=ents,
morphs=morphs,
)
@pytest.fixture()
def doc_without_deps(en_vocab):
words = ["c", "d", "e"]
pos = ["VERB", "NOUN", "NOUN"]
tags = ["VBP", "NN", "NN"]
ents = ["O", "B-ORG", "O"]
morphs = ["Feat1=A", "Feat1=B", "Feat1=A|Feat2=D"]
return Doc(
en_vocab,
words=words,
pos=pos,
tags=tags,
ents=ents,
morphs=morphs,
sent_starts=[True, False, True],
)
def test_doc_to_json(doc):
json_doc = doc.to_json()
assert json_doc["text"] == "c d e "
assert len(json_doc["tokens"]) == 3
assert json_doc["tokens"][0]["pos"] == "VERB"
assert json_doc["tokens"][0]["tag"] == "VBP"
assert json_doc["tokens"][0]["dep"] == "ROOT"
assert len(json_doc["ents"]) == 1
assert json_doc["ents"][0]["start"] == 2 # character offset!
assert json_doc["ents"][0]["end"] == 3 # character offset!
assert json_doc["ents"][0]["label"] == "ORG"
assert not schemas.validate(schemas.DocJSONSchema, json_doc)
def test_doc_to_json_underscore(doc):
Doc.set_extension("json_test1", default=False)
Doc.set_extension("json_test2", default=False)
doc._.json_test1 = "hello world"
doc._.json_test2 = [1, 2, 3]
json_doc = doc.to_json(underscore=["json_test1", "json_test2"])
assert "_" in json_doc
assert json_doc["_"]["json_test1"] == "hello world"
assert json_doc["_"]["json_test2"] == [1, 2, 3]
assert not schemas.validate(schemas.DocJSONSchema, json_doc)
def test_doc_to_json_underscore_error_attr(doc):
"""Test that Doc.to_json() raises an error if a custom attribute doesn't
exist in the ._ space."""
with pytest.raises(ValueError):
doc.to_json(underscore=["json_test3"])
def test_doc_to_json_underscore_error_serialize(doc):
"""Test that Doc.to_json() raises an error if a custom attribute value
isn't JSON-serializable."""
Doc.set_extension("json_test4", method=lambda doc: doc.text)
with pytest.raises(ValueError):
doc.to_json(underscore=["json_test4"])
def test_doc_to_json_span(doc):
"""Test that Doc.to_json() includes spans"""
doc.spans["test"] = [Span(doc, 0, 2, "test"), Span(doc, 0, 1, "test")]
json_doc = doc.to_json()
assert "spans" in json_doc
assert len(json_doc["spans"]) == 1
assert len(json_doc["spans"]["test"]) == 2
assert json_doc["spans"]["test"][0]["start"] == 0
assert not schemas.validate(schemas.DocJSONSchema, json_doc)
def test_json_to_doc(doc):
new_doc = Doc(doc.vocab).from_json(doc.to_json(), validate=True)
new_tokens = [token for token in new_doc]
assert new_doc.text == doc.text == "c d e "
assert len(new_tokens) == len([token for token in doc]) == 3
assert new_tokens[0].pos == doc[0].pos
assert new_tokens[0].tag == doc[0].tag
assert new_tokens[0].dep == doc[0].dep
assert new_tokens[0].head.idx == doc[0].head.idx
assert new_tokens[0].lemma == doc[0].lemma
assert len(new_doc.ents) == 1
assert new_doc.ents[0].start == 1
assert new_doc.ents[0].end == 2
assert new_doc.ents[0].label_ == "ORG"
def test_json_to_doc_underscore(doc):
if not Doc.has_extension("json_test1"):
Doc.set_extension("json_test1", default=False)
if not Doc.has_extension("json_test2"):
Doc.set_extension("json_test2", default=False)
doc._.json_test1 = "hello world"
doc._.json_test2 = [1, 2, 3]
json_doc = doc.to_json(underscore=["json_test1", "json_test2"])
new_doc = Doc(doc.vocab).from_json(json_doc, validate=True)
assert all([new_doc.has_extension(f"json_test{i}") for i in range(1, 3)])
assert new_doc._.json_test1 == "hello world"
assert new_doc._.json_test2 == [1, 2, 3]
def test_json_to_doc_spans(doc):
"""Test that Doc.from_json() includes correct.spans."""
doc.spans["test"] = [
Span(doc, 0, 2, label="test"),
Span(doc, 0, 1, label="test", kb_id=7),
]
json_doc = doc.to_json()
new_doc = Doc(doc.vocab).from_json(json_doc, validate=True)
assert len(new_doc.spans) == 1
assert len(new_doc.spans["test"]) == 2
for i in range(2):
assert new_doc.spans["test"][i].start == doc.spans["test"][i].start
assert new_doc.spans["test"][i].end == doc.spans["test"][i].end
assert new_doc.spans["test"][i].label == doc.spans["test"][i].label
assert new_doc.spans["test"][i].kb_id == doc.spans["test"][i].kb_id
def test_json_to_doc_sents(doc, doc_without_deps):
"""Test that Doc.from_json() includes correct.sents."""
for test_doc in (doc, doc_without_deps):
json_doc = test_doc.to_json()
new_doc = Doc(doc.vocab).from_json(json_doc, validate=True)
assert [sent.text for sent in test_doc.sents] == [
sent.text for sent in new_doc.sents
]
assert [token.is_sent_start for token in test_doc] == [
token.is_sent_start for token in new_doc
]
def test_json_to_doc_cats(doc):
"""Test that Doc.from_json() includes correct .cats."""
cats = {"A": 0.3, "B": 0.7}
doc.cats = cats
json_doc = doc.to_json()
new_doc = Doc(doc.vocab).from_json(json_doc, validate=True)
assert new_doc.cats == cats
def test_json_to_doc_spaces():
"""Test that Doc.from_json() preserves spaces correctly."""
doc = spacy.blank("en")("This is just brilliant.")
json_doc = doc.to_json()
new_doc = Doc(doc.vocab).from_json(json_doc, validate=True)
assert doc.text == new_doc.text
def test_json_to_doc_attribute_consistency(doc):
"""Test that Doc.from_json() raises an exception if tokens don't all have the same set of properties."""
doc_json = doc.to_json()
doc_json["tokens"][1].pop("morph")
with pytest.raises(ValueError):
Doc(doc.vocab).from_json(doc_json)
def test_json_to_doc_validation_error(doc):
"""Test that Doc.from_json() raises an exception when validating invalid input."""
doc_json = doc.to_json()
doc_json.pop("tokens")
with pytest.raises(ValueError):
Doc(doc.vocab).from_json(doc_json, validate=True)

View File

@ -5,11 +5,9 @@ from spacy.compat import pickle
def test_pickle_single_doc():
nlp = Language()
doc = nlp("pickle roundtrip")
doc._context = 3
data = pickle.dumps(doc, 1)
doc2 = pickle.loads(data)
assert doc2.text == "pickle roundtrip"
assert doc2._context == 3
def test_list_of_docs_pickles_efficiently():

View File

@ -428,10 +428,19 @@ def test_span_string_label_kb_id(doc):
assert span.kb_id == doc.vocab.strings["Q342"]
def test_span_string_label_id(doc):
span = Span(doc, 0, 1, label="hello", span_id="Q342")
assert span.label_ == "hello"
assert span.label == doc.vocab.strings["hello"]
assert span.id_ == "Q342"
assert span.id == doc.vocab.strings["Q342"]
def test_span_attrs_writable(doc):
span = Span(doc, 0, 1)
span.label_ = "label"
span.kb_id_ = "kb_id"
span.id_ = "id"
def test_span_ents_property(doc):
@ -619,6 +628,9 @@ def test_span_comparison(doc):
assert Span(doc, 0, 4, "LABEL", kb_id="KB_ID") <= Span(doc, 1, 3)
assert Span(doc, 1, 3) > Span(doc, 0, 4, "LABEL", kb_id="KB_ID")
assert Span(doc, 1, 3) >= Span(doc, 0, 4, "LABEL", kb_id="KB_ID")
# Different id
assert Span(doc, 1, 3, span_id="AAA") < Span(doc, 1, 3, span_id="BBB")
# fmt: on

View File

@ -1,72 +0,0 @@
import pytest
from spacy.tokens import Doc, Span
@pytest.fixture()
def doc(en_vocab):
words = ["c", "d", "e"]
pos = ["VERB", "NOUN", "NOUN"]
tags = ["VBP", "NN", "NN"]
heads = [0, 0, 0]
deps = ["ROOT", "dobj", "dobj"]
ents = ["O", "B-ORG", "O"]
morphs = ["Feat1=A", "Feat1=B", "Feat1=A|Feat2=D"]
return Doc(
en_vocab,
words=words,
pos=pos,
tags=tags,
heads=heads,
deps=deps,
ents=ents,
morphs=morphs,
)
def test_doc_to_json(doc):
json_doc = doc.to_json()
assert json_doc["text"] == "c d e "
assert len(json_doc["tokens"]) == 3
assert json_doc["tokens"][0]["pos"] == "VERB"
assert json_doc["tokens"][0]["tag"] == "VBP"
assert json_doc["tokens"][0]["dep"] == "ROOT"
assert len(json_doc["ents"]) == 1
assert json_doc["ents"][0]["start"] == 2 # character offset!
assert json_doc["ents"][0]["end"] == 3 # character offset!
assert json_doc["ents"][0]["label"] == "ORG"
def test_doc_to_json_underscore(doc):
Doc.set_extension("json_test1", default=False)
Doc.set_extension("json_test2", default=False)
doc._.json_test1 = "hello world"
doc._.json_test2 = [1, 2, 3]
json_doc = doc.to_json(underscore=["json_test1", "json_test2"])
assert "_" in json_doc
assert json_doc["_"]["json_test1"] == "hello world"
assert json_doc["_"]["json_test2"] == [1, 2, 3]
def test_doc_to_json_underscore_error_attr(doc):
"""Test that Doc.to_json() raises an error if a custom attribute doesn't
exist in the ._ space."""
with pytest.raises(ValueError):
doc.to_json(underscore=["json_test3"])
def test_doc_to_json_underscore_error_serialize(doc):
"""Test that Doc.to_json() raises an error if a custom attribute value
isn't JSON-serializable."""
Doc.set_extension("json_test4", method=lambda doc: doc.text)
with pytest.raises(ValueError):
doc.to_json(underscore=["json_test4"])
def test_doc_to_json_span(doc):
"""Test that Doc.to_json() includes spans"""
doc.spans["test"] = [Span(doc, 0, 2, "test"), Span(doc, 0, 1, "test")]
json_doc = doc.to_json()
assert "spans" in json_doc
assert len(json_doc["spans"]) == 1
assert len(json_doc["spans"]["test"]) == 2
assert json_doc["spans"]["test"][0]["start"] == 0

View File

@ -2,6 +2,9 @@ import pytest
from spacy.tokens import Doc
pytestmark = pytest.mark.filterwarnings("ignore::DeprecationWarning")
def test_ru_doc_lemmatization(ru_lemmatizer):
words = ["мама", "мыла", "раму"]
pos = ["NOUN", "VERB", "NOUN"]

View File

@ -1,6 +1,10 @@
import pytest
from spacy.tokens import Doc
pytestmark = pytest.mark.filterwarnings("ignore::DeprecationWarning")
def test_uk_lemmatizer(uk_lemmatizer):
"""Check that the default uk lemmatizer runs."""
doc = Doc(uk_lemmatizer.vocab, words=["a", "b", "c"])

View File

@ -1,4 +1,5 @@
import pytest
import warnings
import srsly
from mock import Mock
@ -344,13 +345,13 @@ def test_phrase_matcher_validation(en_vocab):
matcher.add("TEST1", [doc1])
with pytest.warns(UserWarning):
matcher.add("TEST2", [doc2])
with pytest.warns(None) as record:
with warnings.catch_warnings():
warnings.simplefilter("error")
matcher.add("TEST3", [doc3])
assert not record.list
matcher = PhraseMatcher(en_vocab, attr="POS", validate=True)
with pytest.warns(None) as record:
with warnings.catch_warnings():
warnings.simplefilter("error")
matcher.add("TEST4", [doc2])
assert not record.list
def test_attr_validation(en_vocab):

View File

@ -60,10 +60,45 @@ def test_initialize_from_labels():
nlp2 = Language()
lemmatizer2 = nlp2.add_pipe("trainable_lemmatizer")
lemmatizer2.initialize(
get_examples=lambda: train_examples,
# We want to check that the strings in replacement nodes are
# added to the string store. Avoid that they get added through
# the examples.
get_examples=lambda: train_examples[:1],
labels=lemmatizer.label_data,
)
assert lemmatizer2.tree2label == {1: 0, 3: 1, 4: 2, 6: 3}
assert lemmatizer2.label_data == {
"trees": [
{"orig": "S", "subst": "s"},
{
"prefix_len": 1,
"suffix_len": 0,
"prefix_tree": 0,
"suffix_tree": 4294967295,
},
{"orig": "s", "subst": ""},
{
"prefix_len": 0,
"suffix_len": 1,
"prefix_tree": 4294967295,
"suffix_tree": 2,
},
{
"prefix_len": 0,
"suffix_len": 0,
"prefix_tree": 4294967295,
"suffix_tree": 4294967295,
},
{"orig": "E", "subst": "e"},
{
"prefix_len": 1,
"suffix_len": 0,
"prefix_tree": 5,
"suffix_tree": 4294967295,
},
],
"labels": (1, 3, 4, 6),
}
def test_no_data():

View File

@ -1048,6 +1048,10 @@ def test_no_gold_ents(patterns):
for eg in train_examples:
eg.predicted = ruler(eg.predicted)
# Entity ruler is no longer needed (initialization below wipes out the
# patterns and causes warnings)
nlp.remove_pipe("entity_ruler")
def create_kb(vocab):
# create artificial KB
mykb = KnowledgeBase(vocab, entity_vector_length=vector_length)
@ -1076,12 +1080,23 @@ def test_no_gold_ents(patterns):
# this will run the pipeline on the examples and shouldn't crash
results = nlp.evaluate(train_examples)
@pytest.mark.issue(9575)
def test_tokenization_mismatch():
nlp = English()
# include a matching entity so that update isn't skipped
doc1 = Doc(nlp.vocab, words=["Kirby", "123456"], spaces=[True, False], ents=["B-CHARACTER", "B-CARDINAL"])
doc2 = Doc(nlp.vocab, words=["Kirby", "123", "456"], spaces=[True, False, False], ents=["B-CHARACTER", "B-CARDINAL", "B-CARDINAL"])
doc1 = Doc(
nlp.vocab,
words=["Kirby", "123456"],
spaces=[True, False],
ents=["B-CHARACTER", "B-CARDINAL"],
)
doc2 = Doc(
nlp.vocab,
words=["Kirby", "123", "456"],
spaces=[True, False, False],
ents=["B-CHARACTER", "B-CARDINAL", "B-CARDINAL"],
)
eg = Example(doc1, doc2)
train_examples = [eg]

View File

@ -5,12 +5,15 @@ from spacy.tokens import Doc, Span
from spacy.language import Language
from spacy.lang.en import English
from spacy.pipeline import EntityRuler, EntityRecognizer, merge_entities
from spacy.pipeline import SpanRuler
from spacy.pipeline.ner import DEFAULT_NER_MODEL
from spacy.errors import MatchPatternError
from spacy.tests.util import make_tempdir
from thinc.api import NumpyOps, get_current_ops
ENTITY_RULERS = ["entity_ruler", "future_entity_ruler"]
@pytest.fixture
def nlp():
@ -37,12 +40,14 @@ def add_ent_component(doc):
@pytest.mark.issue(3345)
def test_issue3345():
@pytest.mark.parametrize("entity_ruler_factory", ENTITY_RULERS)
def test_issue3345(entity_ruler_factory):
"""Test case where preset entity crosses sentence boundary."""
nlp = English()
doc = Doc(nlp.vocab, words=["I", "live", "in", "New", "York"])
doc[4].is_sent_start = True
ruler = EntityRuler(nlp, patterns=[{"label": "GPE", "pattern": "New York"}])
ruler = nlp.add_pipe(entity_ruler_factory, name="entity_ruler")
ruler.add_patterns([{"label": "GPE", "pattern": "New York"}])
cfg = {"model": DEFAULT_NER_MODEL}
model = registry.resolve(cfg, validate=True)["model"]
ner = EntityRecognizer(doc.vocab, model)
@ -60,13 +65,18 @@ def test_issue3345():
@pytest.mark.issue(4849)
def test_issue4849():
@pytest.mark.parametrize("entity_ruler_factory", ENTITY_RULERS)
def test_issue4849(entity_ruler_factory):
nlp = English()
patterns = [
{"label": "PERSON", "pattern": "joe biden", "id": "joe-biden"},
{"label": "PERSON", "pattern": "bernie sanders", "id": "bernie-sanders"},
]
ruler = nlp.add_pipe("entity_ruler", config={"phrase_matcher_attr": "LOWER"})
ruler = nlp.add_pipe(
entity_ruler_factory,
name="entity_ruler",
config={"phrase_matcher_attr": "LOWER"},
)
ruler.add_patterns(patterns)
text = """
The left is starting to take aim at Democratic front-runner Joe Biden.
@ -86,10 +96,11 @@ def test_issue4849():
@pytest.mark.issue(5918)
def test_issue5918():
@pytest.mark.parametrize("entity_ruler_factory", ENTITY_RULERS)
def test_issue5918(entity_ruler_factory):
# Test edge case when merging entities.
nlp = English()
ruler = nlp.add_pipe("entity_ruler")
ruler = nlp.add_pipe(entity_ruler_factory, name="entity_ruler")
patterns = [
{"label": "ORG", "pattern": "Digicon Inc"},
{"label": "ORG", "pattern": "Rotan Mosle Inc's"},
@ -114,9 +125,10 @@ def test_issue5918():
@pytest.mark.issue(8168)
def test_issue8168():
@pytest.mark.parametrize("entity_ruler_factory", ENTITY_RULERS)
def test_issue8168(entity_ruler_factory):
nlp = English()
ruler = nlp.add_pipe("entity_ruler")
ruler = nlp.add_pipe(entity_ruler_factory, name="entity_ruler")
patterns = [
{"label": "ORG", "pattern": "Apple"},
{
@ -131,14 +143,17 @@ def test_issue8168():
},
]
ruler.add_patterns(patterns)
assert ruler._ent_ids == {8043148519967183733: ("GPE", "san-francisco")}
doc = nlp("San Francisco San Fran")
assert all(t.ent_id_ == "san-francisco" for t in doc)
@pytest.mark.issue(8216)
def test_entity_ruler_fix8216(nlp, patterns):
@pytest.mark.parametrize("entity_ruler_factory", ENTITY_RULERS)
def test_entity_ruler_fix8216(nlp, patterns, entity_ruler_factory):
"""Test that patterns don't get added excessively."""
ruler = nlp.add_pipe("entity_ruler", config={"validate": True})
ruler = nlp.add_pipe(
entity_ruler_factory, name="entity_ruler", config={"validate": True}
)
ruler.add_patterns(patterns)
pattern_count = sum(len(mm) for mm in ruler.matcher._patterns.values())
assert pattern_count > 0
@ -147,13 +162,16 @@ def test_entity_ruler_fix8216(nlp, patterns):
assert after_count == pattern_count
def test_entity_ruler_init(nlp, patterns):
ruler = EntityRuler(nlp, patterns=patterns)
@pytest.mark.parametrize("entity_ruler_factory", ENTITY_RULERS)
def test_entity_ruler_init(nlp, patterns, entity_ruler_factory):
ruler = nlp.add_pipe(entity_ruler_factory, name="entity_ruler")
ruler.add_patterns(patterns)
assert len(ruler) == len(patterns)
assert len(ruler.labels) == 4
assert "HELLO" in ruler
assert "BYE" in ruler
ruler = nlp.add_pipe("entity_ruler")
nlp.remove_pipe("entity_ruler")
ruler = nlp.add_pipe(entity_ruler_factory, name="entity_ruler")
ruler.add_patterns(patterns)
doc = nlp("hello world bye bye")
assert len(doc.ents) == 2
@ -161,20 +179,23 @@ def test_entity_ruler_init(nlp, patterns):
assert doc.ents[1].label_ == "BYE"
def test_entity_ruler_no_patterns_warns(nlp):
ruler = EntityRuler(nlp)
@pytest.mark.parametrize("entity_ruler_factory", ENTITY_RULERS)
def test_entity_ruler_no_patterns_warns(nlp, entity_ruler_factory):
ruler = nlp.add_pipe(entity_ruler_factory, name="entity_ruler")
assert len(ruler) == 0
assert len(ruler.labels) == 0
nlp.add_pipe("entity_ruler")
nlp.remove_pipe("entity_ruler")
nlp.add_pipe(entity_ruler_factory, name="entity_ruler")
assert nlp.pipe_names == ["entity_ruler"]
with pytest.warns(UserWarning):
doc = nlp("hello world bye bye")
assert len(doc.ents) == 0
def test_entity_ruler_init_patterns(nlp, patterns):
@pytest.mark.parametrize("entity_ruler_factory", ENTITY_RULERS)
def test_entity_ruler_init_patterns(nlp, patterns, entity_ruler_factory):
# initialize with patterns
ruler = nlp.add_pipe("entity_ruler")
ruler = nlp.add_pipe(entity_ruler_factory, name="entity_ruler")
assert len(ruler.labels) == 0
ruler.initialize(lambda: [], patterns=patterns)
assert len(ruler.labels) == 4
@ -186,7 +207,7 @@ def test_entity_ruler_init_patterns(nlp, patterns):
nlp.config["initialize"]["components"]["entity_ruler"] = {
"patterns": {"@misc": "entity_ruler_patterns"}
}
ruler = nlp.add_pipe("entity_ruler")
ruler = nlp.add_pipe(entity_ruler_factory, name="entity_ruler")
assert len(ruler.labels) == 0
nlp.initialize()
assert len(ruler.labels) == 4
@ -195,18 +216,20 @@ def test_entity_ruler_init_patterns(nlp, patterns):
assert doc.ents[1].label_ == "BYE"
def test_entity_ruler_init_clear(nlp, patterns):
@pytest.mark.parametrize("entity_ruler_factory", ENTITY_RULERS)
def test_entity_ruler_init_clear(nlp, patterns, entity_ruler_factory):
"""Test that initialization clears patterns."""
ruler = nlp.add_pipe("entity_ruler")
ruler = nlp.add_pipe(entity_ruler_factory, name="entity_ruler")
ruler.add_patterns(patterns)
assert len(ruler.labels) == 4
ruler.initialize(lambda: [])
assert len(ruler.labels) == 0
def test_entity_ruler_clear(nlp, patterns):
@pytest.mark.parametrize("entity_ruler_factory", ENTITY_RULERS)
def test_entity_ruler_clear(nlp, patterns, entity_ruler_factory):
"""Test that initialization clears patterns."""
ruler = nlp.add_pipe("entity_ruler")
ruler = nlp.add_pipe(entity_ruler_factory, name="entity_ruler")
ruler.add_patterns(patterns)
assert len(ruler.labels) == 4
doc = nlp("hello world")
@ -218,8 +241,9 @@ def test_entity_ruler_clear(nlp, patterns):
assert len(doc.ents) == 0
def test_entity_ruler_existing(nlp, patterns):
ruler = nlp.add_pipe("entity_ruler")
@pytest.mark.parametrize("entity_ruler_factory", ENTITY_RULERS)
def test_entity_ruler_existing(nlp, patterns, entity_ruler_factory):
ruler = nlp.add_pipe(entity_ruler_factory, name="entity_ruler")
ruler.add_patterns(patterns)
nlp.add_pipe("add_ent", before="entity_ruler")
doc = nlp("OH HELLO WORLD bye bye")
@ -228,8 +252,11 @@ def test_entity_ruler_existing(nlp, patterns):
assert doc.ents[1].label_ == "BYE"
def test_entity_ruler_existing_overwrite(nlp, patterns):
ruler = nlp.add_pipe("entity_ruler", config={"overwrite_ents": True})
@pytest.mark.parametrize("entity_ruler_factory", ENTITY_RULERS)
def test_entity_ruler_existing_overwrite(nlp, patterns, entity_ruler_factory):
ruler = nlp.add_pipe(
entity_ruler_factory, name="entity_ruler", config={"overwrite_ents": True}
)
ruler.add_patterns(patterns)
nlp.add_pipe("add_ent", before="entity_ruler")
doc = nlp("OH HELLO WORLD bye bye")
@ -239,8 +266,11 @@ def test_entity_ruler_existing_overwrite(nlp, patterns):
assert doc.ents[1].label_ == "BYE"
def test_entity_ruler_existing_complex(nlp, patterns):
ruler = nlp.add_pipe("entity_ruler", config={"overwrite_ents": True})
@pytest.mark.parametrize("entity_ruler_factory", ENTITY_RULERS)
def test_entity_ruler_existing_complex(nlp, patterns, entity_ruler_factory):
ruler = nlp.add_pipe(
entity_ruler_factory, name="entity_ruler", config={"overwrite_ents": True}
)
ruler.add_patterns(patterns)
nlp.add_pipe("add_ent", before="entity_ruler")
doc = nlp("foo foo bye bye")
@ -251,8 +281,11 @@ def test_entity_ruler_existing_complex(nlp, patterns):
assert len(doc.ents[1]) == 2
def test_entity_ruler_entity_id(nlp, patterns):
ruler = nlp.add_pipe("entity_ruler", config={"overwrite_ents": True})
@pytest.mark.parametrize("entity_ruler_factory", ENTITY_RULERS)
def test_entity_ruler_entity_id(nlp, patterns, entity_ruler_factory):
ruler = nlp.add_pipe(
entity_ruler_factory, name="entity_ruler", config={"overwrite_ents": True}
)
ruler.add_patterns(patterns)
doc = nlp("Apple is a technology company")
assert len(doc.ents) == 1
@ -260,18 +293,21 @@ def test_entity_ruler_entity_id(nlp, patterns):
assert doc.ents[0].ent_id_ == "a1"
def test_entity_ruler_cfg_ent_id_sep(nlp, patterns):
@pytest.mark.parametrize("entity_ruler_factory", ENTITY_RULERS)
def test_entity_ruler_cfg_ent_id_sep(nlp, patterns, entity_ruler_factory):
config = {"overwrite_ents": True, "ent_id_sep": "**"}
ruler = nlp.add_pipe("entity_ruler", config=config)
ruler = nlp.add_pipe(entity_ruler_factory, name="entity_ruler", config=config)
ruler.add_patterns(patterns)
assert "TECH_ORG**a1" in ruler.phrase_patterns
doc = nlp("Apple is a technology company")
if isinstance(ruler, EntityRuler):
assert "TECH_ORG**a1" in ruler.phrase_patterns
assert len(doc.ents) == 1
assert doc.ents[0].label_ == "TECH_ORG"
assert doc.ents[0].ent_id_ == "a1"
def test_entity_ruler_serialize_bytes(nlp, patterns):
@pytest.mark.parametrize("entity_ruler_factory", ENTITY_RULERS)
def test_entity_ruler_serialize_bytes(nlp, patterns, entity_ruler_factory):
ruler = EntityRuler(nlp, patterns=patterns)
assert len(ruler) == len(patterns)
assert len(ruler.labels) == 4
@ -288,7 +324,10 @@ def test_entity_ruler_serialize_bytes(nlp, patterns):
assert sorted(new_ruler.labels) == sorted(ruler.labels)
def test_entity_ruler_serialize_phrase_matcher_attr_bytes(nlp, patterns):
@pytest.mark.parametrize("entity_ruler_factory", ENTITY_RULERS)
def test_entity_ruler_serialize_phrase_matcher_attr_bytes(
nlp, patterns, entity_ruler_factory
):
ruler = EntityRuler(nlp, phrase_matcher_attr="LOWER", patterns=patterns)
assert len(ruler) == len(patterns)
assert len(ruler.labels) == 4
@ -303,8 +342,9 @@ def test_entity_ruler_serialize_phrase_matcher_attr_bytes(nlp, patterns):
assert new_ruler.phrase_matcher_attr == "LOWER"
def test_entity_ruler_validate(nlp):
ruler = EntityRuler(nlp)
@pytest.mark.parametrize("entity_ruler_factory", ENTITY_RULERS)
def test_entity_ruler_validate(nlp, entity_ruler_factory):
ruler = nlp.add_pipe(entity_ruler_factory, name="entity_ruler")
validated_ruler = EntityRuler(nlp, validate=True)
valid_pattern = {"label": "HELLO", "pattern": [{"LOWER": "HELLO"}]}
@ -322,32 +362,35 @@ def test_entity_ruler_validate(nlp):
validated_ruler.add_patterns([invalid_pattern])
def test_entity_ruler_properties(nlp, patterns):
@pytest.mark.parametrize("entity_ruler_factory", ENTITY_RULERS)
def test_entity_ruler_properties(nlp, patterns, entity_ruler_factory):
ruler = EntityRuler(nlp, patterns=patterns, overwrite_ents=True)
assert sorted(ruler.labels) == sorted(["HELLO", "BYE", "COMPLEX", "TECH_ORG"])
assert sorted(ruler.ent_ids) == ["a1", "a2"]
def test_entity_ruler_overlapping_spans(nlp):
ruler = EntityRuler(nlp)
@pytest.mark.parametrize("entity_ruler_factory", ENTITY_RULERS)
def test_entity_ruler_overlapping_spans(nlp, entity_ruler_factory):
ruler = nlp.add_pipe(entity_ruler_factory, name="entity_ruler")
patterns = [
{"label": "FOOBAR", "pattern": "foo bar"},
{"label": "BARBAZ", "pattern": "bar baz"},
]
ruler.add_patterns(patterns)
doc = ruler(nlp.make_doc("foo bar baz"))
doc = nlp("foo bar baz")
assert len(doc.ents) == 1
assert doc.ents[0].label_ == "FOOBAR"
@pytest.mark.parametrize("n_process", [1, 2])
def test_entity_ruler_multiprocessing(nlp, n_process):
@pytest.mark.parametrize("entity_ruler_factory", ENTITY_RULERS)
def test_entity_ruler_multiprocessing(nlp, n_process, entity_ruler_factory):
if isinstance(get_current_ops, NumpyOps) or n_process < 2:
texts = ["I enjoy eating Pizza Hut pizza."]
patterns = [{"label": "FASTFOOD", "pattern": "Pizza Hut", "id": "1234"}]
ruler = nlp.add_pipe("entity_ruler")
ruler = nlp.add_pipe(entity_ruler_factory, name="entity_ruler")
ruler.add_patterns(patterns)
for doc in nlp.pipe(texts, n_process=2):
@ -355,8 +398,9 @@ def test_entity_ruler_multiprocessing(nlp, n_process):
assert ent.ent_id_ == "1234"
def test_entity_ruler_serialize_jsonl(nlp, patterns):
ruler = nlp.add_pipe("entity_ruler")
@pytest.mark.parametrize("entity_ruler_factory", ENTITY_RULERS)
def test_entity_ruler_serialize_jsonl(nlp, patterns, entity_ruler_factory):
ruler = nlp.add_pipe(entity_ruler_factory, name="entity_ruler")
ruler.add_patterns(patterns)
with make_tempdir() as d:
ruler.to_disk(d / "test_ruler.jsonl")
@ -365,8 +409,9 @@ def test_entity_ruler_serialize_jsonl(nlp, patterns):
ruler.from_disk(d / "non_existing.jsonl") # read from a bad jsonl file
def test_entity_ruler_serialize_dir(nlp, patterns):
ruler = nlp.add_pipe("entity_ruler")
@pytest.mark.parametrize("entity_ruler_factory", ENTITY_RULERS)
def test_entity_ruler_serialize_dir(nlp, patterns, entity_ruler_factory):
ruler = nlp.add_pipe(entity_ruler_factory, name="entity_ruler")
ruler.add_patterns(patterns)
with make_tempdir() as d:
ruler.to_disk(d / "test_ruler")
@ -375,52 +420,65 @@ def test_entity_ruler_serialize_dir(nlp, patterns):
ruler.from_disk(d / "non_existing_dir") # read from a bad directory
def test_entity_ruler_remove_basic(nlp):
ruler = EntityRuler(nlp)
@pytest.mark.parametrize("entity_ruler_factory", ENTITY_RULERS)
def test_entity_ruler_remove_basic(nlp, entity_ruler_factory):
ruler = nlp.add_pipe(entity_ruler_factory, name="entity_ruler")
patterns = [
{"label": "PERSON", "pattern": "Duygu", "id": "duygu"},
{"label": "PERSON", "pattern": "Dina", "id": "dina"},
{"label": "ORG", "pattern": "ACME", "id": "acme"},
{"label": "ORG", "pattern": "ACM"},
]
ruler.add_patterns(patterns)
doc = ruler(nlp.make_doc("Duygu went to school"))
doc = nlp("Dina went to school")
assert len(ruler.patterns) == 3
assert len(doc.ents) == 1
if isinstance(ruler, EntityRuler):
assert "PERSON||dina" in ruler.phrase_matcher
assert doc.ents[0].label_ == "PERSON"
assert doc.ents[0].text == "Duygu"
assert "PERSON||duygu" in ruler.phrase_matcher
ruler.remove("duygu")
doc = ruler(nlp.make_doc("Duygu went to school"))
assert doc.ents[0].text == "Dina"
if isinstance(ruler, EntityRuler):
ruler.remove("dina")
else:
ruler.remove_by_id("dina")
doc = nlp("Dina went to school")
assert len(doc.ents) == 0
assert "PERSON||duygu" not in ruler.phrase_matcher
if isinstance(ruler, EntityRuler):
assert "PERSON||dina" not in ruler.phrase_matcher
assert len(ruler.patterns) == 2
def test_entity_ruler_remove_same_id_multiple_patterns(nlp):
ruler = EntityRuler(nlp)
@pytest.mark.parametrize("entity_ruler_factory", ENTITY_RULERS)
def test_entity_ruler_remove_same_id_multiple_patterns(nlp, entity_ruler_factory):
ruler = nlp.add_pipe(entity_ruler_factory, name="entity_ruler")
patterns = [
{"label": "PERSON", "pattern": "Duygu", "id": "duygu"},
{"label": "ORG", "pattern": "DuyguCorp", "id": "duygu"},
{"label": "PERSON", "pattern": "Dina", "id": "dina"},
{"label": "ORG", "pattern": "DinaCorp", "id": "dina"},
{"label": "ORG", "pattern": "ACME", "id": "acme"},
]
ruler.add_patterns(patterns)
doc = ruler(nlp.make_doc("Duygu founded DuyguCorp and ACME."))
doc = nlp("Dina founded DinaCorp and ACME.")
assert len(ruler.patterns) == 3
assert "PERSON||duygu" in ruler.phrase_matcher
assert "ORG||duygu" in ruler.phrase_matcher
if isinstance(ruler, EntityRuler):
assert "PERSON||dina" in ruler.phrase_matcher
assert "ORG||dina" in ruler.phrase_matcher
assert len(doc.ents) == 3
ruler.remove("duygu")
doc = ruler(nlp.make_doc("Duygu founded DuyguCorp and ACME."))
if isinstance(ruler, EntityRuler):
ruler.remove("dina")
else:
ruler.remove_by_id("dina")
doc = nlp("Dina founded DinaCorp and ACME.")
assert len(ruler.patterns) == 1
assert "PERSON||duygu" not in ruler.phrase_matcher
assert "ORG||duygu" not in ruler.phrase_matcher
if isinstance(ruler, EntityRuler):
assert "PERSON||dina" not in ruler.phrase_matcher
assert "ORG||dina" not in ruler.phrase_matcher
assert len(doc.ents) == 1
def test_entity_ruler_remove_nonexisting_pattern(nlp):
ruler = EntityRuler(nlp)
@pytest.mark.parametrize("entity_ruler_factory", ENTITY_RULERS)
def test_entity_ruler_remove_nonexisting_pattern(nlp, entity_ruler_factory):
ruler = nlp.add_pipe(entity_ruler_factory, name="entity_ruler")
patterns = [
{"label": "PERSON", "pattern": "Duygu", "id": "duygu"},
{"label": "PERSON", "pattern": "Dina", "id": "dina"},
{"label": "ORG", "pattern": "ACME", "id": "acme"},
{"label": "ORG", "pattern": "ACM"},
]
@ -428,82 +486,108 @@ def test_entity_ruler_remove_nonexisting_pattern(nlp):
assert len(ruler.patterns) == 3
with pytest.raises(ValueError):
ruler.remove("nepattern")
assert len(ruler.patterns) == 3
if isinstance(ruler, SpanRuler):
with pytest.raises(ValueError):
ruler.remove_by_id("nepattern")
def test_entity_ruler_remove_several_patterns(nlp):
ruler = EntityRuler(nlp)
@pytest.mark.parametrize("entity_ruler_factory", ENTITY_RULERS)
def test_entity_ruler_remove_several_patterns(nlp, entity_ruler_factory):
ruler = nlp.add_pipe(entity_ruler_factory, name="entity_ruler")
patterns = [
{"label": "PERSON", "pattern": "Duygu", "id": "duygu"},
{"label": "PERSON", "pattern": "Dina", "id": "dina"},
{"label": "ORG", "pattern": "ACME", "id": "acme"},
{"label": "ORG", "pattern": "ACM"},
]
ruler.add_patterns(patterns)
doc = ruler(nlp.make_doc("Duygu founded her company ACME."))
doc = nlp("Dina founded her company ACME.")
assert len(ruler.patterns) == 3
assert len(doc.ents) == 2
assert doc.ents[0].label_ == "PERSON"
assert doc.ents[0].text == "Duygu"
assert doc.ents[0].text == "Dina"
assert doc.ents[1].label_ == "ORG"
assert doc.ents[1].text == "ACME"
ruler.remove("duygu")
doc = ruler(nlp.make_doc("Duygu founded her company ACME"))
if isinstance(ruler, EntityRuler):
ruler.remove("dina")
else:
ruler.remove_by_id("dina")
doc = nlp("Dina founded her company ACME")
assert len(ruler.patterns) == 2
assert len(doc.ents) == 1
assert doc.ents[0].label_ == "ORG"
assert doc.ents[0].text == "ACME"
if isinstance(ruler, EntityRuler):
ruler.remove("acme")
doc = ruler(nlp.make_doc("Duygu founded her company ACME"))
else:
ruler.remove_by_id("acme")
doc = nlp("Dina founded her company ACME")
assert len(ruler.patterns) == 1
assert len(doc.ents) == 0
def test_entity_ruler_remove_patterns_in_a_row(nlp):
ruler = EntityRuler(nlp)
@pytest.mark.parametrize("entity_ruler_factory", ENTITY_RULERS)
def test_entity_ruler_remove_patterns_in_a_row(nlp, entity_ruler_factory):
ruler = nlp.add_pipe(entity_ruler_factory, name="entity_ruler")
patterns = [
{"label": "PERSON", "pattern": "Duygu", "id": "duygu"},
{"label": "PERSON", "pattern": "Dina", "id": "dina"},
{"label": "ORG", "pattern": "ACME", "id": "acme"},
{"label": "DATE", "pattern": "her birthday", "id": "bday"},
{"label": "ORG", "pattern": "ACM"},
]
ruler.add_patterns(patterns)
doc = ruler(nlp.make_doc("Duygu founded her company ACME on her birthday"))
doc = nlp("Dina founded her company ACME on her birthday")
assert len(doc.ents) == 3
assert doc.ents[0].label_ == "PERSON"
assert doc.ents[0].text == "Duygu"
assert doc.ents[0].text == "Dina"
assert doc.ents[1].label_ == "ORG"
assert doc.ents[1].text == "ACME"
assert doc.ents[2].label_ == "DATE"
assert doc.ents[2].text == "her birthday"
ruler.remove("duygu")
if isinstance(ruler, EntityRuler):
ruler.remove("dina")
ruler.remove("acme")
ruler.remove("bday")
doc = ruler(nlp.make_doc("Duygu went to school"))
else:
ruler.remove_by_id("dina")
ruler.remove_by_id("acme")
ruler.remove_by_id("bday")
doc = nlp("Dina went to school")
assert len(doc.ents) == 0
def test_entity_ruler_remove_all_patterns(nlp):
ruler = EntityRuler(nlp)
@pytest.mark.parametrize("entity_ruler_factory", ENTITY_RULERS)
def test_entity_ruler_remove_all_patterns(nlp, entity_ruler_factory):
ruler = nlp.add_pipe(entity_ruler_factory, name="entity_ruler")
patterns = [
{"label": "PERSON", "pattern": "Duygu", "id": "duygu"},
{"label": "PERSON", "pattern": "Dina", "id": "dina"},
{"label": "ORG", "pattern": "ACME", "id": "acme"},
{"label": "DATE", "pattern": "her birthday", "id": "bday"},
]
ruler.add_patterns(patterns)
assert len(ruler.patterns) == 3
ruler.remove("duygu")
if isinstance(ruler, EntityRuler):
ruler.remove("dina")
else:
ruler.remove_by_id("dina")
assert len(ruler.patterns) == 2
if isinstance(ruler, EntityRuler):
ruler.remove("acme")
else:
ruler.remove_by_id("acme")
assert len(ruler.patterns) == 1
if isinstance(ruler, EntityRuler):
ruler.remove("bday")
else:
ruler.remove_by_id("bday")
assert len(ruler.patterns) == 0
with pytest.warns(UserWarning):
doc = ruler(nlp.make_doc("Duygu founded her company ACME on her birthday"))
doc = nlp("Dina founded her company ACME on her birthday")
assert len(doc.ents) == 0
def test_entity_ruler_remove_and_add(nlp):
ruler = EntityRuler(nlp)
@pytest.mark.parametrize("entity_ruler_factory", ENTITY_RULERS)
def test_entity_ruler_remove_and_add(nlp, entity_ruler_factory):
ruler = nlp.add_pipe(entity_ruler_factory, name="entity_ruler")
patterns = [{"label": "DATE", "pattern": "last time"}]
ruler.add_patterns(patterns)
doc = ruler(
@ -524,7 +608,10 @@ def test_entity_ruler_remove_and_add(nlp):
assert doc.ents[0].text == "last time"
assert doc.ents[1].label_ == "DATE"
assert doc.ents[1].text == "this time"
if isinstance(ruler, EntityRuler):
ruler.remove("ttime")
else:
ruler.remove_by_id("ttime")
doc = ruler(
nlp.make_doc("I saw him last time we met, this time he brought some flowers")
)
@ -547,7 +634,10 @@ def test_entity_ruler_remove_and_add(nlp):
)
assert len(ruler.patterns) == 3
assert len(doc.ents) == 3
if isinstance(ruler, EntityRuler):
ruler.remove("ttime")
else:
ruler.remove_by_id("ttime")
doc = ruler(
nlp.make_doc(
"I saw him last time we met, this time he brought some flowers, another time some chocolate."

View File

@ -0,0 +1,465 @@
import pytest
import spacy
from spacy import registry
from spacy.errors import MatchPatternError
from spacy.tokens import Span
from spacy.training import Example
from spacy.tests.util import make_tempdir
from thinc.api import NumpyOps, get_current_ops
@pytest.fixture
@registry.misc("span_ruler_patterns")
def patterns():
return [
{"label": "HELLO", "pattern": "hello world", "id": "hello1"},
{"label": "BYE", "pattern": [{"LOWER": "bye"}, {"LOWER": "bye"}]},
{"label": "HELLO", "pattern": [{"ORTH": "HELLO"}], "id": "hello2"},
{"label": "COMPLEX", "pattern": [{"ORTH": "foo", "OP": "*"}]},
{"label": "TECH_ORG", "pattern": "Apple"},
{"label": "TECH_ORG", "pattern": "Microsoft"},
]
@pytest.fixture
def overlapping_patterns():
return [
{"label": "FOOBAR", "pattern": "foo bar"},
{"label": "BARBAZ", "pattern": "bar baz"},
]
@pytest.fixture
def person_org_patterns():
return [
{"label": "PERSON", "pattern": "Dina"},
{"label": "ORG", "pattern": "ACME"},
{"label": "ORG", "pattern": "ACM"},
]
@pytest.fixture
def person_org_date_patterns(person_org_patterns):
return person_org_patterns + [{"label": "DATE", "pattern": "June 14th"}]
def test_span_ruler_add_empty(patterns):
"""Test that patterns don't get added excessively."""
nlp = spacy.blank("xx")
ruler = nlp.add_pipe("span_ruler", config={"validate": True})
ruler.add_patterns(patterns)
pattern_count = sum(len(mm) for mm in ruler.matcher._patterns.values())
assert pattern_count > 0
ruler.add_patterns([])
after_count = sum(len(mm) for mm in ruler.matcher._patterns.values())
assert after_count == pattern_count
def test_span_ruler_init(patterns):
nlp = spacy.blank("xx")
ruler = nlp.add_pipe("span_ruler")
ruler.add_patterns(patterns)
assert len(ruler) == len(patterns)
assert len(ruler.labels) == 4
assert "HELLO" in ruler
assert "BYE" in ruler
doc = nlp("hello world bye bye")
assert len(doc.spans["ruler"]) == 2
assert doc.spans["ruler"][0].label_ == "HELLO"
assert doc.spans["ruler"][0].id_ == "hello1"
assert doc.spans["ruler"][1].label_ == "BYE"
assert doc.spans["ruler"][1].id_ == ""
def test_span_ruler_no_patterns_warns():
nlp = spacy.blank("xx")
ruler = nlp.add_pipe("span_ruler")
assert len(ruler) == 0
assert len(ruler.labels) == 0
assert nlp.pipe_names == ["span_ruler"]
with pytest.warns(UserWarning):
doc = nlp("hello world bye bye")
assert len(doc.spans["ruler"]) == 0
def test_span_ruler_init_patterns(patterns):
# initialize with patterns
nlp = spacy.blank("xx")
ruler = nlp.add_pipe("span_ruler")
assert len(ruler.labels) == 0
ruler.initialize(lambda: [], patterns=patterns)
assert len(ruler.labels) == 4
doc = nlp("hello world bye bye")
assert doc.spans["ruler"][0].label_ == "HELLO"
assert doc.spans["ruler"][1].label_ == "BYE"
nlp.remove_pipe("span_ruler")
# initialize with patterns from misc registry
nlp.config["initialize"]["components"]["span_ruler"] = {
"patterns": {"@misc": "span_ruler_patterns"}
}
ruler = nlp.add_pipe("span_ruler")
assert len(ruler.labels) == 0
nlp.initialize()
assert len(ruler.labels) == 4
doc = nlp("hello world bye bye")
assert doc.spans["ruler"][0].label_ == "HELLO"
assert doc.spans["ruler"][1].label_ == "BYE"
def test_span_ruler_init_clear(patterns):
"""Test that initialization clears patterns."""
nlp = spacy.blank("xx")
ruler = nlp.add_pipe("span_ruler")
ruler.add_patterns(patterns)
assert len(ruler.labels) == 4
ruler.initialize(lambda: [])
assert len(ruler.labels) == 0
def test_span_ruler_clear(patterns):
nlp = spacy.blank("xx")
ruler = nlp.add_pipe("span_ruler")
ruler.add_patterns(patterns)
assert len(ruler.labels) == 4
doc = nlp("hello world")
assert len(doc.spans["ruler"]) == 1
ruler.clear()
assert len(ruler.labels) == 0
with pytest.warns(UserWarning):
doc = nlp("hello world")
assert len(doc.spans["ruler"]) == 0
def test_span_ruler_existing(patterns):
nlp = spacy.blank("xx")
ruler = nlp.add_pipe("span_ruler", config={"overwrite": False})
ruler.add_patterns(patterns)
doc = nlp.make_doc("OH HELLO WORLD bye bye")
doc.spans["ruler"] = [doc[0:2]]
doc = nlp(doc)
assert len(doc.spans["ruler"]) == 3
assert doc.spans["ruler"][0] == doc[0:2]
assert doc.spans["ruler"][1].label_ == "HELLO"
assert doc.spans["ruler"][1].id_ == "hello2"
assert doc.spans["ruler"][2].label_ == "BYE"
assert doc.spans["ruler"][2].id_ == ""
def test_span_ruler_existing_overwrite(patterns):
nlp = spacy.blank("xx")
ruler = nlp.add_pipe("span_ruler", config={"overwrite": True})
ruler.add_patterns(patterns)
doc = nlp.make_doc("OH HELLO WORLD bye bye")
doc.spans["ruler"] = [doc[0:2]]
doc = nlp(doc)
assert len(doc.spans["ruler"]) == 2
assert doc.spans["ruler"][0].label_ == "HELLO"
assert doc.spans["ruler"][0].text == "HELLO"
assert doc.spans["ruler"][1].label_ == "BYE"
def test_span_ruler_serialize_bytes(patterns):
nlp = spacy.blank("xx")
ruler = nlp.add_pipe("span_ruler")
ruler.add_patterns(patterns)
assert len(ruler) == len(patterns)
assert len(ruler.labels) == 4
ruler_bytes = ruler.to_bytes()
new_nlp = spacy.blank("xx")
new_ruler = new_nlp.add_pipe("span_ruler")
assert len(new_ruler) == 0
assert len(new_ruler.labels) == 0
new_ruler = new_ruler.from_bytes(ruler_bytes)
assert len(new_ruler) == len(patterns)
assert len(new_ruler.labels) == 4
assert len(new_ruler.patterns) == len(ruler.patterns)
for pattern in ruler.patterns:
assert pattern in new_ruler.patterns
assert sorted(new_ruler.labels) == sorted(ruler.labels)
def test_span_ruler_validate():
nlp = spacy.blank("xx")
ruler = nlp.add_pipe("span_ruler")
validated_ruler = nlp.add_pipe(
"span_ruler", name="validated_span_ruler", config={"validate": True}
)
valid_pattern = {"label": "HELLO", "pattern": [{"LOWER": "HELLO"}]}
invalid_pattern = {"label": "HELLO", "pattern": [{"ASDF": "HELLO"}]}
# invalid pattern raises error without validate
with pytest.raises(ValueError):
ruler.add_patterns([invalid_pattern])
# valid pattern is added without errors with validate
validated_ruler.add_patterns([valid_pattern])
# invalid pattern raises error with validate
with pytest.raises(MatchPatternError):
validated_ruler.add_patterns([invalid_pattern])
def test_span_ruler_properties(patterns):
nlp = spacy.blank("xx")
ruler = nlp.add_pipe("span_ruler", config={"overwrite": True})
ruler.add_patterns(patterns)
assert sorted(ruler.labels) == sorted(set([p["label"] for p in patterns]))
def test_span_ruler_overlapping_spans(overlapping_patterns):
nlp = spacy.blank("xx")
ruler = nlp.add_pipe("span_ruler")
ruler.add_patterns(overlapping_patterns)
doc = ruler(nlp.make_doc("foo bar baz"))
assert len(doc.spans["ruler"]) == 2
assert doc.spans["ruler"][0].label_ == "FOOBAR"
assert doc.spans["ruler"][1].label_ == "BARBAZ"
def test_span_ruler_scorer(overlapping_patterns):
nlp = spacy.blank("xx")
ruler = nlp.add_pipe("span_ruler")
ruler.add_patterns(overlapping_patterns)
text = "foo bar baz"
pred_doc = ruler(nlp.make_doc(text))
assert len(pred_doc.spans["ruler"]) == 2
assert pred_doc.spans["ruler"][0].label_ == "FOOBAR"
assert pred_doc.spans["ruler"][1].label_ == "BARBAZ"
ref_doc = nlp.make_doc(text)
ref_doc.spans["ruler"] = [Span(ref_doc, 0, 2, label="FOOBAR")]
scores = nlp.evaluate([Example(pred_doc, ref_doc)])
assert scores["spans_ruler_p"] == 0.5
assert scores["spans_ruler_r"] == 1.0
@pytest.mark.parametrize("n_process", [1, 2])
def test_span_ruler_multiprocessing(n_process):
if isinstance(get_current_ops, NumpyOps) or n_process < 2:
texts = ["I enjoy eating Pizza Hut pizza."]
patterns = [{"label": "FASTFOOD", "pattern": "Pizza Hut"}]
nlp = spacy.blank("xx")
ruler = nlp.add_pipe("span_ruler")
ruler.add_patterns(patterns)
for doc in nlp.pipe(texts, n_process=2):
for ent in doc.spans["ruler"]:
assert ent.label_ == "FASTFOOD"
def test_span_ruler_serialize_dir(patterns):
nlp = spacy.blank("xx")
ruler = nlp.add_pipe("span_ruler")
ruler.add_patterns(patterns)
with make_tempdir() as d:
ruler.to_disk(d / "test_ruler")
ruler.from_disk(d / "test_ruler") # read from an existing directory
with pytest.raises(ValueError):
ruler.from_disk(d / "non_existing_dir") # read from a bad directory
def test_span_ruler_remove_basic(person_org_patterns):
nlp = spacy.blank("xx")
ruler = nlp.add_pipe("span_ruler")
ruler.add_patterns(person_org_patterns)
doc = ruler(nlp.make_doc("Dina went to school"))
assert len(ruler.patterns) == 3
assert len(doc.spans["ruler"]) == 1
assert doc.spans["ruler"][0].label_ == "PERSON"
assert doc.spans["ruler"][0].text == "Dina"
ruler.remove("PERSON")
doc = ruler(nlp.make_doc("Dina went to school"))
assert len(doc.spans["ruler"]) == 0
assert len(ruler.patterns) == 2
def test_span_ruler_remove_nonexisting_pattern(person_org_patterns):
nlp = spacy.blank("xx")
ruler = nlp.add_pipe("span_ruler")
ruler.add_patterns(person_org_patterns)
assert len(ruler.patterns) == 3
with pytest.raises(ValueError):
ruler.remove("NE")
with pytest.raises(ValueError):
ruler.remove_by_id("NE")
def test_span_ruler_remove_several_patterns(person_org_patterns):
nlp = spacy.blank("xx")
ruler = nlp.add_pipe("span_ruler")
ruler.add_patterns(person_org_patterns)
doc = ruler(nlp.make_doc("Dina founded the company ACME."))
assert len(ruler.patterns) == 3
assert len(doc.spans["ruler"]) == 2
assert doc.spans["ruler"][0].label_ == "PERSON"
assert doc.spans["ruler"][0].text == "Dina"
assert doc.spans["ruler"][1].label_ == "ORG"
assert doc.spans["ruler"][1].text == "ACME"
ruler.remove("PERSON")
doc = ruler(nlp.make_doc("Dina founded the company ACME"))
assert len(ruler.patterns) == 2
assert len(doc.spans["ruler"]) == 1
assert doc.spans["ruler"][0].label_ == "ORG"
assert doc.spans["ruler"][0].text == "ACME"
ruler.remove("ORG")
with pytest.warns(UserWarning):
doc = ruler(nlp.make_doc("Dina founded the company ACME"))
assert len(ruler.patterns) == 0
assert len(doc.spans["ruler"]) == 0
def test_span_ruler_remove_patterns_in_a_row(person_org_date_patterns):
nlp = spacy.blank("xx")
ruler = nlp.add_pipe("span_ruler")
ruler.add_patterns(person_org_date_patterns)
doc = ruler(nlp.make_doc("Dina founded the company ACME on June 14th"))
assert len(doc.spans["ruler"]) == 3
assert doc.spans["ruler"][0].label_ == "PERSON"
assert doc.spans["ruler"][0].text == "Dina"
assert doc.spans["ruler"][1].label_ == "ORG"
assert doc.spans["ruler"][1].text == "ACME"
assert doc.spans["ruler"][2].label_ == "DATE"
assert doc.spans["ruler"][2].text == "June 14th"
ruler.remove("ORG")
ruler.remove("DATE")
doc = ruler(nlp.make_doc("Dina went to school"))
assert len(doc.spans["ruler"]) == 1
def test_span_ruler_remove_all_patterns(person_org_date_patterns):
nlp = spacy.blank("xx")
ruler = nlp.add_pipe("span_ruler")
ruler.add_patterns(person_org_date_patterns)
assert len(ruler.patterns) == 4
ruler.remove("PERSON")
assert len(ruler.patterns) == 3
ruler.remove("ORG")
assert len(ruler.patterns) == 1
ruler.remove("DATE")
assert len(ruler.patterns) == 0
with pytest.warns(UserWarning):
doc = ruler(nlp.make_doc("Dina founded the company ACME on June 14th"))
assert len(doc.spans["ruler"]) == 0
def test_span_ruler_remove_and_add():
nlp = spacy.blank("xx")
ruler = nlp.add_pipe("span_ruler")
patterns1 = [{"label": "DATE1", "pattern": "last time"}]
ruler.add_patterns(patterns1)
doc = ruler(
nlp.make_doc("I saw him last time we met, this time he brought some flowers")
)
assert len(ruler.patterns) == 1
assert len(doc.spans["ruler"]) == 1
assert doc.spans["ruler"][0].label_ == "DATE1"
assert doc.spans["ruler"][0].text == "last time"
patterns2 = [{"label": "DATE2", "pattern": "this time"}]
ruler.add_patterns(patterns2)
doc = ruler(
nlp.make_doc("I saw him last time we met, this time he brought some flowers")
)
assert len(ruler.patterns) == 2
assert len(doc.spans["ruler"]) == 2
assert doc.spans["ruler"][0].label_ == "DATE1"
assert doc.spans["ruler"][0].text == "last time"
assert doc.spans["ruler"][1].label_ == "DATE2"
assert doc.spans["ruler"][1].text == "this time"
ruler.remove("DATE1")
doc = ruler(
nlp.make_doc("I saw him last time we met, this time he brought some flowers")
)
assert len(ruler.patterns) == 1
assert len(doc.spans["ruler"]) == 1
assert doc.spans["ruler"][0].label_ == "DATE2"
assert doc.spans["ruler"][0].text == "this time"
ruler.add_patterns(patterns1)
doc = ruler(
nlp.make_doc("I saw him last time we met, this time he brought some flowers")
)
assert len(ruler.patterns) == 2
assert len(doc.spans["ruler"]) == 2
patterns3 = [{"label": "DATE3", "pattern": "another time"}]
ruler.add_patterns(patterns3)
doc = ruler(
nlp.make_doc(
"I saw him last time we met, this time he brought some flowers, another time some chocolate."
)
)
assert len(ruler.patterns) == 3
assert len(doc.spans["ruler"]) == 3
ruler.remove("DATE3")
doc = ruler(
nlp.make_doc(
"I saw him last time we met, this time he brought some flowers, another time some chocolate."
)
)
assert len(ruler.patterns) == 2
assert len(doc.spans["ruler"]) == 2
def test_span_ruler_spans_filter(overlapping_patterns):
nlp = spacy.blank("xx")
ruler = nlp.add_pipe(
"span_ruler",
config={"spans_filter": {"@misc": "spacy.first_longest_spans_filter.v1"}},
)
ruler.add_patterns(overlapping_patterns)
doc = ruler(nlp.make_doc("foo bar baz"))
assert len(doc.spans["ruler"]) == 1
assert doc.spans["ruler"][0].label_ == "FOOBAR"
def test_span_ruler_ents_default_filter(overlapping_patterns):
nlp = spacy.blank("xx")
ruler = nlp.add_pipe("span_ruler", config={"annotate_ents": True})
ruler.add_patterns(overlapping_patterns)
doc = ruler(nlp.make_doc("foo bar baz"))
assert len(doc.ents) == 1
assert doc.ents[0].label_ == "FOOBAR"
def test_span_ruler_ents_overwrite_filter(overlapping_patterns):
nlp = spacy.blank("xx")
ruler = nlp.add_pipe(
"span_ruler",
config={
"annotate_ents": True,
"overwrite": False,
"ents_filter": {"@misc": "spacy.prioritize_new_ents_filter.v1"},
},
)
ruler.add_patterns(overlapping_patterns)
# overlapping ents are clobbered, non-overlapping ents are preserved
doc = nlp.make_doc("foo bar baz a b c")
doc.ents = [Span(doc, 1, 3, label="BARBAZ"), Span(doc, 3, 6, label="ABC")]
doc = ruler(doc)
assert len(doc.ents) == 2
assert doc.ents[0].label_ == "FOOBAR"
assert doc.ents[1].label_ == "ABC"
def test_span_ruler_ents_bad_filter(overlapping_patterns):
@registry.misc("test_pass_through_filter")
def make_pass_through_filter():
def pass_through_filter(spans1, spans2):
return spans1 + spans2
return pass_through_filter
nlp = spacy.blank("xx")
ruler = nlp.add_pipe(
"span_ruler",
config={
"annotate_ents": True,
"ents_filter": {"@misc": "test_pass_through_filter"},
},
)
ruler.add_patterns(overlapping_patterns)
with pytest.raises(ValueError):
ruler(nlp.make_doc("foo bar baz"))

View File

@ -372,24 +372,39 @@ def test_overfitting_IO_overlapping():
def test_zero_suggestions():
# Test with a suggester that returns 0 suggestions
# Test with a suggester that can return 0 suggestions
@registry.misc("test_zero_suggester")
def make_zero_suggester():
def zero_suggester(docs, *, ops=None):
@registry.misc("test_mixed_zero_suggester")
def make_mixed_zero_suggester():
def mixed_zero_suggester(docs, *, ops=None):
if ops is None:
ops = get_current_ops()
return Ragged(
ops.xp.zeros((0, 0), dtype="i"), ops.xp.zeros((len(docs),), dtype="i")
)
spans = []
lengths = []
for doc in docs:
if len(doc) > 0 and len(doc) % 2 == 0:
spans.append((0, 1))
lengths.append(1)
else:
lengths.append(0)
spans = ops.asarray2i(spans)
lengths_array = ops.asarray1i(lengths)
if len(spans) > 0:
output = Ragged(ops.xp.vstack(spans), lengths_array)
else:
output = Ragged(ops.xp.zeros((0, 0), dtype="i"), lengths_array)
return output
return zero_suggester
return mixed_zero_suggester
fix_random_seed(0)
nlp = English()
spancat = nlp.add_pipe(
"spancat",
config={"suggester": {"@misc": "test_zero_suggester"}, "spans_key": SPAN_KEY},
config={
"suggester": {"@misc": "test_mixed_zero_suggester"},
"spans_key": SPAN_KEY,
},
)
train_examples = make_examples(nlp)
optimizer = nlp.initialize(get_examples=lambda: train_examples)
@ -397,6 +412,16 @@ def test_zero_suggestions():
assert set(spancat.labels) == {"LOC", "PERSON"}
nlp.update(train_examples, sgd=optimizer)
# empty doc
nlp("")
# single doc with zero suggestions
nlp("one")
# single doc with one suggestion
nlp("two two")
# batch with mixed zero/one suggestions
list(nlp.pipe(["one", "two two", "three three three", "", "four four four four"]))
# batch with no suggestions
list(nlp.pipe(["", "one", "three three three"]))
def test_set_candidates():

View File

@ -0,0 +1,161 @@
import pytest
from spacy.tokens import Span, SpanGroup
from spacy.tokens._dict_proxies import SpanGroups
@pytest.mark.issue(10685)
def test_issue10685(en_tokenizer):
"""Test `SpanGroups` de/serialization"""
# Start with a Doc with no SpanGroups
doc = en_tokenizer("Will it blend?")
# Test empty `SpanGroups` de/serialization:
assert len(doc.spans) == 0
doc.spans.from_bytes(doc.spans.to_bytes())
assert len(doc.spans) == 0
# Test non-empty `SpanGroups` de/serialization:
doc.spans["test"] = SpanGroup(doc, name="test", spans=[doc[0:1]])
doc.spans["test2"] = SpanGroup(doc, name="test", spans=[doc[1:2]])
def assert_spangroups():
assert len(doc.spans) == 2
assert doc.spans["test"].name == "test"
assert doc.spans["test2"].name == "test"
assert list(doc.spans["test"]) == [doc[0:1]]
assert list(doc.spans["test2"]) == [doc[1:2]]
# Sanity check the currently-expected behavior
assert_spangroups()
# Now test serialization/deserialization:
doc.spans.from_bytes(doc.spans.to_bytes())
assert_spangroups()
def test_span_groups_serialization_mismatches(en_tokenizer):
"""Test the serialization of multiple mismatching `SpanGroups` keys and `SpanGroup.name`s"""
doc = en_tokenizer("How now, brown cow?")
# Some variety:
# 1 SpanGroup where its name matches its key
# 2 SpanGroups that have the same name--which is not a key
# 2 SpanGroups that have the same name--which is a key
# 1 SpanGroup that is a value for 2 different keys (where its name is a key)
# 1 SpanGroup that is a value for 2 different keys (where its name is not a key)
groups = doc.spans
groups["key1"] = SpanGroup(doc, name="key1", spans=[doc[0:1], doc[1:2]])
groups["key2"] = SpanGroup(doc, name="too", spans=[doc[3:4], doc[4:5]])
groups["key3"] = SpanGroup(doc, name="too", spans=[doc[1:2], doc[0:1]])
groups["key4"] = SpanGroup(doc, name="key4", spans=[doc[0:1]])
groups["key5"] = SpanGroup(doc, name="key4", spans=[doc[0:1]])
sg6 = SpanGroup(doc, name="key6", spans=[doc[0:1]])
groups["key6"] = sg6
groups["key7"] = sg6
sg8 = SpanGroup(doc, name="also", spans=[doc[1:2]])
groups["key8"] = sg8
groups["key9"] = sg8
regroups = SpanGroups(doc).from_bytes(groups.to_bytes())
# Assert regroups == groups
assert regroups.keys() == groups.keys()
for key, regroup in regroups.items():
# Assert regroup == groups[key]
assert regroup.name == groups[key].name
assert list(regroup) == list(groups[key])
@pytest.mark.parametrize(
"spans_bytes,doc_text,expected_spangroups,expected_warning",
# The bytestrings below were generated from an earlier version of spaCy
# that serialized `SpanGroups` as a list of SpanGroup bytes (via SpanGroups.to_bytes).
# Comments preceding the bytestrings indicate from what Doc they were created.
[
# Empty SpanGroups:
(b"\x90", "", {}, False),
# doc = nlp("Will it blend?")
# doc.spans['test'] = SpanGroup(doc, name='test', spans=[doc[0:1]])
(
b"\x91\xc4C\x83\xa4name\xa4test\xa5attrs\x80\xa5spans\x91\xc4(\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x01\x00\x00\x00\x00\x00\x00\x00\x04",
"Will it blend?",
{"test": {"name": "test", "spans": [(0, 1)]}},
False,
),
# doc = nlp("Will it blend?")
# doc.spans['test'] = SpanGroup(doc, name='test', spans=[doc[0:1]])
# doc.spans['test2'] = SpanGroup(doc, name='test', spans=[doc[1:2]])
(
b"\x92\xc4C\x83\xa4name\xa4test\xa5attrs\x80\xa5spans\x91\xc4(\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x01\x00\x00\x00\x00\x00\x00\x00\x04\xc4C\x83\xa4name\xa4test\xa5attrs\x80\xa5spans\x91\xc4(\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x01\x00\x00\x00\x02\x00\x00\x00\x05\x00\x00\x00\x07",
"Will it blend?",
# We expect only 1 SpanGroup to be in doc.spans in this example
# because there are 2 `SpanGroup`s that have the same .name. See #10685.
{"test": {"name": "test", "spans": [(1, 2)]}},
True,
),
# doc = nlp('How now, brown cow?')
# doc.spans['key1'] = SpanGroup(doc, name='key1', spans=[doc[0:1], doc[1:2]])
# doc.spans['key2'] = SpanGroup(doc, name='too', spans=[doc[3:4], doc[4:5]])
# doc.spans['key3'] = SpanGroup(doc, name='too', spans=[doc[1:2], doc[0:1]])
# doc.spans['key4'] = SpanGroup(doc, name='key4', spans=[doc[0:1]])
# doc.spans['key5'] = SpanGroup(doc, name='key4', spans=[doc[0:1]])
(
b"\x95\xc4m\x83\xa4name\xa4key1\xa5attrs\x80\xa5spans\x92\xc4(\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x01\x00\x00\x00\x00\x00\x00\x00\x03\xc4(\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x01\x00\x00\x00\x02\x00\x00\x00\x04\x00\x00\x00\x07\xc4l\x83\xa4name\xa3too\xa5attrs\x80\xa5spans\x92\xc4(\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x03\x00\x00\x00\x04\x00\x00\x00\t\x00\x00\x00\x0e\xc4(\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x04\x00\x00\x00\x05\x00\x00\x00\x0f\x00\x00\x00\x12\xc4l\x83\xa4name\xa3too\xa5attrs\x80\xa5spans\x92\xc4(\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x01\x00\x00\x00\x02\x00\x00\x00\x04\x00\x00\x00\x07\xc4(\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x01\x00\x00\x00\x00\x00\x00\x00\x03\xc4C\x83\xa4name\xa4key4\xa5attrs\x80\xa5spans\x91\xc4(\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x01\x00\x00\x00\x00\x00\x00\x00\x03\xc4C\x83\xa4name\xa4key4\xa5attrs\x80\xa5spans\x91\xc4(\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x01\x00\x00\x00\x00\x00\x00\x00\x03",
"How now, brown cow?",
{
"key1": {"name": "key1", "spans": [(0, 1), (1, 2)]},
"too": {"name": "too", "spans": [(1, 2), (0, 1)]},
"key4": {"name": "key4", "spans": [(0, 1)]},
},
True,
),
],
)
def test_deserialize_span_groups_compat(
en_tokenizer, spans_bytes, doc_text, expected_spangroups, expected_warning
):
"""Test backwards-compatibility of `SpanGroups` deserialization.
This uses serializations (bytes) from a prior version of spaCy (before 3.3.1).
spans_bytes (bytes): Serialized `SpanGroups` object.
doc_text (str): Doc text.
expected_spangroups (dict):
Dict mapping every expected (after deserialization) `SpanGroups` key
to a SpanGroup's "args", where a SpanGroup's args are given as a dict:
{"name": span_group.name,
"spans": [(span0.start, span0.end), ...]}
expected_warning (bool): Whether a warning is to be expected from .from_bytes()
--i.e. if more than 1 SpanGroup has the same .name within the `SpanGroups`.
"""
doc = en_tokenizer(doc_text)
if expected_warning:
with pytest.warns(UserWarning):
doc.spans.from_bytes(spans_bytes)
else:
# TODO: explicitly check for lack of a warning
doc.spans.from_bytes(spans_bytes)
assert doc.spans.keys() == expected_spangroups.keys()
for name, spangroup_args in expected_spangroups.items():
assert doc.spans[name].name == spangroup_args["name"]
spans = [Span(doc, start, end) for start, end in spangroup_args["spans"]]
assert list(doc.spans[name]) == spans
def test_span_groups_serialization(en_tokenizer):
doc = en_tokenizer("0 1 2 3 4 5 6")
span_groups = SpanGroups(doc)
spans = [doc[0:2], doc[1:3]]
sg1 = SpanGroup(doc, spans=spans)
span_groups["key1"] = sg1
span_groups["key2"] = sg1
span_groups["key3"] = []
reloaded_span_groups = SpanGroups(doc).from_bytes(span_groups.to_bytes())
assert span_groups.keys() == reloaded_span_groups.keys()
for key, value in span_groups.items():
assert all(
span == reloaded_span
for span, reloaded_span in zip(span_groups[key], reloaded_span_groups[key])
)

View File

@ -15,6 +15,7 @@ from spacy.cli._util import is_subpath_of, load_project_config
from spacy.cli._util import parse_config_overrides, string_to_list
from spacy.cli._util import substitute_project_variables
from spacy.cli._util import validate_project_commands
from spacy.cli._util import upload_file, download_file
from spacy.cli.debug_data import _compile_gold, _get_labels_from_model
from spacy.cli.debug_data import _get_labels_from_spancat
from spacy.cli.debug_data import _get_distribution, _get_kl_divergence
@ -855,3 +856,18 @@ def test_span_length_freq_dist_output_must_be_correct():
span_freqs = _get_spans_length_freq_dist(sample_span_lengths, threshold)
assert sum(span_freqs.values()) >= threshold
assert list(span_freqs.keys()) == [3, 1, 4, 5, 2]
def test_upload_download_local_file():
with make_tempdir() as d1, make_tempdir() as d2:
filename = "f.txt"
content = "content"
local_file = d1 / filename
remote_file = d2 / filename
with local_file.open(mode="w") as file_:
file_.write(content)
upload_file(local_file, remote_file)
local_file.unlink()
download_file(remote_file, local_file)
with local_file.open(mode="r") as file_:
assert file_.read() == content

View File

@ -203,6 +203,16 @@ def test_displacy_parse_spans_different_spans_key(en_vocab):
]
def test_displacy_parse_empty_spans_key(en_vocab):
"""Test that having an unset spans key doesn't raise an error"""
doc = Doc(en_vocab, words=["Welcome", "to", "the", "Bank", "of", "China"])
doc.spans["custom"] = [Span(doc, 3, 6, "BANK")]
with pytest.warns(UserWarning, match="W117"):
spans = displacy.parse_spans(doc)
assert isinstance(spans, dict)
def test_displacy_parse_ents(en_vocab):
"""Test that named entities on a Doc are converted into displaCy's format."""
doc = Doc(en_vocab, words=["But", "Google", "is", "starting", "from", "behind"])

View File

@ -23,7 +23,7 @@ def get_textcat_bow_kwargs():
def get_textcat_cnn_kwargs():
return {"tok2vec": test_tok2vec(), "exclusive_classes": False, "nO": 13}
return {"tok2vec": make_test_tok2vec(), "exclusive_classes": False, "nO": 13}
def get_all_params(model):
@ -65,7 +65,7 @@ def get_tok2vec_kwargs():
}
def test_tok2vec():
def make_test_tok2vec():
return build_Tok2Vec_model(**get_tok2vec_kwargs())

View File

@ -7,7 +7,7 @@ from ..util import get_cosine, add_vecs_to_vocab
@pytest.fixture
def vectors():
return [("apple", [1, 2, 3]), ("orange", [-1, -2, -3])]
return [("apple", [1, 2, 3]), ("orange", [-1, -2, -5])]
@pytest.fixture()
@ -71,7 +71,6 @@ def test_vectors_similarity_DD(vocab, vectors):
def test_vectors_similarity_TD(vocab, vectors):
[(word1, vec1), (word2, vec2)] = vectors
doc = Doc(vocab, words=[word1, word2])
with pytest.warns(UserWarning):
assert isinstance(doc.similarity(doc[0]), float)
assert isinstance(doc[0].similarity(doc), float)
assert doc.similarity(doc[0]) == doc[0].similarity(doc)
@ -80,7 +79,6 @@ def test_vectors_similarity_TD(vocab, vectors):
def test_vectors_similarity_TS(vocab, vectors):
[(word1, vec1), (word2, vec2)] = vectors
doc = Doc(vocab, words=[word1, word2])
with pytest.warns(UserWarning):
assert isinstance(doc[:2].similarity(doc[0]), float)
assert isinstance(doc[0].similarity(doc[-2]), float)
assert doc[:2].similarity(doc[0]) == doc[0].similarity(doc[:2])

View File

@ -1,10 +1,11 @@
from typing import Iterable, Tuple, Union, Optional, TYPE_CHECKING
from typing import Dict, Iterable, List, Tuple, Union, Optional, TYPE_CHECKING
import warnings
import weakref
from collections import UserDict
import srsly
from .span_group import SpanGroup
from ..errors import Errors
from ..errors import Errors, Warnings
if TYPE_CHECKING:
@ -16,7 +17,7 @@ if TYPE_CHECKING:
# Why inherit from UserDict instead of dict here?
# Well, the 'dict' class doesn't necessarily delegate everything nicely,
# for performance reasons. The UserDict is slower but better behaved.
# See https://treyhunner.com/2019/04/why-you-shouldnt-inherit-from-list-and-dict-in-python/0ww
# See https://treyhunner.com/2019/04/why-you-shouldnt-inherit-from-list-and-dict-in-python/
class SpanGroups(UserDict):
"""A dict-like proxy held by the Doc, to control access to span groups."""
@ -53,20 +54,52 @@ class SpanGroups(UserDict):
return super().setdefault(key, default=default)
def to_bytes(self) -> bytes:
# We don't need to serialize this as a dict, because the groups
# know their names.
# We serialize this as a dict in order to track the key(s) a SpanGroup
# is a value of (in a backward- and forward-compatible way), since
# a SpanGroup can have a key that doesn't match its `.name` (See #10685)
if len(self) == 0:
return self._EMPTY_BYTES
msg = [value.to_bytes() for value in self.values()]
msg: Dict[bytes, List[str]] = {}
for key, value in self.items():
msg.setdefault(value.to_bytes(), []).append(key)
return srsly.msgpack_dumps(msg)
def from_bytes(self, bytes_data: bytes) -> "SpanGroups":
msg = [] if bytes_data == self._EMPTY_BYTES else srsly.msgpack_loads(bytes_data)
# backwards-compatibility: bytes_data may be one of:
# b'', a serialized empty list, a serialized list of SpanGroup bytes
# or a serialized dict of SpanGroup bytes -> keys
msg = (
[]
if not bytes_data or bytes_data == self._EMPTY_BYTES
else srsly.msgpack_loads(bytes_data)
)
self.clear()
doc = self._ensure_doc()
if isinstance(msg, list):
# This is either the 1st version of `SpanGroups` serialization
# or there were no SpanGroups serialized
for value_bytes in msg:
group = SpanGroup(doc).from_bytes(value_bytes)
if group.name in self:
# Display a warning if `msg` contains `SpanGroup`s
# that have the same .name (attribute).
# Because, for `SpanGroups` serialized as lists,
# only 1 SpanGroup per .name is loaded. (See #10685)
warnings.warn(
Warnings.W120.format(
group_name=group.name, group_values=self[group.name]
)
)
self[group.name] = group
else:
for value_bytes, keys in msg.items():
group = SpanGroup(doc).from_bytes(value_bytes)
# Deserialize `SpanGroup`s as copies because it's possible for two
# different `SpanGroup`s (pre-serialization) to have the same bytes
# (since they can have the same `.name`).
self[keys[0]] = group
for key in keys[1:]:
self[key] = group.copy()
return self
def _ensure_doc(self) -> "Doc":

View File

@ -170,6 +170,9 @@ class Doc:
def extend_tensor(self, tensor: Floats2d) -> None: ...
def retokenize(self) -> Retokenizer: ...
def to_json(self, underscore: Optional[List[str]] = ...) -> Dict[str, Any]: ...
def from_json(
self, doc_json: Dict[str, Any] = ..., validate: bool = False
) -> Doc: ...
def to_utf8_array(self, nr_char: int = ...) -> Ints2d: ...
@staticmethod
def _get_array_attrs() -> Tuple[Any]: ...

View File

@ -1,4 +1,6 @@
# cython: infer_types=True, bounds_check=False, profile=True
from typing import Set
cimport cython
cimport numpy as np
from libc.string cimport memcpy
@ -31,10 +33,11 @@ from ..errors import Errors, Warnings
from ..morphology import Morphology
from .. import util
from .. import parts_of_speech
from .. import schemas
from .underscore import Underscore, get_ext_args
from ._retokenize import Retokenizer
from ._serialize import ALL_ATTRS as DOCBIN_ALL_ATTRS
from ..util import get_words_and_spaces
DEF PADDING = 5
@ -356,6 +359,7 @@ cdef class Doc:
for annot in annotations:
if annot:
if annot is heads or annot is sent_starts or annot is ent_iobs:
annot = numpy.array(annot, dtype=numpy.int32).astype(numpy.uint64)
for i in range(len(words)):
if attrs.ndim == 1:
attrs[i] = annot[i]
@ -414,6 +418,7 @@ cdef class Doc:
"""
# empty docs are always annotated
input_attr = attr
if self.length == 0:
return True
cdef int i
@ -423,6 +428,10 @@ cdef class Doc:
elif attr == "IS_SENT_END" or attr == self.vocab.strings["IS_SENT_END"]:
attr = SENT_START
attr = intify_attr(attr)
if attr is None:
raise ValueError(
Errors.E1037.format(attr=input_attr)
)
# adjust attributes
if attr == HEAD:
# HEAD does not have an unset state, so rely on DEP
@ -511,7 +520,7 @@ cdef class Doc:
def doc(self):
return self
def char_span(self, int start_idx, int end_idx, label=0, kb_id=0, vector=None, alignment_mode="strict"):
def char_span(self, int start_idx, int end_idx, label=0, kb_id=0, vector=None, alignment_mode="strict", span_id=0):
"""Create a `Span` object from the slice
`doc.text[start_idx : end_idx]`. Returns None if no valid `Span` can be
created.
@ -570,7 +579,7 @@ cdef class Doc:
start += 1
# Currently we have the token index, we want the range-end index
end += 1
cdef Span span = Span(self, start, end, label=label, kb_id=kb_id, vector=vector)
cdef Span span = Span(self, start, end, label=label, kb_id=kb_id, span_id=span_id, vector=vector)
return span
def similarity(self, other):
@ -708,6 +717,7 @@ cdef class Doc:
cdef int start = -1
cdef attr_t label = 0
cdef attr_t kb_id = 0
cdef attr_t ent_id = 0
output = []
for i in range(self.length):
token = &self.c[i]
@ -718,18 +728,20 @@ cdef class Doc:
elif token.ent_iob == 2 or token.ent_iob == 0 or \
(token.ent_iob == 3 and token.ent_type == 0):
if start != -1:
output.append(Span(self, start, i, label=label, kb_id=kb_id))
output.append(Span(self, start, i, label=label, kb_id=kb_id, span_id=ent_id))
start = -1
label = 0
kb_id = 0
ent_id = 0
elif token.ent_iob == 3:
if start != -1:
output.append(Span(self, start, i, label=label, kb_id=kb_id))
output.append(Span(self, start, i, label=label, kb_id=kb_id, span_id=ent_id))
start = i
label = token.ent_type
kb_id = token.ent_kb_id
ent_id = token.ent_id
if start != -1:
output.append(Span(self, start, self.length, label=label, kb_id=kb_id))
output.append(Span(self, start, self.length, label=label, kb_id=kb_id, span_id=ent_id))
# remove empty-label spans
output = [o for o in output if o.label_ != ""]
return tuple(output)
@ -738,14 +750,14 @@ cdef class Doc:
# TODO:
# 1. Test basic data-driven ORTH gazetteer
# 2. Test more nuanced date and currency regex
cdef attr_t entity_type, kb_id
cdef attr_t entity_type, kb_id, ent_id
cdef int ent_start, ent_end
ent_spans = []
for ent_info in ents:
entity_type_, kb_id, ent_start, ent_end = get_entity_info(ent_info)
entity_type_, kb_id, ent_start, ent_end, ent_id = get_entity_info(ent_info)
if isinstance(entity_type_, str):
self.vocab.strings.add(entity_type_)
span = Span(self, ent_start, ent_end, label=entity_type_, kb_id=kb_id)
span = Span(self, ent_start, ent_end, label=entity_type_, kb_id=kb_id, span_id=ent_id)
ent_spans.append(span)
self.set_ents(ent_spans, default=SetEntsDefault.outside)
@ -796,6 +808,9 @@ cdef class Doc:
self.c[i].ent_iob = 1
self.c[i].ent_type = span.label
self.c[i].ent_kb_id = span.kb_id
# for backwards compatibility in v3, only set ent_id from
# span.id if it's set, otherwise don't override
self.c[i].ent_id = span.id if span.id else self.c[i].ent_id
for span in blocked:
for i in range(span.start, span.end):
self.c[i].ent_iob = 3
@ -1175,6 +1190,7 @@ cdef class Doc:
span.end_char + char_offset,
span.label,
span.kb_id,
span.id,
span.text, # included as a check
))
char_offset += len(doc.text)
@ -1210,8 +1226,9 @@ cdef class Doc:
span_tuple[1],
label=span_tuple[2],
kb_id=span_tuple[3],
span_id=span_tuple[4],
)
text = span_tuple[4]
text = span_tuple[5]
if span is not None and span.text == text:
concat_doc.spans[key].append(span)
else:
@ -1462,6 +1479,139 @@ cdef class Doc:
remove_label_if_necessary(attributes[i])
retokenizer.merge(span, attributes[i])
def from_json(self, doc_json, *, validate=False):
"""Convert a JSON document generated by Doc.to_json() to a Doc.
doc_json (Dict): JSON representation of doc object to load.
validate (bool): Whether to validate `doc_json` against the expected schema.
Defaults to False.
RETURNS (Doc): A doc instance corresponding to the specified JSON representation.
"""
if validate:
schema_validation_message = schemas.validate(schemas.DocJSONSchema, doc_json)
if schema_validation_message:
raise ValueError(Errors.E1038.format(message=schema_validation_message))
### Token-level properties ###
words = []
token_attrs_ids = (POS, HEAD, DEP, LEMMA, TAG, MORPH)
# Map annotation type IDs to their string equivalents.
token_attrs = {t: self.vocab.strings[t].lower() for t in token_attrs_ids}
token_annotations = {}
# Gather token-level properties.
for token_json in doc_json["tokens"]:
words.append(doc_json["text"][token_json["start"]:token_json["end"]])
for attr, attr_json in token_attrs.items():
if attr_json in token_json:
if token_json["id"] == 0 and attr not in token_annotations:
token_annotations[attr] = []
elif attr not in token_annotations:
raise ValueError(Errors.E1040.format(partial_attrs=attr))
token_annotations[attr].append(token_json[attr_json])
# Initialize doc instance.
start = 0
cdef const LexemeC* lex
cdef bint has_space
reconstructed_words, spaces = get_words_and_spaces(words, doc_json["text"])
assert words == reconstructed_words
for word, has_space in zip(words, spaces):
lex = self.vocab.get(self.mem, word)
self.push_back(lex, has_space)
# Set remaining token-level attributes via Doc.from_array().
if HEAD in token_annotations:
token_annotations[HEAD] = [
head - i for i, head in enumerate(token_annotations[HEAD])
]
if DEP in token_annotations and HEAD not in token_annotations:
token_annotations[HEAD] = [0] * len(token_annotations[DEP])
if HEAD in token_annotations and DEP not in token_annotations:
raise ValueError(Errors.E1017)
if POS in token_annotations:
for pp in set(token_annotations[POS]):
if pp not in parts_of_speech.IDS:
raise ValueError(Errors.E1021.format(pp=pp))
# Collect token attributes, assert all tokens have exactly the same set of attributes.
attrs = []
partial_attrs: Set[str] = set()
for attr in token_attrs.keys():
if attr in token_annotations:
if len(token_annotations[attr]) != len(words):
partial_attrs.add(token_attrs[attr])
attrs.append(attr)
if len(partial_attrs):
raise ValueError(Errors.E1040.format(partial_attrs=partial_attrs))
# If there are any other annotations, set them.
if attrs:
array = self.to_array(attrs)
if array.ndim == 1:
array = numpy.reshape(array, (array.size, 1))
j = 0
for j, (attr, annot) in enumerate(token_annotations.items()):
if attr is HEAD:
annot = numpy.array(annot, dtype=numpy.int32).astype(numpy.uint64)
for i in range(len(words)):
array[i, j] = annot[i]
elif attr is MORPH:
for i in range(len(words)):
array[i, j] = self.vocab.morphology.add(annot[i])
else:
for i in range(len(words)):
array[i, j] = self.vocab.strings.add(annot[i])
self.from_array(attrs, array)
### Span/document properties ###
# Complement other document-level properties (cats, spans, ents).
self.cats = doc_json.get("cats", {})
# Set sentence boundaries, if dependency parser not available but sentences are specified in JSON.
if not self.has_annotation("DEP"):
for sent in doc_json.get("sents", {}):
char_span = self.char_span(sent["start"], sent["end"])
if char_span is None:
raise ValueError(Errors.E1039.format(obj="sentence", start=sent["start"], end=sent["end"]))
char_span[0].is_sent_start = True
for token in char_span[1:]:
token.is_sent_start = False
for span_group in doc_json.get("spans", {}):
spans = []
for span in doc_json["spans"][span_group]:
char_span = self.char_span(span["start"], span["end"], span["label"], span["kb_id"])
if char_span is None:
raise ValueError(Errors.E1039.format(obj="span", start=span["start"], end=span["end"]))
spans.append(char_span)
self.spans[span_group] = spans
if "ents" in doc_json:
ents = []
for ent in doc_json["ents"]:
char_span = self.char_span(ent["start"], ent["end"], ent["label"])
if char_span is None:
raise ValueError(Errors.E1039.format(obj="entity"), start=ent["start"], end=ent["end"])
ents.append(char_span)
self.ents = ents
# Add custom attributes. Note that only Doc extensions are currently considered, Token and Span extensions are
# not yet supported.
for attr in doc_json.get("_", {}):
if not Doc.has_extension(attr):
Doc.set_extension(attr)
self._.set(attr, doc_json["_"][attr])
return self
def to_json(self, underscore=None):
"""Convert a Doc to JSON.
@ -1472,12 +1622,10 @@ cdef class Doc:
"""
data = {"text": self.text}
if self.has_annotation("ENT_IOB"):
data["ents"] = [{"start": ent.start_char, "end": ent.end_char,
"label": ent.label_} for ent in self.ents]
data["ents"] = [{"start": ent.start_char, "end": ent.end_char, "label": ent.label_} for ent in self.ents]
if self.has_annotation("SENT_START"):
sents = list(self.sents)
data["sents"] = [{"start": sent.start_char, "end": sent.end_char}
for sent in sents]
data["sents"] = [{"start": sent.start_char, "end": sent.end_char} for sent in sents]
if self.cats:
data["cats"] = self.cats
data["tokens"] = []
@ -1503,7 +1651,9 @@ cdef class Doc:
for span_group in self.spans:
data["spans"][span_group] = []
for span in self.spans[span_group]:
span_data = {"start": span.start_char, "end": span.end_char, "label": span.label_, "kb_id": span.kb_id_}
span_data = {
"start": span.start_char, "end": span.end_char, "label": span.label_, "kb_id": span.kb_id_
}
data["spans"][span_group].append(span_data)
if underscore:
@ -1732,18 +1882,17 @@ cdef int [:,:] _get_lca_matrix(Doc doc, int start, int end):
def pickle_doc(doc):
bytes_data = doc.to_bytes(exclude=["vocab", "user_data", "user_hooks"])
hooks_and_data = (doc.user_data, doc.user_hooks, doc.user_span_hooks,
doc.user_token_hooks, doc._context)
doc.user_token_hooks)
return (unpickle_doc, (doc.vocab, srsly.pickle_dumps(hooks_and_data), bytes_data))
def unpickle_doc(vocab, hooks_and_data, bytes_data):
user_data, doc_hooks, span_hooks, token_hooks, _context = srsly.pickle_loads(hooks_and_data)
user_data, doc_hooks, span_hooks, token_hooks = srsly.pickle_loads(hooks_and_data)
doc = Doc(vocab, user_data=user_data).from_bytes(bytes_data, exclude=["user_data"])
doc.user_hooks.update(doc_hooks)
doc.user_span_hooks.update(span_hooks)
doc.user_token_hooks.update(token_hooks)
doc._context = _context
return doc
@ -1767,16 +1916,18 @@ def fix_attributes(doc, attributes):
def get_entity_info(ent_info):
ent_kb_id = 0
ent_id = 0
if isinstance(ent_info, Span):
ent_type = ent_info.label
ent_kb_id = ent_info.kb_id
start = ent_info.start
end = ent_info.end
ent_id = ent_info.id
elif len(ent_info) == 3:
ent_type, start, end = ent_info
ent_kb_id = 0
elif len(ent_info) == 4:
ent_type, ent_kb_id, start, end = ent_info
else:
ent_id, ent_kb_id, ent_type, start, end = ent_info
return ent_type, ent_kb_id, start, end
return ent_type, ent_kb_id, start, end, ent_id

View File

@ -48,7 +48,8 @@ class Span:
label: Union[str, int] = ...,
vector: Optional[Floats1d] = ...,
vector_norm: Optional[float] = ...,
kb_id: Optional[int] = ...,
kb_id: Union[str, int] = ...,
span_id: Union[str, int] = ...,
) -> None: ...
def __richcmp__(self, other: Span, op: int) -> bool: ...
def __hash__(self) -> int: ...

View File

@ -80,17 +80,20 @@ cdef class Span:
return Underscore.span_extensions.pop(name)
def __cinit__(self, Doc doc, int start, int end, label=0, vector=None,
vector_norm=None, kb_id=0):
vector_norm=None, kb_id=0, span_id=0):
"""Create a `Span` object from the slice `doc[start : end]`.
doc (Doc): The parent document.
start (int): The index of the first token of the span.
end (int): The index of the first token after the span.
label (int or str): A label to attach to the Span, e.g. for named entities.
label (Union[int, str]): A label to attach to the Span, e.g. for named
entities.
vector (ndarray[ndim=1, dtype='float32']): A meaning representation
of the span.
vector_norm (float): The L2 norm of the span's vector representation.
kb_id (uint64): An identifier from a Knowledge Base to capture the meaning of a named entity.
kb_id (Union[int, str]): An identifier from a Knowledge Base to capture
the meaning of a named entity.
span_id (Union[int, str]): An identifier to associate with the span.
DOCS: https://spacy.io/api/span#init
"""
@ -101,6 +104,8 @@ cdef class Span:
label = doc.vocab.strings.add(label)
if isinstance(kb_id, str):
kb_id = doc.vocab.strings.add(kb_id)
if isinstance(span_id, str):
span_id = doc.vocab.strings.add(span_id)
if label not in doc.vocab.strings:
raise ValueError(Errors.E084.format(label=label))
@ -112,6 +117,7 @@ cdef class Span:
self.c = SpanC(
label=label,
kb_id=kb_id,
id=span_id,
start=start,
end=end,
start_char=start_char,
@ -126,8 +132,8 @@ cdef class Span:
return False
else:
return True
self_tuple = (self.c.start_char, self.c.end_char, self.c.label, self.c.kb_id, self.doc)
other_tuple = (other.c.start_char, other.c.end_char, other.c.label, other.c.kb_id, other.doc)
self_tuple = (self.c.start_char, self.c.end_char, self.c.label, self.c.kb_id, self.id, self.doc)
other_tuple = (other.c.start_char, other.c.end_char, other.c.label, other.c.kb_id, other.id, other.doc)
# <
if op == 0:
return self_tuple < other_tuple
@ -148,7 +154,7 @@ cdef class Span:
return self_tuple >= other_tuple
def __hash__(self):
return hash((self.doc, self.c.start_char, self.c.end_char, self.c.label, self.c.kb_id))
return hash((self.doc, self.c.start_char, self.c.end_char, self.c.label, self.c.kb_id, self.c.id))
def __len__(self):
"""Get the number of tokens in the span.
@ -293,7 +299,7 @@ cdef class Span:
for ancestor in ancestors:
ancestor_i = ancestor.i - self.c.start
if ancestor_i in range(length):
array[i, head_col] = ancestor_i - i
array[i, head_col] = numpy.int32(ancestor_i - i).astype(numpy.uint64)
# if there is no appropriate ancestor, define a new artificial root
value = array[i, head_col]
@ -301,7 +307,7 @@ cdef class Span:
new_root = old_to_new_root.get(ancestor_i, None)
if new_root is not None:
# take the same artificial root as a previous token from the same sentence
array[i, head_col] = new_root - i
array[i, head_col] = numpy.int32(new_root - i).astype(numpy.uint64)
else:
# set this token as the new artificial root
array[i, head_col] = 0
@ -632,7 +638,7 @@ cdef class Span:
else:
return self.doc[root]
def char_span(self, int start_idx, int end_idx, label=0, kb_id=0, vector=None):
def char_span(self, int start_idx, int end_idx, label=0, kb_id=0, vector=None, id=0):
"""Create a `Span` object from the slice `span.text[start : end]`.
start (int): The index of the first character of the span.
@ -774,6 +780,13 @@ cdef class Span:
def __set__(self, attr_t kb_id):
self.c.kb_id = kb_id
property id:
def __get__(self):
return self.c.id
def __set__(self, attr_t id):
self.c.id = id
property ent_id:
"""RETURNS (uint64): The entity ID."""
def __get__(self):
@ -812,13 +825,21 @@ cdef class Span:
self.label = self.doc.vocab.strings.add(label_)
property kb_id_:
"""RETURNS (str): The named entity's KB ID."""
"""RETURNS (str): The span's KB ID."""
def __get__(self):
return self.doc.vocab.strings[self.kb_id]
def __set__(self, str kb_id_):
self.kb_id = self.doc.vocab.strings.add(kb_id_)
property id_:
"""RETURNS (str): The span's ID."""
def __get__(self):
return self.doc.vocab.strings[self.id]
def __set__(self, str id_):
self.id = self.doc.vocab.strings.add(id_)
cdef int _count_words_to_root(const TokenC* token, int sent_length) except -1:
# Don't allow spaces to be the root, if there are

View File

@ -24,3 +24,4 @@ class SpanGroup:
def __getitem__(self, i: int) -> Span: ...
def to_bytes(self) -> bytes: ...
def from_bytes(self, bytes_data: bytes) -> SpanGroup: ...
def copy(self) -> SpanGroup: ...

View File

@ -198,7 +198,7 @@ cdef class Example:
def get_aligned_sent_starts(self):
"""Get list of SENT_START attributes aligned to the predicted tokenization.
If the reference has not sentence starts, return a list of None values.
If the reference does not have sentence starts, return a list of None values.
"""
if self.y.has_annotation("SENT_START"):
align = self.alignment.y2x
@ -353,26 +353,27 @@ def _annot2array(vocab, tok_annot, doc_annot):
if key not in IDS:
raise ValueError(Errors.E974.format(obj="token", key=key))
elif key in ["ORTH", "SPACY"]:
pass
continue
elif key == "HEAD":
attrs.append(key)
values.append([h-i if h is not None else 0 for i, h in enumerate(value)])
row = [h-i if h is not None else 0 for i, h in enumerate(value)]
elif key == "DEP":
attrs.append(key)
values.append([vocab.strings.add(h) if h is not None else MISSING_DEP for h in value])
row = [vocab.strings.add(h) if h is not None else MISSING_DEP for h in value]
elif key == "SENT_START":
attrs.append(key)
values.append([to_ternary_int(v) for v in value])
row = [to_ternary_int(v) for v in value]
elif key == "MORPH":
attrs.append(key)
values.append([vocab.morphology.add(v) for v in value])
row = [vocab.morphology.add(v) for v in value]
else:
attrs.append(key)
if not all(isinstance(v, str) for v in value):
types = set([type(v) for v in value])
raise TypeError(Errors.E969.format(field=key, types=types)) from None
values.append([vocab.strings.add(v) for v in value])
array = numpy.asarray(values, dtype="uint64")
row = [vocab.strings.add(v) for v in value]
values.append([numpy.array(v, dtype=numpy.int32).astype(numpy.uint64) if v < 0 else v for v in row])
array = numpy.array(values, dtype=numpy.uint64)
return attrs, array.T

View File

@ -337,3 +337,5 @@ def ensure_shape(vectors_loc):
# store all the results in a list in memory
lines2 = open_file(vectors_loc)
yield from lines2
lines2.close()
lines.close()

View File

@ -1241,6 +1241,15 @@ def filter_spans(spans: Iterable["Span"]) -> List["Span"]:
return result
def filter_chain_spans(*spans: Iterable["Span"]) -> List["Span"]:
return filter_spans(itertools.chain(*spans))
@registry.misc("spacy.first_longest_spans_filter.v1")
def make_first_longest_spans_filter():
return filter_chain_spans
def to_bytes(getters: Dict[str, Callable[[], bytes]], exclude: Iterable[str]) -> bytes:
return srsly.msgpack_dumps(to_dict(getters, exclude))

View File

@ -1335,7 +1335,7 @@ $ python -m spacy project run [subcommand] [project_dir] [--force] [--dry]
| `subcommand` | Name of the command or workflow to run. ~~str (positional)~~ |
| `project_dir` | Path to project directory. Defaults to current working directory. ~~Path (positional)~~ |
| `--force`, `-F` | Force re-running steps, even if nothing changed. ~~bool (flag)~~ |
| `--dry`, `-D` |  Perform a dry run and don't execute scripts. ~~bool (flag)~~ |
| `--dry`, `-D` | Perform a dry run and don't execute scripts. ~~bool (flag)~~ |
| `--help`, `-h` | Show help message and available arguments. ~~bool (flag)~~ |
| **EXECUTES** | The command defined in the `project.yml`. |
@ -1454,10 +1454,10 @@ For more examples, see the templates in our
</Accordion>
| Name | Description |
| -------------------- | ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
| ------------------- | ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
| `project_dir` | Path to project directory. Defaults to current working directory. ~~Path (positional)~~ |
| `--output`, `-o` | Path to output file or `-` for stdout (default). If a file is specified and it already exists and contains auto-generated docs, only the auto-generated docs section is replaced. ~~Path (positional)~~ |
|  `--no-emoji`, `-NE` | Don't use emoji in the titles. ~~bool (flag)~~ |
| `--no-emoji`, `-NE` | Don't use emoji in the titles. ~~bool (flag)~~ |
| **CREATES** | The Markdown-formatted project documentation. |
### project dvc {#project-dvc tag="command"}
@ -1497,7 +1497,7 @@ $ python -m spacy project dvc [project_dir] [workflow] [--force] [--verbose]
| `project_dir` | Path to project directory. Defaults to current working directory. ~~Path (positional)~~ |
| `workflow` | Name of workflow defined in `project.yml`. Defaults to first workflow if not set. ~~Optional[str] \(option)~~ |
| `--force`, `-F` | Force-updating config file. ~~bool (flag)~~ |
| `--verbose`, `-V` |  Print more output generated by DVC. ~~bool (flag)~~ |
| `--verbose`, `-V` | Print more output generated by DVC. ~~bool (flag)~~ |
| `--help`, `-h` | Show help message and available arguments. ~~bool (flag)~~ |
| **CREATES** | A `dvc.yaml` file in the project directory, based on the steps defined in the given workflow. |
@ -1588,5 +1588,5 @@ $ python -m spacy huggingface-hub push [whl_path] [--org] [--msg] [--local-repo]
| `--org`, `-o` | Optional name of organization to which the pipeline should be uploaded. ~~str (option)~~ |
| `--msg`, `-m` | Commit message to use for update. Defaults to `"Update spaCy pipeline"`. ~~str (option)~~ |
| `--local-repo`, `-l` | Local path to the model repository (will be created if it doesn't exist). Defaults to `hub` in the current working directory. ~~Path (option)~~ |
| `--verbose`, `-V` | Output additional info for debugging, e.g. the full generated hub metadata. ~~bool (flag)~~  |
| `--verbose`, `-V` | Output additional info for debugging, e.g. the full generated hub metadata. ~~bool (flag)~~ |
| **UPLOADS** | The pipeline to the hub. |

View File

@ -38,9 +38,9 @@ streaming.
> ```
| Name | Description |
| --------------- | ---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
| -------------- | ---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
| `path` | The directory or filename to read from. Expects data in spaCy's binary [`.spacy` format](/api/data-formats#binary-training). ~~Path~~ |
|  `gold_preproc` | Whether to set up the Example object with gold-standard sentences and tokens for the predictions. See [`Corpus`](/api/corpus#init) for details. ~~bool~~ |
| `gold_preproc` | Whether to set up the Example object with gold-standard sentences and tokens for the predictions. See [`Corpus`](/api/corpus#init) for details. ~~bool~~ |
| `max_length` | Maximum document length. Longer documents will be split into sentences, if sentence boundaries are available. Defaults to `0` for no limit. ~~int~~ |
| `limit` | Limit corpus to a subset of examples, e.g. for debugging. Defaults to `0` for no limit. ~~int~~ |
| `augmenter` | Apply some simply data augmentation, where we replace tokens with variations. This is especially useful for punctuation and case replacement, to help generalize beyond corpora that don't have smart-quotes, or only have smart quotes, etc. Defaults to `None`. ~~Optional[Callable]~~ |
@ -72,10 +72,10 @@ train/test skew.
> ```
| Name | Description |
| --------------- | --------------------------------------------------------------------------------------------------------------------------------------------------- |
| -------------- | --------------------------------------------------------------------------------------------------------------------------------------------------- |
| `path` | The directory or filename to read from. ~~Union[str, Path]~~ |
| _keyword-only_ | |
|  `gold_preproc` | Whether to set up the Example object with gold-standard sentences and tokens for the predictions. Defaults to `False`. ~~bool~~ |
| `gold_preproc` | Whether to set up the Example object with gold-standard sentences and tokens for the predictions. Defaults to `False`. ~~bool~~ |
| `max_length` | Maximum document length. Longer documents will be split into sentences, if sentence boundaries are available. Defaults to `0` for no limit. ~~int~~ |
| `limit` | Limit corpus to a subset of examples, e.g. for debugging. Defaults to `0` for no limit. ~~int~~ |
| `augmenter` | Optional data augmentation callback. ~~Callable[[Language, Example], Iterable[Example]]~~ |

View File

@ -481,6 +481,45 @@ Deserialize, i.e. import the document contents from a binary string.
| `exclude` | String names of [serialization fields](#serialization-fields) to exclude. ~~Iterable[str]~~ |
| **RETURNS** | The `Doc` object. ~~Doc~~ |
## Doc.to_json {#to_json tag="method"}
Serializes a document to JSON. Note that this is format differs from the
deprecated [`JSON training format`](/api/data-formats#json-input).
> #### Example
>
> ```python
> doc = nlp("All we have to decide is what to do with the time that is given us.")
> assert doc.to_json()["text"] == doc.text
> ```
| Name | Description |
| ------------ | -------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
| `underscore` | Optional list of string names of custom `Doc` attributes. Attribute values need to be JSON-serializable. Values will be added to an `"_"` key in the data, e.g. `"_": {"foo": "bar"}`. ~~Optional[List[str]]~~ |
| **RETURNS** | The data in JSON format. ~~Dict[str, Any]~~ |
## Doc.from_json {#from_json tag="method" new="3.3.1"}
Deserializes a document from JSON, i.e. generates a document from the provided
JSON data as generated by [`Doc.to_json()`](/api/doc#to_json).
> #### Example
>
> ```python
> from spacy.tokens import Doc
> doc = nlp("All we have to decide is what to do with the time that is given us.")
> doc_json = doc.to_json()
> deserialized_doc = Doc(nlp.vocab).from_json(doc_json)
> assert deserialized_doc.text == doc.text == doc_json["text"]
> ```
| Name | Description |
| -------------- | -------------------------------------------------------------------------------------------------------------------- |
| `doc_json` | The Doc data in JSON format from [`Doc.to_json`](#to_json). ~~Dict[str, Any]~~ |
| _keyword-only_ | |
| `validate` | Whether to validate the JSON input against the expected schema for detailed debugging. Defaults to `False`. ~~bool~~ |
| **RETURNS** | A `Doc` corresponding to the provided JSON. ~~Doc~~ |
## Doc.retokenize {#retokenize tag="contextmanager" new="2.1"}
Context manager to handle retokenization of the `Doc`. Modifications to the

View File

@ -290,7 +290,7 @@ Load the pipe from a bytestring. Modifies the object in place and returns it.
>
> ```python
> ruler_bytes = ruler.to_bytes()
> ruler = nlp.add_pipe("enity_ruler")
> ruler = nlp.add_pipe("entity_ruler")
> ruler.from_bytes(ruler_bytes)
> ```

View File

@ -1123,7 +1123,7 @@ instance and factory instance.
| `factory` | The name of the registered component factory. ~~str~~ |
| `default_config` | The default config, describing the default values of the factory arguments. ~~Dict[str, Any]~~ |
| `assigns` | `Doc` or `Token` attributes assigned by this component, e.g. `["token.ent_id"]`. Used for [pipe analysis](/usage/processing-pipelines#analysis). ~~Iterable[str]~~ |
| `requires` | `Doc` or `Token` attributes required by this component, e.g. `["token.ent_id"]`. Used for [pipe analysis](/usage/processing-pipelines#analysis). ~~Iterable[str]~~  |
| `retokenizes` | Whether the component changes tokenization. Used for [pipe analysis](/usage/processing-pipelines#analysis). ~~bool~~  |
| `requires` | `Doc` or `Token` attributes required by this component, e.g. `["token.ent_id"]`. Used for [pipe analysis](/usage/processing-pipelines#analysis). ~~Iterable[str]~~ |
| `retokenizes` | Whether the component changes tokenization. Used for [pipe analysis](/usage/processing-pipelines#analysis). ~~bool~~ |
| `default_score_weights` | The scores to report during training, and their default weight towards the final score used to select the best model. Weights should sum to `1.0` per component and will be combined and normalized for the whole pipeline. If a weight is set to `None`, the score will not be logged or weighted. ~~Dict[str, Optional[float]]~~ |
| `scores` | All scores set by the components if it's trainable, e.g. `["ents_f", "ents_r", "ents_p"]`. Based on the `default_score_weights` and used for [pipe analysis](/usage/processing-pipelines#analysis). ~~Iterable[str]~~ |

View File

@ -30,20 +30,20 @@ pattern keys correspond to a number of
[`Token` attributes](/api/token#attributes). The supported attributes for
rule-based matching are:
| Attribute |  Description |
| ----------------------------------------------- | ------------------------------------------------------------------------------------------------------------------------- |
| Attribute | Description |
| ---------------------------------------------- | ------------------------------------------------------------------------------------------------------------------------- |
| `ORTH` | The exact verbatim text of a token. ~~str~~ |
| `TEXT` <Tag variant="new">2.1</Tag> | The exact verbatim text of a token. ~~str~~ |
| `NORM` | The normalized form of the token text. ~~str~~ |
| `LOWER` | The lowercase form of the token text. ~~str~~ |
|  `LENGTH` | The length of the token text. ~~int~~ |
|  `IS_ALPHA`, `IS_ASCII`, `IS_DIGIT` | Token text consists of alphabetic characters, ASCII characters, digits. ~~bool~~ |
|  `IS_LOWER`, `IS_UPPER`, `IS_TITLE` | Token text is in lowercase, uppercase, titlecase. ~~bool~~ |
|  `IS_PUNCT`, `IS_SPACE`, `IS_STOP` | Token is punctuation, whitespace, stop word. ~~bool~~ |
|  `IS_SENT_START` | Token is start of sentence. ~~bool~~ |
|  `LIKE_NUM`, `LIKE_URL`, `LIKE_EMAIL` | Token text resembles a number, URL, email. ~~bool~~ |
| `LENGTH` | The length of the token text. ~~int~~ |
| `IS_ALPHA`, `IS_ASCII`, `IS_DIGIT` | Token text consists of alphabetic characters, ASCII characters, digits. ~~bool~~ |
| `IS_LOWER`, `IS_UPPER`, `IS_TITLE` | Token text is in lowercase, uppercase, titlecase. ~~bool~~ |
| `IS_PUNCT`, `IS_SPACE`, `IS_STOP` | Token is punctuation, whitespace, stop word. ~~bool~~ |
| `IS_SENT_START` | Token is start of sentence. ~~bool~~ |
| `LIKE_NUM`, `LIKE_URL`, `LIKE_EMAIL` | Token text resembles a number, URL, email. ~~bool~~ |
| `SPACY` | Token has a trailing space. ~~bool~~ |
|  `POS`, `TAG`, `MORPH`, `DEP`, `LEMMA`, `SHAPE` | The token's simple and extended part-of-speech tag, morphological analysis, dependency label, lemma, shape. ~~str~~ |
| `POS`, `TAG`, `MORPH`, `DEP`, `LEMMA`, `SHAPE` | The token's simple and extended part-of-speech tag, morphological analysis, dependency label, lemma, shape. ~~str~~ |
| `ENT_TYPE` | The token's entity label. ~~str~~ |
| `ENT_IOB` | The IOB part of the token's entity tag. ~~str~~ |
| `ENT_ID` | The token's entity ID (`ent_id`). ~~str~~ |

View File

@ -7,6 +7,7 @@ menu:
- ['merge_entities', 'merge_entities']
- ['merge_subtokens', 'merge_subtokens']
- ['token_splitter', 'token_splitter']
- ['doc_cleaner', 'doc_cleaner']
---
## merge_noun_chunks {#merge_noun_chunks tag="function"}

View File

@ -27,6 +27,7 @@ Create a `Span` object from the slice `doc[start : end]`.
| `vector` | A meaning representation of the span. ~~numpy.ndarray[ndim=1, dtype=float32]~~ |
| `vector_norm` | The L2 norm of the document's vector representation. ~~float~~ |
| `kb_id` | A knowledge base ID to attach to the span, e.g. for named entities. ~~Union[str, int]~~ |
| `span_id` | An ID to associate with the span. ~~Union[str, int]~~ |
## Span.\_\_getitem\_\_ {#getitem tag="method"}
@ -560,7 +561,9 @@ overlaps with will be returned.
| `lemma_` | The span's lemma. Equivalent to `"".join(token.text_with_ws for token in span)`. ~~str~~ |
| `kb_id` | The hash value of the knowledge base ID referred to by the span. ~~int~~ |
| `kb_id_` | The knowledge base ID referred to by the span. ~~str~~ |
| `ent_id` | The hash value of the named entity the token is an instance of. ~~int~~ |
| `ent_id_` | The string ID of the named entity the token is an instance of. ~~str~~ |
| `ent_id` | The hash value of the named entity the root token is an instance of. ~~int~~ |
| `ent_id_` | The string ID of the named entity the root token is an instance of. ~~str~~ |
| `id` | The hash value of the span's ID. ~~int~~ |
| `id_` | The span's ID. ~~str~~ |
| `sentiment` | A scalar value indicating the positivity or negativity of the span. ~~float~~ |
| `_` | User space for adding custom [attribute extensions](/usage/processing-pipelines#custom-components-attributes). ~~Underscore~~ |

View File

@ -0,0 +1,351 @@
---
title: SpanRuler
tag: class
source: spacy/pipeline/span_ruler.py
new: 3.3
teaser: 'Pipeline component for rule-based span and named entity recognition'
api_string_name: span_ruler
api_trainable: false
---
The span ruler lets you add spans to [`Doc.spans`](/api/doc#spans) and/or
[`Doc.ents`](/api/doc#ents) using token-based rules or exact phrase matches. For
usage examples, see the docs on
[rule-based span matching](/usage/rule-based-matching#spanruler).
## Assigned Attributes {#assigned-attributes}
Matches will be saved to `Doc.spans[spans_key]` as a
[`SpanGroup`](/api/spangroup) and/or to `Doc.ents`, where the annotation is
saved in the `Token.ent_type` and `Token.ent_iob` fields.
| Location | Value |
| ---------------------- | ----------------------------------------------------------------- |
| `Doc.spans[spans_key]` | The annotated spans. ~~SpanGroup~~ |
| `Doc.ents` | The annotated spans. ~~Tuple[Span]~~ |
| `Token.ent_iob` | An enum encoding of the IOB part of the named entity tag. ~~int~~ |
| `Token.ent_iob_` | The IOB part of the named entity tag. ~~str~~ |
| `Token.ent_type` | The label part of the named entity tag (hash). ~~int~~ |
| `Token.ent_type_` | The label part of the named entity tag. ~~str~~ |
## Config and implementation {#config}
The default config is defined by the pipeline component factory and describes
how the component should be configured. You can override its settings via the
`config` argument on [`nlp.add_pipe`](/api/language#add_pipe) or in your
[`config.cfg`](/usage/training#config).
> #### Example
>
> ```python
> config = {
> "spans_key": "my_spans",
> "validate": True,
> "overwrite": False,
> }
> nlp.add_pipe("span_ruler", config=config)
> ```
| Setting | Description |
| --------------------- | --------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
| `spans_key` | The spans key to save the spans under. If `None`, no spans are saved. Defaults to `"ruler"`. ~~Optional[str]~~ |
| `spans_filter` | The optional method to filter spans before they are assigned to doc.spans. Defaults to `None`. ~~Optional[Callable[[Iterable[Span], Iterable[Span]], List[Span]]]~~ |
| `annotate_ents` | Whether to save spans to doc.ents. Defaults to `False`. ~~bool~~ |
| `ents_filter` | The method to filter spans before they are assigned to doc.ents. Defaults to `util.filter_chain_spans`. ~~Callable[[Iterable[Span], Iterable[Span]], List[Span]]~~ |
| `phrase_matcher_attr` | Token attribute to match on, passed to the internal PhraseMatcher as `attr`. Defaults to `None`. ~~Optional[Union[int, str]]~~ |
| `validate` | Whether patterns should be validated, passed to Matcher and PhraseMatcher as `validate`. Defaults to `False`. ~~bool~~ |
| `overwrite` | Whether to remove any existing spans under `Doc.spans[spans key]` if `spans_key` is set, or to remove any ents under `Doc.ents` if `annotate_ents` is set. Defaults to `True`. ~~bool~~ |
| `scorer` | The scoring method. Defaults to [`Scorer.score_spans`](/api/scorer#score_spans) for `Doc.spans[spans_key]` with overlapping spans allowed. ~~Optional[Callable]~~ |
```python
%%GITHUB_SPACY/spacy/pipeline/span_ruler.py
```
## SpanRuler.\_\_init\_\_ {#init tag="method"}
Initialize the span ruler. If patterns are supplied here, they need to be a list
of dictionaries with a `"label"` and `"pattern"` key. A pattern can either be a
token pattern (list) or a phrase pattern (string). For example:
`{"label": "ORG", "pattern": "Apple"}`.
> #### Example
>
> ```python
> # Construction via add_pipe
> ruler = nlp.add_pipe("span_ruler")
>
> # Construction from class
> from spacy.pipeline import SpanRuler
> ruler = SpanRuler(nlp, overwrite=True)
> ```
| Name | Description |
| --------------------- | ----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
| `nlp` | The shared nlp object to pass the vocab to the matchers and process phrase patterns. ~~Language~~ |
| `name` | Instance name of the current pipeline component. Typically passed in automatically from the factory when the component is added. Used to disable the current span ruler while creating phrase patterns with the nlp object. ~~str~~ |
| _keyword-only_ | |
| `spans_key` | The spans key to save the spans under. If `None`, no spans are saved. Defaults to `"ruler"`. ~~Optional[str]~~ |
| `spans_filter` | The optional method to filter spans before they are assigned to doc.spans. Defaults to `None`. ~~Optional[Callable[[Iterable[Span], Iterable[Span]], List[Span]]]~~ |
| `annotate_ents` | Whether to save spans to doc.ents. Defaults to `False`. ~~bool~~ |
| `ents_filter` | The method to filter spans before they are assigned to doc.ents. Defaults to `util.filter_chain_spans`. ~~Callable[[Iterable[Span], Iterable[Span]], List[Span]]~~ |
| `phrase_matcher_attr` | Token attribute to match on, passed to the internal PhraseMatcher as `attr`. Defaults to `None`. ~~Optional[Union[int, str]]~~ |
| `validate` | Whether patterns should be validated, passed to Matcher and PhraseMatcher as `validate`. Defaults to `False`. ~~bool~~ |
| `overwrite` | Whether to remove any existing spans under `Doc.spans[spans key]` if `spans_key` is set, or to remove any ents under `Doc.ents` if `annotate_ents` is set. Defaults to `True`. ~~bool~~ |
| `scorer` | The scoring method. Defaults to [`Scorer.score_spans`](/api/scorer#score_spans) for `Doc.spans[spans_key]` with overlapping spans allowed. ~~Optional[Callable]~~ |
## SpanRuler.initialize {#initialize tag="method"}
Initialize the component with data and used before training to load in rules
from a [pattern file](/usage/rule-based-matching/#spanruler-files). This method
is typically called by [`Language.initialize`](/api/language#initialize) and
lets you customize arguments it receives via the
[`[initialize.components]`](/api/data-formats#config-initialize) block in the
config. Any existing patterns are removed on initialization.
> #### Example
>
> ```python
> span_ruler = nlp.add_pipe("span_ruler")
> span_ruler.initialize(lambda: [], nlp=nlp, patterns=patterns)
> ```
>
> ```ini
> ### config.cfg
> [initialize.components.span_ruler]
>
> [initialize.components.span_ruler.patterns]
> @readers = "srsly.read_jsonl.v1"
> path = "corpus/span_ruler_patterns.jsonl
> ```
| Name | Description |
| -------------- | ------------------------------------------------------------------------------------------------------------------------------------------------------------------ |
| `get_examples` | Function that returns gold-standard annotations in the form of [`Example`](/api/example) objects. Not used by the `SpanRuler`. ~~Callable[[], Iterable[Example]]~~ |
| _keyword-only_ | |
| `nlp` | The current `nlp` object. Defaults to `None`. ~~Optional[Language]~~ |
| `patterns` | The list of patterns. Defaults to `None`. ~~Optional[Sequence[Dict[str, Union[str, List[Dict[str, Any]]]]]]~~ |
## SpanRuler.\_\len\_\_ {#len tag="method"}
The number of all patterns added to the span ruler.
> #### Example
>
> ```python
> ruler = nlp.add_pipe("span_ruler")
> assert len(ruler) == 0
> ruler.add_patterns([{"label": "ORG", "pattern": "Apple"}])
> assert len(ruler) == 1
> ```
| Name | Description |
| ----------- | ------------------------------- |
| **RETURNS** | The number of patterns. ~~int~~ |
## SpanRuler.\_\_contains\_\_ {#contains tag="method"}
Whether a label is present in the patterns.
> #### Example
>
> ```python
> ruler = nlp.add_pipe("span_ruler")
> ruler.add_patterns([{"label": "ORG", "pattern": "Apple"}])
> assert "ORG" in ruler
> assert not "PERSON" in ruler
> ```
| Name | Description |
| ----------- | --------------------------------------------------- |
| `label` | The label to check. ~~str~~ |
| **RETURNS** | Whether the span ruler contains the label. ~~bool~~ |
## SpanRuler.\_\_call\_\_ {#call tag="method"}
Find matches in the `Doc` and add them to `doc.spans[span_key]` and/or
`doc.ents`. Typically, this happens automatically after the component has been
added to the pipeline using [`nlp.add_pipe`](/api/language#add_pipe). If the
span ruler was initialized with `overwrite=True`, existing spans and entities
will be removed.
> #### Example
>
> ```python
> ruler = nlp.add_pipe("span_ruler")
> ruler.add_patterns([{"label": "ORG", "pattern": "Apple"}])
>
> doc = nlp("A text about Apple.")
> spans = [(span.text, span.label_) for span in doc.spans["ruler"]]
> assert spans == [("Apple", "ORG")]
> ```
| Name | Description |
| ----------- | -------------------------------------------------------------------- |
| `doc` | The `Doc` object to process, e.g. the `Doc` in the pipeline. ~~Doc~~ |
| **RETURNS** | The modified `Doc` with added spans/entities. ~~Doc~~ |
## SpanRuler.add_patterns {#add_patterns tag="method"}
Add patterns to the span ruler. A pattern can either be a token pattern (list of
dicts) or a phrase pattern (string). For more details, see the usage guide on
[rule-based matching](/usage/rule-based-matching).
> #### Example
>
> ```python
> patterns = [
> {"label": "ORG", "pattern": "Apple"},
> {"label": "GPE", "pattern": [{"lower": "san"}, {"lower": "francisco"}]}
> ]
> ruler = nlp.add_pipe("span_ruler")
> ruler.add_patterns(patterns)
> ```
| Name | Description |
| ---------- | ---------------------------------------------------------------- |
| `patterns` | The patterns to add. ~~List[Dict[str, Union[str, List[dict]]]]~~ |
## SpanRuler.remove {#remove tag="method"}
Remove patterns by label from the span ruler. A `ValueError` is raised if the
label does not exist in any patterns.
> #### Example
>
> ```python
> patterns = [{"label": "ORG", "pattern": "Apple", "id": "apple"}]
> ruler = nlp.add_pipe("span_ruler")
> ruler.add_patterns(patterns)
> ruler.remove("ORG")
> ```
| Name | Description |
| ------- | -------------------------------------- |
| `label` | The label of the pattern rule. ~~str~~ |
## SpanRuler.remove_by_id {#remove_by_id tag="method"}
Remove patterns by ID from the span ruler. A `ValueError` is raised if the ID
does not exist in any patterns.
> #### Example
>
> ```python
> patterns = [{"label": "ORG", "pattern": "Apple", "id": "apple"}]
> ruler = nlp.add_pipe("span_ruler")
> ruler.add_patterns(patterns)
> ruler.remove_by_id("apple")
> ```
| Name | Description |
| ------------ | ----------------------------------- |
| `pattern_id` | The ID of the pattern rule. ~~str~~ |
## SpanRuler.clear {#clear tag="method"}
Remove all patterns the span ruler.
> #### Example
>
> ```python
> patterns = [{"label": "ORG", "pattern": "Apple", "id": "apple"}]
> ruler = nlp.add_pipe("span_ruler")
> ruler.add_patterns(patterns)
> ruler.clear()
> ```
## SpanRuler.to_disk {#to_disk tag="method"}
Save the span ruler patterns to a directory. The patterns will be saved as
newline-delimited JSON (JSONL).
> #### Example
>
> ```python
> ruler = nlp.add_pipe("span_ruler")
> ruler.to_disk("/path/to/span_ruler")
> ```
| Name | Description |
| ------ | ------------------------------------------------------------------------------------------------------------------------------------------ |
| `path` | A path to a directory, which will be created if it doesn't exist. Paths may be either strings or `Path`-like objects. ~~Union[str, Path]~~ |
## SpanRuler.from_disk {#from_disk tag="method"}
Load the span ruler from a path.
> #### Example
>
> ```python
> ruler = nlp.add_pipe("span_ruler")
> ruler.from_disk("/path/to/span_ruler")
> ```
| Name | Description |
| ----------- | ----------------------------------------------------------------------------------------------- |
| `path` | A path to a directory. Paths may be either strings or `Path`-like objects. ~~Union[str, Path]~~ |
| **RETURNS** | The modified `SpanRuler` object. ~~SpanRuler~~ |
## SpanRuler.to_bytes {#to_bytes tag="method"}
Serialize the span ruler to a bytestring.
> #### Example
>
> ```python
> ruler = nlp.add_pipe("span_ruler")
> ruler_bytes = ruler.to_bytes()
> ```
| Name | Description |
| ----------- | ---------------------------------- |
| **RETURNS** | The serialized patterns. ~~bytes~~ |
## SpanRuler.from_bytes {#from_bytes tag="method"}
Load the pipe from a bytestring. Modifies the object in place and returns it.
> #### Example
>
> ```python
> ruler_bytes = ruler.to_bytes()
> ruler = nlp.add_pipe("span_ruler")
> ruler.from_bytes(ruler_bytes)
> ```
| Name | Description |
| ------------ | ---------------------------------------------- |
| `bytes_data` | The bytestring to load. ~~bytes~~ |
| **RETURNS** | The modified `SpanRuler` object. ~~SpanRuler~~ |
## SpanRuler.labels {#labels tag="property"}
All labels present in the match patterns.
| Name | Description |
| ----------- | -------------------------------------- |
| **RETURNS** | The string labels. ~~Tuple[str, ...]~~ |
## SpanRuler.ids {#ids tag="property"}
All IDs present in the `id` property of the match patterns.
| Name | Description |
| ----------- | ----------------------------------- |
| **RETURNS** | The string IDs. ~~Tuple[str, ...]~~ |
## SpanRuler.patterns {#patterns tag="property"}
All patterns that were added to the span ruler.
| Name | Description |
| ----------- | ---------------------------------------------------------------------------------------- |
| **RETURNS** | The original patterns, one dictionary per pattern. ~~List[Dict[str, Union[str, dict]]]~~ |
## Attributes {#attributes}
| Name | Description |
| ---------------- | -------------------------------------------------------------------------------- |
| `key` | The spans key that spans are saved under. ~~Optional[str]~~ |
| `matcher` | The underlying matcher used to process token patterns. ~~Matcher~~ |
| `phrase_matcher` | The underlying phrase matcher used to process phrase patterns. ~~PhraseMatcher~~ |

View File

@ -161,7 +161,7 @@ Load state from a binary string.
> #### Example
>
> ```python
> fron spacy.strings import StringStore
> from spacy.strings import StringStore
> store_bytes = stringstore.to_bytes()
> new_store = StringStore().from_bytes(store_bytes)
> ```

View File

@ -239,7 +239,7 @@ browser. Will run a simple web server.
| Name | Description |
| --------- | ----------------------------------------------------------------------------------------------------------------------------------------------------------------- |
| `docs` | Document(s) or span(s) to visualize. ~~Union[Iterable[Union[Doc, Span]], Doc, Span]~~ |
| `style` | Visualization style, `"dep"` or `"ent"`. Defaults to `"dep"`. ~~str~~ |
| `style` | Visualization style, `"dep"`, `"ent"` or `"span"` <Tag variant="new">3.3</Tag>. Defaults to `"dep"`. ~~str~~ |
| `page` | Render markup as full HTML page. Defaults to `True`. ~~bool~~ |
| `minify` | Minify HTML markup. Defaults to `False`. ~~bool~~ |
| `options` | [Visualizer-specific options](#displacy_options), e.g. colors. ~~Dict[str, Any]~~ |
@ -264,7 +264,7 @@ Render a dependency parse tree or named entity visualization.
| Name | Description |
| ----------- | -------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
| `docs` | Document(s) or span(s) to visualize. ~~Union[Iterable[Union[Doc, Span, dict]], Doc, Span, dict]~~ |
| `style` | Visualization style, `"dep"` or `"ent"`. Defaults to `"dep"`. ~~str~~ |
| `style` | Visualization style,`"dep"`, `"ent"` or `"span"` <Tag variant="new">3.3</Tag>. Defaults to `"dep"`. ~~str~~ |
| `page` | Render markup as full HTML page. Defaults to `True`. ~~bool~~ |
| `minify` | Minify HTML markup. Defaults to `False`. ~~bool~~ |
| `options` | [Visualizer-specific options](#displacy_options), e.g. colors. ~~Dict[str, Any]~~ |
@ -320,7 +320,6 @@ If a setting is not present in the options, the default value will be used.
| `template` <Tag variant="new">2.2</Tag> | Optional template to overwrite the HTML used to render entity spans. Should be a format string and can use `{bg}`, `{text}` and `{label}`. See [`templates.py`](%%GITHUB_SPACY/spacy/displacy/templates.py) for examples. ~~Optional[str]~~ |
| `kb_url_template` <Tag variant="new">3.2.1</Tag> | Optional template to construct the KB url for the entity to link to. Expects a python f-string format with single field to fill in. ~~Optional[str]~~ |
#### Span Visualizer options {#displacy_options-span}
> #### Example
@ -331,20 +330,18 @@ If a setting is not present in the options, the default value will be used.
> ```
| Name | Description |
|-----------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|
| ----------------- | ----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
| `spans_key` | Which spans key to render spans from. Default is `"sc"`. ~~str~~ |
| `templates` | Dictionary containing the keys `"span"`, `"slice"`, and `"start"`. These dictate how the overall span, a span slice, and the starting token will be rendered. ~~Optional[Dict[str, str]~~ |
| `kb_url_template` | Optional template to construct the KB url for the entity to link to. Expects a python f-string format with single field to fill in ~~Optional[str]~~ |
| `colors` | Color overrides. Entity types should be mapped to color names or values. ~~Dict[str, str]~~ |
By default, displaCy comes with colors for all entity types used by [spaCy's
trained pipelines](/models) for both entity and span visualizer. If you're
using custom entity types, you can use the `colors` setting to add your own
colors for them. Your application or pipeline package can also expose a
[`spacy_displacy_colors` entry
point](/usage/saving-loading#entry-points-displacy) to add custom labels and
their colors automatically.
By default, displaCy comes with colors for all entity types used by
[spaCy's trained pipelines](/models) for both entity and span visualizer. If
you're using custom entity types, you can use the `colors` setting to add your
own colors for them. Your application or pipeline package can also expose a
[`spacy_displacy_colors` entry point](/usage/saving-loading#entry-points-displacy)
to add custom labels and their colors automatically.
By default, displaCy links to `#` for entities without a `kb_id` set on their
span. If you wish to link an entity to their URL then consider using the
@ -354,7 +351,6 @@ span. If you wish to link an entity to their URL then consider using the
should redirect you to their Wikidata page, in this case
`https://www.wikidata.org/wiki/Q95`.
## registry {#registry source="spacy/util.py" new="3"}
spaCy's function registry extends
@ -443,8 +439,8 @@ and the accuracy scores on the development set.
The built-in, default logger is the ConsoleLogger, which prints results to the
console in tabular format. The
[spacy-loggers](https://github.com/explosion/spacy-loggers) package, included as
a dependency of spaCy, enables other loggers, such as one that
sends results to a [Weights & Biases](https://www.wandb.com/) dashboard.
a dependency of spaCy, enables other loggers, such as one that sends results to
a [Weights & Biases](https://www.wandb.com/) dashboard.
Instead of using one of the built-in loggers, you can
[implement your own](/usage/training#custom-logging).
@ -584,9 +580,9 @@ the [`Corpus`](/api/corpus) class.
> ```
| Name | Description |
| --------------- | ---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
| -------------- | ---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
| `path` | The directory or filename to read from. Expects data in spaCy's binary [`.spacy` format](/api/data-formats#binary-training). ~~Union[str, Path]~~ |
|  `gold_preproc` | Whether to set up the Example object with gold-standard sentences and tokens for the predictions. See [`Corpus`](/api/corpus#init) for details. ~~bool~~ |
| `gold_preproc` | Whether to set up the Example object with gold-standard sentences and tokens for the predictions. See [`Corpus`](/api/corpus#init) for details. ~~bool~~ |
| `max_length` | Maximum document length. Longer documents will be split into sentences, if sentence boundaries are available. Defaults to `0` for no limit. ~~int~~ |
| `limit` | Limit corpus to a subset of examples, e.g. for debugging. Defaults to `0` for no limit. ~~int~~ |
| `augmenter` | Apply some simply data augmentation, where we replace tokens with variations. This is especially useful for punctuation and case replacement, to help generalize beyond corpora that don't have smart-quotes, or only have smart quotes, etc. Defaults to `None`. ~~Optional[Callable]~~ |

View File

@ -48,7 +48,7 @@ but do not change its part-of-speech. We say that a **lemma** (root form) is
**inflected** (modified/combined) with one or more **morphological features** to
create a surface form. Here are some examples:
| Context | Surface | Lemma | POS |  Morphological Features |
| Context | Surface | Lemma | POS | Morphological Features |
| ---------------------------------------- | ------- | ----- | ------ | ---------------------------------------- |
| I was reading the paper | reading | read | `VERB` | `VerbForm=Ger` |
| I don't watch the news, I read the paper | read | read | `VERB` | `VerbForm=Fin`, `Mood=Ind`, `Tense=Pres` |
@ -430,7 +430,7 @@ for token in doc:
print(token.text, token.pos_, token.dep_, token.head.text)
```
| Text |  POS | Dep | Head text |
| Text | POS | Dep | Head text |
| ----------------------------------- | ------ | ------- | --------- |
| Credit and mortgage account holders | `NOUN` | `nsubj` | submit |
| must | `VERB` | `aux` | submit |

View File

@ -6,6 +6,7 @@ menu:
- ['Phrase Matcher', 'phrasematcher']
- ['Dependency Matcher', 'dependencymatcher']
- ['Entity Ruler', 'entityruler']
- ['Span Ruler', 'spanruler']
- ['Models & Rules', 'models-rules']
---
@ -158,20 +159,20 @@ The available token pattern keys correspond to a number of
[`Token` attributes](/api/token#attributes). The supported attributes for
rule-based matching are:
| Attribute |  Description |
| ----------------------------------------------- | --------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
| Attribute | Description |
| ---------------------------------------------- | --------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
| `ORTH` | The exact verbatim text of a token. ~~str~~ |
| `TEXT` <Tag variant="new">2.1</Tag> | The exact verbatim text of a token. ~~str~~ |
| `NORM` | The normalized form of the token text. ~~str~~ |
| `LOWER` | The lowercase form of the token text. ~~str~~ |
|  `LENGTH` | The length of the token text. ~~int~~ |
|  `IS_ALPHA`, `IS_ASCII`, `IS_DIGIT` | Token text consists of alphabetic characters, ASCII characters, digits. ~~bool~~ |
|  `IS_LOWER`, `IS_UPPER`, `IS_TITLE` | Token text is in lowercase, uppercase, titlecase. ~~bool~~ |
|  `IS_PUNCT`, `IS_SPACE`, `IS_STOP` | Token is punctuation, whitespace, stop word. ~~bool~~ |
|  `IS_SENT_START` | Token is start of sentence. ~~bool~~ |
|  `LIKE_NUM`, `LIKE_URL`, `LIKE_EMAIL` | Token text resembles a number, URL, email. ~~bool~~ |
| `LENGTH` | The length of the token text. ~~int~~ |
| `IS_ALPHA`, `IS_ASCII`, `IS_DIGIT` | Token text consists of alphabetic characters, ASCII characters, digits. ~~bool~~ |
| `IS_LOWER`, `IS_UPPER`, `IS_TITLE` | Token text is in lowercase, uppercase, titlecase. ~~bool~~ |
| `IS_PUNCT`, `IS_SPACE`, `IS_STOP` | Token is punctuation, whitespace, stop word. ~~bool~~ |
| `IS_SENT_START` | Token is start of sentence. ~~bool~~ |
| `LIKE_NUM`, `LIKE_URL`, `LIKE_EMAIL` | Token text resembles a number, URL, email. ~~bool~~ |
| `SPACY` | Token has a trailing space. ~~bool~~ |
|  `POS`, `TAG`, `MORPH`, `DEP`, `LEMMA`, `SHAPE` | The token's simple and extended part-of-speech tag, morphological analysis, dependency label, lemma, shape. Note that the values of these attributes are case-sensitive. For a list of available part-of-speech tags and dependency labels, see the [Annotation Specifications](/api/annotation). ~~str~~ |
| `POS`, `TAG`, `MORPH`, `DEP`, `LEMMA`, `SHAPE` | The token's simple and extended part-of-speech tag, morphological analysis, dependency label, lemma, shape. Note that the values of these attributes are case-sensitive. For a list of available part-of-speech tags and dependency labels, see the [Annotation Specifications](/api/annotation). ~~str~~ |
| `ENT_TYPE` | The token's entity label. ~~str~~ |
| `_` <Tag variant="new">2.1</Tag> | Properties in [custom extension attributes](/usage/processing-pipelines#custom-components-attributes). ~~Dict[str, Any]~~ |
| `OP` | [Operator or quantifier](#quantifiers) to determine how often to match a token pattern. ~~str~~ |
@ -1446,6 +1447,108 @@ with nlp.select_pipes(enable="tagger"):
ruler.add_patterns(patterns)
```
## Rule-based span matching {#spanruler new="3.3"}
The [`SpanRuler`](/api/spanruler) is a generalized version of the entity ruler
that lets you add spans to `doc.spans` or `doc.ents` based on pattern
dictionaries, which makes it easy to combine rule-based and statistical pipeline
components.
### Span patterns {#spanruler-patterns}
The [pattern format](#entityruler-patterns) is the same as for the entity ruler:
1. **Phrase patterns** for exact string matches (string).
```python
{"label": "ORG", "pattern": "Apple"}
```
2. **Token patterns** with one dictionary describing one token (list).
```python
{"label": "GPE", "pattern": [{"LOWER": "san"}, {"LOWER": "francisco"}]}
```
### Using the span ruler {#spanruler-usage}
The [`SpanRuler`](/api/spanruler) is a pipeline component that's typically added
via [`nlp.add_pipe`](/api/language#add_pipe). When the `nlp` object is called on
a text, it will find matches in the `doc` and add them as spans to
`doc.spans["ruler"]`, using the specified pattern label as the entity label.
Unlike in `doc.ents`, overlapping matches are allowed in `doc.spans`, so no
filtering is required, but optional filtering and sorting can be applied to the
spans before they're saved.
```python
### {executable="true"}
import spacy
nlp = spacy.blank("en")
ruler = nlp.add_pipe("span_ruler")
patterns = [{"label": "ORG", "pattern": "Apple"},
{"label": "GPE", "pattern": [{"LOWER": "san"}, {"LOWER": "francisco"}]}]
ruler.add_patterns(patterns)
doc = nlp("Apple is opening its first big office in San Francisco.")
print([(span.text, span.label_) for span in doc.spans["ruler"]])
```
The span ruler is designed to integrate with spaCy's existing pipeline
components and enhance the [SpanCategorizer](/api/spancat) and
[EntityRecognizer](/api/entityrecognizer). The `overwrite` setting determines
whether the existing annotation in `doc.spans` or `doc.ents` is preserved.
Because overlapping entities are not allowed for `doc.ents`, the entities are
always filtered, using [`util.filter_spans`](/api/top-level#util.filter_spans)
by default. See the [`SpanRuler` API docs](/api/spanruler) for more information
about how to customize the sorting and filtering of matched spans.
```python
### {executable="true"}
import spacy
nlp = spacy.load("en_core_web_sm")
# only annotate doc.ents, not doc.spans
config = {"spans_key": None, "annotate_ents": True, "overwrite": False}
ruler = nlp.add_pipe("span_ruler", config=config)
patterns = [{"label": "ORG", "pattern": "MyCorp Inc."}]
ruler.add_patterns(patterns)
doc = nlp("MyCorp Inc. is a company in the U.S.")
print([(ent.text, ent.label_) for ent in doc.ents])
```
### Using pattern files {#spanruler-files}
You can save patterns in a JSONL file (newline-delimited JSON) to load with
[`SpanRuler.initialize`](/api/spanruler#initialize) or
[`SpanRuler.add_patterns`](/api/spanruler#add_patterns).
```json
### patterns.jsonl
{"label": "ORG", "pattern": "Apple"}
{"label": "GPE", "pattern": [{"LOWER": "san"}, {"LOWER": "francisco"}]}
```
```python
import srsly
patterns = srsly.read_jsonl("patterns.jsonl")
ruler = nlp.add_pipe("span_ruler")
ruler.add_patterns(patterns)
```
<Infobox title="Important note" variant="warning">
Unlike the entity ruler, the span ruler cannot load patterns on initialization
with `SpanRuler(patterns=patterns)` or directly from a JSONL file path with
`SpanRuler.from_disk(jsonl_path)`. Patterns should be loaded from the JSONL file
separately and then added through
[`SpanRuler.initialize`](/api/spanruler#initialize]) or
[`SpanRuler.add_patterns`](/api/spanruler#add_patterns) as shown above.
</Infobox>
## Combining models and rules {#models-rules}
You can combine statistical and rule-based components in a variety of ways.

View File

@ -132,8 +132,8 @@ your own.
> contributions for Catalan and to Kenneth Enevoldsen for Danish. For additional
> Danish pipelines, check out [DaCy](https://github.com/KennethEnevoldsen/DaCy).
| Package | Language | UPOS | Parser LAS |  NER F |
| ------------------------------------------------- | -------- | ---: | ---------: | -----: |
| Package | Language | UPOS | Parser LAS | NER F |
| ------------------------------------------------- | -------- | ---: | ---------: | ----: |
| [`ca_core_news_sm`](/models/ca#ca_core_news_sm) | Catalan | 98.2 | 87.4 | 79.8 |
| [`ca_core_news_md`](/models/ca#ca_core_news_md) | Catalan | 98.3 | 88.2 | 84.0 |
| [`ca_core_news_lg`](/models/ca#ca_core_news_lg) | Catalan | 98.5 | 88.4 | 84.2 |

View File

@ -116,7 +116,7 @@ import Benchmarks from 'usage/\_benchmarks-models.md'
> corpus that had both syntactic and entity annotations, so the transformer
> models for those languages do not include NER.
| Package | Language | Transformer | Tagger | Parser |  NER |
| Package | Language | Transformer | Tagger | Parser | NER |
| ------------------------------------------------ | -------- | --------------------------------------------------------------------------------------------- | -----: | -----: | ---: |
| [`en_core_web_trf`](/models/en#en_core_web_trf) | English | [`roberta-base`](https://huggingface.co/roberta-base) | 97.8 | 95.2 | 89.9 |
| [`de_dep_news_trf`](/models/de#de_dep_news_trf) | German | [`bert-base-german-cased`](https://huggingface.co/bert-base-german-cased) | 99.0 | 95.8 | - |
@ -856,9 +856,9 @@ attribute ruler before training using the `[initialize]` block of your config.
### Using Lexeme Tables
To use tables like `lexeme_prob` when training a model from scratch, you need
to add an entry to the `initialize` block in your config. Here's what that
looks like for the existing trained pipelines:
To use tables like `lexeme_prob` when training a model from scratch, you need to
add an entry to the `initialize` block in your config. Here's what that looks
like for the existing trained pipelines:
```ini
[initialize.lookups]

View File

@ -103,6 +103,7 @@
{ "text": "SentenceRecognizer", "url": "/api/sentencerecognizer" },
{ "text": "Sentencizer", "url": "/api/sentencizer" },
{ "text": "SpanCategorizer", "url": "/api/spancategorizer" },
{ "text": "SpanRuler", "url": "/api/spanruler" },
{ "text": "Tagger", "url": "/api/tagger" },
{ "text": "TextCategorizer", "url": "/api/textcategorizer" },
{ "text": "Tok2Vec", "url": "/api/tok2vec" },

View File

@ -2799,13 +2799,13 @@
"id": "holmes",
"title": "Holmes",
"slogan": "Information extraction from English and German texts based on predicate logic",
"github": "msg-systems/holmes-extractor",
"url": "https://github.com/msg-systems/holmes-extractor",
"description": "Holmes is a Python 3 library that supports a number of use cases involving information extraction from English and German texts, including chatbot, structural extraction, topic matching and supervised document classification. There is a [website demonstrating intelligent search based on topic matching](https://holmes-demo.xt.msg.team).",
"github": "explosion/holmes-extractor",
"url": "https://github.com/explosion/holmes-extractor",
"description": "Holmes is a Python 3 library that supports a number of use cases involving information extraction from English and German texts, including chatbot, structural extraction, topic matching and supervised document classification. There is a [website demonstrating intelligent search based on topic matching](https://demo.holmes.prod.demos.explosion.services).",
"pip": "holmes-extractor",
"category": ["conversational", "standalone"],
"category": ["pipeline", "standalone"],
"tags": ["chatbots", "text-processing"],
"thumb": "https://raw.githubusercontent.com/msg-systems/holmes-extractor/master/docs/holmes_thumbnail.png",
"thumb": "https://raw.githubusercontent.com/explosion/holmes-extractor/master/docs/holmes_thumbnail.png",
"code_example": [
"import holmes_extractor as holmes",
"holmes_manager = holmes.Manager(model='en_core_web_lg')",