Compare commits

..

31 Commits

Author SHA1 Message Date
Adriane Boyd
77833bfef9
Merge pull request #11956 from adrianeboyd/backport/v3.4.4
Backport bug fixes to v3.4.x
2022-12-14 13:37:25 +01:00
Adriane Boyd
39ccd67ba1 Set version to v3.4.4 2022-12-13 13:20:51 +01:00
Adriane Boyd
5c49e82137 CI: Install thinc-apple-ops through extra (#11963) 2022-12-12 10:13:45 +01:00
Adriane Boyd
4e043b5430 Cast to uint64 for all array-based doc representations (#11933)
* Convert all individual values explicitly to uint64 for array-based doc representations

* Temporarily test with latest numpy v1.24.0rc

* Remove unnecessary conversion from attr_t

* Reduce number of individual casts

* Convert specifically from int32 to uint64

* Revert "Temporarily test with latest numpy v1.24.0rc"

This reverts commit eb0e3c5006.

* Also use int32 in tests
2022-12-12 09:33:14 +01:00
Paul O'Leary McCann
b83abde77f Add in errors used in the beam code that were removed at some point (#11935)
I don't think there's any way to use the beam code at the moment, but as
long as it's around the errors it refers to should also be present.
2022-12-09 10:47:26 +01:00
Daniël de Kok
c4e5bc5a21 EditTreeLemmatizer: correctly add strings when initializing from labels (#11934)
Strings in replacement nodes where not added to the `StringStore`
when `EditTreeLemmatizer` was initialized from a set of labels. The
corresponding test did not capture this because it added the strings
through the examples that were passed to the initialization.

This change fixes both this bug in the initialization as the 'shadowing'
of the bug in the test.
2022-12-09 10:47:26 +01:00
Paul O'Leary McCann
5a2db6866a Switch ubuntu-latest to ubuntu-20.04 in main tests (#11928)
* Switch ubuntu-latest to ubuntu-20.04 in main tests

* Only use 20.04 for 3.6
2022-12-09 10:47:26 +01:00
Paul O'Leary McCann
2a19b0a8bd Config generation fails for GPU without transformers (#11899)
If you don't have spacy-transformers installed, but try to use `init
config` with the GPU flag, you'll get an error. The issue is that the
`use_transformers` flag in the config is conflated with the GPU flag,
and then there's an attempt to access transformers config info that may
not exist.

There may be a better way to do this, but this stops the error.
2022-12-09 10:47:26 +01:00
Adriane Boyd
990deb04a7 Fix spancat for zero suggestions (#11860)
* Add test for spancat predict with zero suggestions

* Fix spancat for zero suggestions

* Undo changes to extract_spans

* Use .sum() as in update
2022-12-09 10:47:26 +01:00
Paul O'Leary McCann
4dbedbbc7f Don't throw an error if using displacy on an unset span key (#11845)
* Don't throw an error if using displacy on an unset span key

* List available keys in W117
2022-12-09 10:26:06 +01:00
Adriane Boyd
704938777d Add smart_open requirement, update deprecated options (#11864)
* Switch from deprecated `ignore_ext` to `compression`
* Add upload/download test for local files
2022-12-09 10:25:50 +01:00
Adriane Boyd
63673a7925
Set version to v3.4.3 (#11778) 2022-11-09 14:28:10 +01:00
Adriane Boyd
35801e32a3
Merge pull request #11764 from adrianeboyd/backport/v3.4.3
Backport bugfixes for v3.4.x
2022-11-09 12:57:43 +01:00
Adriane Boyd
4cd6dc81c7 Update warning, add tests for project requirements check (#11777)
* Update warning, add tests for project requirements check

* Make warning more general for differences between PEP 508 and pip
* Add tests for _check_requirements

* Parameterize test
2022-11-09 11:00:06 +01:00
Raphael Mitsch
940306f786 Revert disable/disabled merging behavior (#11745)
* Merge disable with disabled. Adjust warnings, errors and tests.

* Replace any() with set operation.

* Update spacy/tests/pipeline/test_pipe_methods.py

Co-authored-by: Adriane Boyd <adrianeboyd@gmail.com>

* Update docs.

* Remve reference to config entry nlp.enabled from docs.

Co-authored-by: Adriane Boyd <adrianeboyd@gmail.com>
2022-11-08 14:58:37 +01:00
Adriane Boyd
43bfc2ea9b Add fallback in requirements check, only check once (#11735)
* Add fallback in requirements check, only check once

* Rename to skip_requirements_check

* Update spacy/cli/project/run.py

Co-authored-by: Paul O'Leary McCann <polm@dampfkraft.com>

Co-authored-by: Paul O'Leary McCann <polm@dampfkraft.com>
2022-11-07 14:46:45 +01:00
Adriane Boyd
808a5c6bff Switch CI to python 3.11 (#11765) 2022-11-07 13:32:25 +01:00
Paul O'Leary McCann
8fc74a7fb0 Raise Typer limit (#11720)
* Raise typer limit to <0.7.0

* Raise limit to <0.8.0
2022-11-07 11:29:08 +01:00
Adriane Boyd
451e0eccad Fix types for Span.id and Span.id_ (#11744) 2022-11-07 11:28:59 +01:00
Adriane Boyd
3257718a73 Restore Doc attr getter values in Doc.to_json (#11700) 2022-11-07 11:28:32 +01:00
Paul O'Leary McCann
7b0c36660c Fix default parameters for load functions (fix #11706) (#11713)
* Fix default parameters for load functions

Some load functions used SimpleFrozenList() directly instead of the
_DEFAULT_EMPTY_PIPES parameter. That mostly worked as intended, but
the changes in #11459 check for equality using identity, not value, so a
warning is incorrectly raised sometimes, as in #11706.

This change just has all the load functions use the singleton value
instead.

* Add test that there are no warnings on module-based load

This will succeed due to changes in this branch, but local tests with
the latest release failed as intended.

* Try reverting commit and see if CI changes

There is an error in CI that is probably unrelated.

Revert "Fix default parameters for load functions"

This reverts commit dc46b35687.

* Revert "Try reverting commit and see if CI changes"

This reverts commit 2514ed07ef.

Co-authored-by: Adriane Boyd <adrianeboyd@gmail.com>
2022-11-07 11:28:25 +01:00
Adriane Boyd
a6c3701613 Modernize and simplify CI steps (#11738)
* Use `build` instead of `python setup.py sdist`
* Remove in-place build with `setup.py`
* Remove `gpu` parameter and GPU tests
* Keep `architecture` and `num_build_jobs` in azure steps with CI
  defaults
* Fix use of `num_build_jobs` parameters
* Remove now-unused `prefix` parameter
* Test imports and CLI before installing test requirements
  * Remove `*.egg-info` directory in addition to source directory for an
    warning-free `import spacy`
* Switch `thinc-apple-ops` test to python 3.11 (as most recent python
  that is tested across platforms)
2022-11-07 11:28:13 +01:00
Ryn Daniels
2e322298fe More version updates for github action deprecation warnings (#11705)
* More version updates for github action deprecation warnings

* fix the deprecated set-output commands

* bump explosion-bot to run on ubuntu-latest
2022-11-07 11:28:03 +01:00
Adriane Boyd
9cd2520163 Switch CI to Python 3.11.0 (#11737) 2022-11-07 11:27:18 +01:00
Aaron Zipp
eda0ee2c89 Spelling mistake in rule-based-matching.md (#11717)
Changed retokenize to retokenizer
2022-11-07 11:27:11 +01:00
Paul O'Leary McCann
0ab9edefa8 Handle Docs with no entities in EntityLinker (#11640)
* Handle docs with no entities

If a whole batch contains no entities it won't make it to the model, but
it's possible for individual Docs to have no entities. Before this
commit, those Docs would cause an error when attempting to concatenate
arrays because the dimensions didn't match.

It turns out the process of preparing the Ragged at the end of the span
maker forward was a little different from list2ragged, which just uses
the flatten function directly. Letting list2ragged do the conversion
avoids the dimension issue.

This did not come up before because in NEL demo projects it's typical
for data with no entities to be discarded before it reaches the NEL
component.

This includes a simple direct test that shows the issue and checks it's
resolved. It doesn't check if there are any downstream changes, so a
more complete test could be added. A full run was tested by adding an
example with no entities to the Emerson sample project.

* Add a blank instance to default training data in tests

Rather than adding a specific test, since not failing on instances with
no entities is basic functionality, it makes sense to add it to the
default set.

* Fix without modifying architecture

If the architecture is modified this would have to be a new version, but
this change isn't big enough to merit that.
2022-11-07 11:27:01 +01:00
Paul O'Leary McCann
7c4bc6629a Add warning to install widget for M1 GPUs (#11666)
* Add warning to install widget for M1 GPUs

* Use Thinc tracking issue instead

* Update website/src/widgets/quickstart-install.js

Co-authored-by: Adriane Boyd <adrianeboyd@gmail.com>

* Underline URL in warning

* Update website/src/widgets/quickstart-install.js

Co-authored-by: Adriane Boyd <adrianeboyd@gmail.com>

* Don't install cupy on m1 gpus

Co-authored-by: Adriane Boyd <adrianeboyd@gmail.com>
2022-11-07 11:26:33 +01:00
Ryn Daniels
6070aeb830 update github actions to deal with deprecations (#11702) 2022-11-07 11:26:08 +01:00
Adriane Boyd
cb983eff1d Reduce python 3.10 in CI to one OS (#11703) 2022-11-07 11:26:00 +01:00
Adriane Boyd
eac142e5c3 Update languages and version in README and website (#11694) 2022-11-07 11:25:51 +01:00
Adriane Boyd
b901dc22be Rename test helper method with non-test_ name (#11701) 2022-11-07 11:25:41 +01:00
955 changed files with 44576 additions and 59819 deletions

1
.github/FUNDING.yml vendored
View File

@ -1 +0,0 @@
custom: [https://explosion.ai/merch, https://explosion.ai/tailored-solutions]

119
.github/azure-steps.yml vendored Normal file
View File

@ -0,0 +1,119 @@
parameters:
python_version: ''
architecture: 'x64'
num_build_jobs: 2
steps:
- task: UsePythonVersion@0
inputs:
versionSpec: ${{ parameters.python_version }}
architecture: ${{ parameters.architecture }}
allowUnstable: true
- bash: |
echo "##vso[task.setvariable variable=python_version]${{ parameters.python_version }}"
displayName: 'Set variables'
- script: |
python -m pip install -U build pip setuptools
python -m pip install -U -r requirements.txt
displayName: "Install dependencies"
- script: |
python -m build --sdist
displayName: "Build sdist"
- script: |
python -m mypy spacy
displayName: 'Run mypy'
condition: ne(variables['python_version'], '3.6')
- task: DeleteFiles@1
inputs:
contents: "spacy"
displayName: "Delete source directory"
- task: DeleteFiles@1
inputs:
contents: "*.egg-info"
displayName: "Delete egg-info directory"
- script: |
python -m pip freeze > installed.txt
python -m pip uninstall -y -r installed.txt
displayName: "Uninstall all packages"
- bash: |
SDIST=$(python -c "import os;print(os.listdir('./dist')[-1])" 2>&1)
SPACY_NUM_BUILD_JOBS=${{ parameters.num_build_jobs }} python -m pip install dist/$SDIST
displayName: "Install from sdist"
- script: |
python -W error -c "import spacy"
displayName: "Test import"
- script: |
python -m spacy download ca_core_news_sm
python -m spacy download ca_core_news_md
python -c "import spacy; nlp=spacy.load('ca_core_news_sm'); doc=nlp('test')"
displayName: 'Test download CLI'
condition: eq(variables['python_version'], '3.8')
- script: |
python -W error -c "import ca_core_news_sm; nlp = ca_core_news_sm.load(); doc=nlp('test')"
displayName: 'Test no warnings on load (#11713)'
condition: eq(variables['python_version'], '3.8')
- script: |
python -m spacy convert extra/example_data/ner_example_data/ner-token-per-line-conll2003.json .
displayName: 'Test convert CLI'
condition: eq(variables['python_version'], '3.8')
- script: |
python -m spacy init config -p ner -l ca ner.cfg
python -m spacy debug config ner.cfg --paths.train ner-token-per-line-conll2003.spacy --paths.dev ner-token-per-line-conll2003.spacy
displayName: 'Test debug config CLI'
condition: eq(variables['python_version'], '3.8')
- script: |
# will have errors due to sparse data, check for summary in output
python -m spacy debug data ner.cfg --paths.train ner-token-per-line-conll2003.spacy --paths.dev ner-token-per-line-conll2003.spacy | grep -q Summary
displayName: 'Test debug data CLI'
condition: eq(variables['python_version'], '3.8')
- script: |
python -m spacy train ner.cfg --paths.train ner-token-per-line-conll2003.spacy --paths.dev ner-token-per-line-conll2003.spacy --training.max_steps 10 --gpu-id -1
displayName: 'Test train CLI'
condition: eq(variables['python_version'], '3.8')
- script: |
python -c "import spacy; config = spacy.util.load_config('ner.cfg'); config['components']['ner'] = {'source': 'ca_core_news_sm'}; config.to_disk('ner_source_sm.cfg')"
PYTHONWARNINGS="error,ignore::DeprecationWarning" python -m spacy assemble ner_source_sm.cfg output_dir
displayName: 'Test assemble CLI'
condition: eq(variables['python_version'], '3.8')
- script: |
python -c "import spacy; config = spacy.util.load_config('ner.cfg'); config['components']['ner'] = {'source': 'ca_core_news_md'}; config.to_disk('ner_source_md.cfg')"
python -m spacy assemble ner_source_md.cfg output_dir 2>&1 | grep -q W113
displayName: 'Test assemble CLI vectors warning'
condition: eq(variables['python_version'], '3.8')
- script: |
python -m pip install -U -r requirements.txt
displayName: "Install test requirements"
- script: |
python -m pytest --pyargs spacy -W error
displayName: "Run CPU tests"
- script: |
python -m pip install 'spacy[apple]'
python -m pytest --pyargs spacy
displayName: "Run CPU tests with thinc-apple-ops"
condition: and(startsWith(variables['imageName'], 'macos'), eq(variables['python.version'], '3.11'))
- script: |
python .github/validate_universe_json.py website/meta/universe.json
displayName: 'Test website/meta/universe.json'
condition: eq(variables['python_version'], '3.8')

45
.github/workflows/autoblack.yml vendored Normal file
View File

@ -0,0 +1,45 @@
# GitHub Action that uses Black to reformat all Python code and submits a PR
# in regular intervals. Inspired by: https://github.com/cclauss/autoblack
name: autoblack
on:
workflow_dispatch: # allow manual trigger
schedule:
- cron: '0 8 * * 5' # every Friday at 8am UTC
jobs:
autoblack:
if: github.repository_owner == 'explosion'
runs-on: ubuntu-latest
steps:
- uses: actions/checkout@v3
with:
ref: ${{ github.head_ref }}
- uses: actions/setup-python@v4
- run: pip install black
- name: Auto-format code if needed
run: black spacy
# We can't run black --check here because that returns a non-zero excit
# code and makes GitHub think the action failed
- name: Check for modified files
id: git-check
run: echo modified=$(if git diff-index --quiet HEAD --; then echo "false"; else echo "true"; fi) >> $GITHUB_OUTPUT
- name: Create Pull Request
if: steps.git-check.outputs.modified == 'true'
uses: peter-evans/create-pull-request@v4
with:
title: Auto-format code with black
labels: meta
commit-message: Auto-format code with black
committer: GitHub <noreply@github.com>
author: explosion-bot <explosion-bot@users.noreply.github.com>
body: _This PR is auto-generated._
branch: autoblack
delete-branch: true
draft: false
- name: Check outputs
if: steps.git-check.outputs.modified == 'true'
run: |
echo "Pull Request Number - ${{ steps.cpr.outputs.pull-request-number }}"
echo "Pull Request URL - ${{ steps.cpr.outputs.pull-request-url }}"

View File

@ -1,99 +0,0 @@
name: Build
on:
push:
tags:
# ytf did they invent their own syntax that's almost regex?
# ** matches 'zero or more of any character'
- 'release-v[0-9]+.[0-9]+.[0-9]+**'
- 'prerelease-v[0-9]+.[0-9]+.[0-9]+**'
jobs:
build_wheels:
name: Build wheels on ${{ matrix.os }}
runs-on: ${{ matrix.os }}
strategy:
matrix:
# macos-13 is an intel runner, macos-14 is apple silicon
os: [ubuntu-latest, windows-latest, macos-13, macos-14, ubuntu-24.04-arm]
steps:
- uses: actions/checkout@v4
# aarch64 (arm) is built via qemu emulation
# QEMU is sadly too slow. We need to wait for public ARM support
#- name: Set up QEMU
# if: runner.os == 'Linux'
# uses: docker/setup-qemu-action@v3
# with:
# platforms: all
- name: Build wheels
uses: pypa/cibuildwheel@v2.21.3
env:
CIBW_ARCHS_LINUX: auto
with:
package-dir: .
output-dir: wheelhouse
config-file: "{package}/pyproject.toml"
- uses: actions/upload-artifact@v4
with:
name: cibw-wheels-${{ matrix.os }}-${{ strategy.job-index }}
path: ./wheelhouse/*.whl
build_sdist:
name: Build source distribution
runs-on: ubuntu-latest
steps:
- uses: actions/checkout@v4
- name: Build sdist
run: pipx run build --sdist
- uses: actions/upload-artifact@v4
with:
name: cibw-sdist
path: dist/*.tar.gz
create_release:
needs: [build_wheels, build_sdist]
runs-on: ubuntu-latest
permissions:
contents: write
checks: write
actions: read
issues: read
packages: write
pull-requests: read
repository-projects: read
statuses: read
steps:
- name: Get the tag name and determine if it's a prerelease
id: get_tag_info
run: |
FULL_TAG=${GITHUB_REF#refs/tags/}
if [[ $FULL_TAG == release-* ]]; then
TAG_NAME=${FULL_TAG#release-}
IS_PRERELEASE=false
elif [[ $FULL_TAG == prerelease-* ]]; then
TAG_NAME=${FULL_TAG#prerelease-}
IS_PRERELEASE=true
else
echo "Tag does not match expected patterns" >&2
exit 1
fi
echo "FULL_TAG=$TAG_NAME" >> $GITHUB_ENV
echo "TAG_NAME=$TAG_NAME" >> $GITHUB_ENV
echo "IS_PRERELEASE=$IS_PRERELEASE" >> $GITHUB_ENV
- uses: actions/download-artifact@v4
with:
# unpacks all CIBW artifacts into dist/
pattern: cibw-*
path: dist
merge-multiple: true
- name: Create Draft Release
id: create_release
uses: softprops/action-gh-release@v2
if: startsWith(github.ref, 'refs/tags/')
env:
GITHUB_TOKEN: ${{ secrets.GITHUB_TOKEN }}
with:
name: ${{ env.TAG_NAME }}
draft: true
prerelease: ${{ env.IS_PRERELEASE }}
files: "./dist/*"

View File

@ -8,14 +8,13 @@ on:
jobs:
explosion-bot:
if: github.repository_owner == 'explosion'
runs-on: ubuntu-latest
steps:
- name: Dump GitHub context
env:
GITHUB_CONTEXT: ${{ toJson(github) }}
run: echo "$GITHUB_CONTEXT"
- uses: actions/checkout@v4
- uses: actions/checkout@v3
- uses: actions/setup-python@v4
- name: Install and run explosion-bot
run: |

View File

@ -13,7 +13,6 @@ on:
jobs:
issue-manager:
if: github.repository_owner == 'explosion'
runs-on: ubuntu-latest
steps:
- uses: tiangolo/issue-manager@0.4.0

View File

@ -13,10 +13,9 @@ concurrency:
jobs:
action:
if: github.repository_owner == 'explosion'
runs-on: ubuntu-latest
steps:
- uses: dessant/lock-threads@v5
- uses: dessant/lock-threads@v3
with:
process-only: 'issues'
issue-inactive-days: '30'

View File

@ -1,29 +0,0 @@
# The cibuildwheel action triggers on creation of a release, this
# triggers on publication.
# The expected workflow is to create a draft release and let the wheels
# upload, and then hit 'publish', which uploads to PyPi.
on:
release:
types:
- published
jobs:
upload_pypi:
runs-on: ubuntu-latest
environment:
name: pypi
url: https://pypi.org/p/spacy
permissions:
id-token: write
contents: read
if: github.event_name == 'release' && github.event.action == 'published'
# or, alternatively, upload to PyPI on every tag starting with 'v' (remove on: release above to use this)
# if: github.event_name == 'push' && startsWith(github.ref, 'refs/tags/v')
steps:
- uses: robinraju/release-downloader@v1
with:
tag: ${{ github.event.release.tag_name }}
fileName: '*'
out-file-path: 'dist'
- uses: pypa/gh-action-pypi-publish@release/v1

View File

@ -14,7 +14,7 @@ jobs:
runs-on: ubuntu-latest
steps:
- name: Checkout
uses: actions/checkout@v4
uses: actions/checkout@v3
with:
ref: ${{ matrix.branch }}
- name: Get commits from past 24 hours

View File

@ -7,7 +7,6 @@ on:
jobs:
build:
if: github.repository_owner == 'explosion'
runs-on: ubuntu-latest
steps:
@ -18,10 +17,8 @@ jobs:
run: |
echo "$GITHUB_CONTEXT"
- uses: actions/checkout@v4
- uses: actions/checkout@v3
- uses: actions/setup-python@v4
with:
python-version: '3.10'
- name: Install Bernadette app dependency and send an alert
env:
SLACK_BOT_TOKEN: ${{ secrets.SLACK_BOT_TOKEN }}

View File

@ -1,175 +0,0 @@
name: tests
on:
push:
tags-ignore:
- '**'
branches-ignore:
- "spacy.io"
- "nightly.spacy.io"
- "v2.spacy.io"
paths-ignore:
- "*.md"
- "*.mdx"
- "website/**"
pull_request:
types: [opened, synchronize, reopened, edited]
paths-ignore:
- "*.md"
- "*.mdx"
- "website/**"
jobs:
validate:
name: Validate
if: github.repository_owner == 'explosion'
runs-on: ubuntu-latest
steps:
- name: Check out repo
uses: actions/checkout@v4
- name: Configure Python version
uses: actions/setup-python@v4
with:
python-version: "3.10"
- name: black
run: |
python -m pip install black -c requirements.txt
python -m black spacy --check
- name: isort
run: |
python -m pip install isort -c requirements.txt
python -m isort spacy --check
- name: flake8
run: |
python -m pip install flake8==5.0.4
python -m flake8 spacy --count --select=E901,E999,F821,F822,F823,W605 --show-source --statistics
# Unfortunately cython-lint isn't working after the shift to Cython 3.
#- name: cython-lint
# run: |
# python -m pip install cython-lint -c requirements.txt
# # E501: line too log, W291: trailing whitespace, E266: too many leading '#' for block comment
# cython-lint spacy --ignore E501,W291,E266
tests:
name: Test
needs: Validate
strategy:
fail-fast: true
matrix:
os: [ubuntu-latest, windows-latest, macos-latest]
python_version: ["3.9", "3.12", "3.13"]
runs-on: ${{ matrix.os }}
steps:
- name: Check out repo
uses: actions/checkout@v4
- name: Configure Python version
uses: actions/setup-python@v4
with:
python-version: ${{ matrix.python_version }}
- name: Install dependencies
run: |
python -m pip install -U build pip setuptools
python -m pip install -U -r requirements.txt
- name: Build sdist
run: |
python -m build --sdist
- name: Run mypy
run: |
python -m mypy spacy
if: matrix.python_version != '3.7'
- name: Delete source directory and .egg-info
run: |
rm -rf spacy *.egg-info
shell: bash
- name: Uninstall all packages
run: |
python -m pip freeze
python -m pip freeze --exclude pywin32 > installed.txt
python -m pip uninstall -y -r installed.txt
- name: Install from sdist
run: |
SDIST=$(python -c "import os;print(os.listdir('./dist')[-1])" 2>&1)
SPACY_NUM_BUILD_JOBS=2 python -m pip install dist/$SDIST
shell: bash
- name: Test import
run: python -W error -c "import spacy"
- name: "Test download CLI"
run: |
python -m spacy download ca_core_news_sm
python -m spacy download ca_core_news_md
python -c "import spacy; nlp=spacy.load('ca_core_news_sm'); doc=nlp('test')"
if: matrix.python_version == '3.9'
- name: "Test download_url in info CLI"
run: |
python -W error -m spacy info ca_core_news_sm | grep -q download_url
if: matrix.python_version == '3.9'
- name: "Test no warnings on load (#11713)"
run: |
python -W error -c "import ca_core_news_sm; nlp = ca_core_news_sm.load(); doc=nlp('test')"
if: matrix.python_version == '3.9'
- name: "Test convert CLI"
run: |
python -m spacy convert extra/example_data/ner_example_data/ner-token-per-line-conll2003.json .
if: matrix.python_version == '3.9'
- name: "Test debug config CLI"
run: |
python -m spacy init config -p ner -l ca ner.cfg
python -m spacy debug config ner.cfg --paths.train ner-token-per-line-conll2003.spacy --paths.dev ner-token-per-line-conll2003.spacy
if: matrix.python_version == '3.9'
- name: "Test debug data CLI"
run: |
# will have errors due to sparse data, check for summary in output
python -m spacy debug data ner.cfg --paths.train ner-token-per-line-conll2003.spacy --paths.dev ner-token-per-line-conll2003.spacy | grep -q Summary
if: matrix.python_version == '3.9'
- name: "Test train CLI"
run: |
python -m spacy train ner.cfg --paths.train ner-token-per-line-conll2003.spacy --paths.dev ner-token-per-line-conll2003.spacy --training.max_steps 10 --gpu-id -1
if: matrix.python_version == '3.9'
- name: "Test assemble CLI"
run: |
python -c "import spacy; config = spacy.util.load_config('ner.cfg'); config['components']['ner'] = {'source': 'ca_core_news_sm'}; config.to_disk('ner_source_sm.cfg')"
python -m spacy assemble ner_source_sm.cfg output_dir
env:
PYTHONWARNINGS: "error,ignore::DeprecationWarning"
if: matrix.python_version == '3.9'
- name: "Test assemble CLI vectors warning"
run: |
python -c "import spacy; config = spacy.util.load_config('ner.cfg'); config['components']['ner'] = {'source': 'ca_core_news_md'}; config.to_disk('ner_source_md.cfg')"
python -m spacy assemble ner_source_md.cfg output_dir 2>&1 | grep -q W113
if: matrix.python_version == '3.9'
- name: "Install test requirements"
run: |
python -m pip install -U -r requirements.txt
- name: "Run CPU tests"
run: |
python -m pytest --pyargs spacy -W error
if: "!(startsWith(matrix.os, 'macos') && matrix.python_version == '3.11')"
- name: "Run CPU tests with thinc-apple-ops"
run: |
python -m pip install 'spacy[apple]'
python -m pytest --pyargs spacy
if: startsWith(matrix.os, 'macos') && matrix.python_version == '3.11'

View File

@ -1,32 +0,0 @@
name: universe validation
on:
push:
branches-ignore:
- "spacy.io"
- "nightly.spacy.io"
- "v2.spacy.io"
paths:
- "website/meta/universe.json"
pull_request:
types: [opened, synchronize, reopened, edited]
paths:
- "website/meta/universe.json"
jobs:
validate:
name: Validate
if: github.repository_owner == 'explosion'
runs-on: ubuntu-latest
steps:
- name: Check out repo
uses: actions/checkout@v4
- name: Configure Python version
uses: actions/setup-python@v4
with:
python-version: "3.7"
- name: Validate website/meta/universe.json
run: |
python .github/validate_universe_json.py website/meta/universe.json

10
.gitignore vendored
View File

@ -10,6 +10,16 @@ spacy/tests/package/setup.cfg
spacy/tests/package/pyproject.toml
spacy/tests/package/requirements.txt
# Website
website/.cache/
website/public/
website/node_modules
website/.npm
website/logs
*.log
npm-debug.log*
quickstart-training-generator.js
# Cython / C extensions
cythonize.json
spacy/*.html

View File

@ -5,7 +5,7 @@ repos:
- id: black
language_version: python3.7
additional_dependencies: ['click==8.0.4']
- repo: https://github.com/pycqa/flake8
- repo: https://gitlab.com/pycqa/flake8
rev: 5.0.4
hooks:
- id: flake8

View File

@ -35,7 +35,7 @@ so that more people can benefit from it.
When opening an issue, use a **descriptive title** and include your
**environment** (operating system, Python version, spaCy version). Our
[issue templates](https://github.com/explosion/spaCy/issues/new/choose) help you
[issue template](https://github.com/explosion/spaCy/issues/new) helps you
remember the most important details to include. If you've discovered a bug, you
can also submit a [regression test](#fixing-bugs) straight away. When you're
opening an issue to report the bug, simply refer to your pull request in the
@ -173,11 +173,6 @@ formatting and [`flake8`](http://flake8.pycqa.org/en/latest/) for linting its
Python modules. If you've built spaCy from source, you'll already have both
tools installed.
As a general rule of thumb, we use f-strings for any formatting of strings.
One exception are calls to Python's `logging` functionality.
To avoid unnecessary string conversions in these cases, we use string formatting
templates with `%s` and `%d` etc.
**⚠️ Note that formatting and linting is currently only possible for Python
modules in `.py` files, not Cython modules in `.pyx` and `.pxd` files.**
@ -449,12 +444,13 @@ and plugins in spaCy v3.0, and we can't wait to see what you build with it!
[`spacy`](https://github.com/topics/spacy?o=desc&s=stars) and
[`spacy-extensions`](https://github.com/topics/spacy-extension?o=desc&s=stars)
to make it easier to find. Those are also the topics we're linking to from the
spaCy website. If you're sharing your project on X, feel free to tag
[@spacy_io](https://x.com/spacy_io) so we can check it out.
spaCy website. If you're sharing your project on Twitter, feel free to tag
[@spacy_io](https://twitter.com/spacy_io) so we can check it out.
- Once your extension is published, you can open a
[PR](https://github.com/explosion/spaCy/pulls) to suggest it for the
[Universe](https://spacy.io/universe) page.
- Once your extension is published, you can open an issue on the
[issue tracker](https://github.com/explosion/spacy/issues) to suggest it for the
[resources directory](https://spacy.io/usage/resources#extensions) on the
website.
📖 **For more tips and best practices, see the [checklist for developing spaCy extensions](https://spacy.io/usage/processing-pipelines#extensions).**

View File

@ -1,6 +1,6 @@
The MIT License (MIT)
Copyright (C) 2016-2024 ExplosionAI GmbH, 2016 spaCy GmbH, 2015 Matthew Honnibal
Copyright (C) 2016-2022 ExplosionAI GmbH, 2016 spaCy GmbH, 2015 Matthew Honnibal
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal

View File

@ -4,6 +4,5 @@ include README.md
include pyproject.toml
include spacy/py.typed
recursive-include spacy/cli *.yml
recursive-include spacy/tests *.json
recursive-include licenses *
recursive-exclude spacy *.cpp

View File

@ -1,11 +1,11 @@
SHELL := /bin/bash
ifndef SPACY_EXTRAS
override SPACY_EXTRAS = spacy-lookups-data==1.0.3
override SPACY_EXTRAS = spacy-lookups-data==1.0.2 jieba spacy-pkuseg==0.0.28 sudachipy sudachidict_core pymorphy2
endif
ifndef PYVER
override PYVER = 3.8
override PYVER = 3.6
endif
VENV := ./env$(PYVER)

View File

@ -6,20 +6,20 @@ spaCy is a library for **advanced Natural Language Processing** in Python and
Cython. It's built on the very latest research, and was designed from day one to
be used in real products.
spaCy comes with [pretrained pipelines](https://spacy.io/models) and currently
supports tokenization and training for **70+ languages**. It features
state-of-the-art speed and **neural network models** for tagging, parsing,
**named entity recognition**, **text classification** and more, multi-task
learning with pretrained **transformers** like BERT, as well as a
spaCy comes with
[pretrained pipelines](https://spacy.io/models) and
currently supports tokenization and training for **70+ languages**. It features
state-of-the-art speed and **neural network models** for tagging,
parsing, **named entity recognition**, **text classification** and more,
multi-task learning with pretrained **transformers** like BERT, as well as a
production-ready [**training system**](https://spacy.io/usage/training) and easy
model packaging, deployment and workflow management. spaCy is commercial
open-source software, released under the
[MIT license](https://github.com/explosion/spaCy/blob/master/LICENSE).
open-source software, released under the MIT license.
💫 **Version 3.8 out now!**
💫 **Version 3.4 out now!**
[Check out the release notes here.](https://github.com/explosion/spaCy/releases)
[![tests](https://github.com/explosion/spaCy/actions/workflows/tests.yml/badge.svg)](https://github.com/explosion/spaCy/actions/workflows/tests.yml)
[![Azure Pipelines](https://img.shields.io/azure-devops/build/explosion-ai/public/8/master.svg?logo=azure-pipelines&style=flat-square&label=build)](https://dev.azure.com/explosion-ai/public/_build?definitionId=8)
[![Current Release Version](https://img.shields.io/github/release/explosion/spacy.svg?style=flat-square&logo=github)](https://github.com/explosion/spaCy/releases)
[![pypi Version](https://img.shields.io/pypi/v/spacy.svg?style=flat-square&logo=pypi&logoColor=white)](https://pypi.org/project/spacy/)
[![conda Version](https://img.shields.io/conda/vn/conda-forge/spacy.svg?style=flat-square&logo=conda-forge&logoColor=white)](https://anaconda.org/conda-forge/spacy)
@ -28,47 +28,36 @@ open-source software, released under the
<br />
[![PyPi downloads](https://static.pepy.tech/personalized-badge/spacy?period=total&units=international_system&left_color=grey&right_color=orange&left_text=pip%20downloads)](https://pypi.org/project/spacy/)
[![Conda downloads](https://img.shields.io/conda/dn/conda-forge/spacy?label=conda%20downloads)](https://anaconda.org/conda-forge/spacy)
[![spaCy on Twitter](https://img.shields.io/twitter/follow/spacy_io.svg?style=social&label=Follow)](https://twitter.com/spacy_io)
## 📖 Documentation
| Documentation | |
| ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- | -------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
| ⭐️ **[spaCy 101]** | New to spaCy? Here's everything you need to know! |
| 📚 **[Usage Guides]** | How to use spaCy and its features. |
| 🚀 **[New in v3.0]** | New features, backwards incompatibilities and migration guide. |
| 🪐 **[Project Templates]** | End-to-end workflows you can clone, modify and run. |
| 🎛 **[API Reference]** | The detailed reference for spaCy's API. |
| ⏩ **[GPU Processing]** | Use spaCy with CUDA-compatible GPU processing. |
| 📦 **[Models]** | Download trained pipelines for spaCy. |
| 🦙 **[Large Language Models]** | Integrate LLMs into spaCy pipelines. |
| 🌌 **[Universe]** | Plugins, extensions, demos and books from the spaCy ecosystem. |
| ⚙️ **[spaCy VS Code Extension]** | Additional tooling and features for working with spaCy's config files. |
| 👩‍🏫 **[Online Course]** | Learn spaCy in this free and interactive online course. |
| 📰 **[Blog]** | Read about current spaCy and Prodigy development, releases, talks and more from Explosion. |
| 📺 **[Videos]** | Our YouTube channel with video tutorials, talks and more. |
| 🔴 **[Live Stream]** | Join Matt as he works on spaCy and chat about NLP, live every week. |
| 🛠 **[Changelog]** | Changes and version history. |
| 💝 **[Contribute]** | How to contribute to the spaCy project and code base. |
| 👕 **[Swag]** | Support us and our work with unique, custom-designed swag! |
| <a href="https://explosion.ai/tailored-solutions"><img src="https://github.com/explosion/spaCy/assets/13643239/36d2a42e-98c0-4599-90e1-788ef75181be" width="150" alt="Tailored Solutions"/></a> | Custom NLP consulting, implementation and strategic advice by spaCys core development team. Streamlined, production-ready, predictable and maintainable. Send us an email or take our 5-minute questionnaire, and well'be in touch! **[Learn more &rarr;](https://explosion.ai/tailored-solutions)** |
| Documentation | |
| ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- | ---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
| ⭐️ **[spaCy 101]** | New to spaCy? Here's everything you need to know! |
| 📚 **[Usage Guides]** | How to use spaCy and its features. |
| 🚀 **[New in v3.0]** | New features, backwards incompatibilities and migration guide. |
| 🪐 **[Project Templates]** | End-to-end workflows you can clone, modify and run. |
| 🎛 **[API Reference]** | The detailed reference for spaCy's API. |
| 📦 **[Models]** | Download trained pipelines for spaCy. |
| 🌌 **[Universe]** | Plugins, extensions, demos and books from the spaCy ecosystem. |
| 👩‍🏫 **[Online Course]** | Learn spaCy in this free and interactive online course. |
| 📺 **[Videos]** | Our YouTube channel with video tutorials, talks and more. |
| 🛠 **[Changelog]** | Changes and version history. |
| 💝 **[Contribute]** | How to contribute to the spaCy project and code base. |
| <a href="https://explosion.ai/spacy-tailored-pipelines"><img src="https://user-images.githubusercontent.com/13643239/152853098-1c761611-ccb0-4ec6-9066-b234552831fe.png" width="125" alt="spaCy Tailored Pipelines"/></a> | Get a custom spaCy pipeline, tailor-made for your NLP problem by spaCy's core developers. Streamlined, production-ready, predictable and maintainable. Start by completing our 5-minute questionnaire to tell us what you need and we'll be in touch! **[Learn more &rarr;](https://explosion.ai/spacy-tailored-pipelines)** |
[spacy 101]: https://spacy.io/usage/spacy-101
[new in v3.0]: https://spacy.io/usage/v3
[usage guides]: https://spacy.io/usage/
[api reference]: https://spacy.io/api/
[gpu processing]: https://spacy.io/usage#gpu
[models]: https://spacy.io/models
[large language models]: https://spacy.io/usage/large-language-models
[universe]: https://spacy.io/universe
[spacy vs code extension]: https://github.com/explosion/spacy-vscode
[videos]: https://www.youtube.com/c/ExplosionAI
[live stream]: https://www.youtube.com/playlist?list=PLBmcuObd5An5_iAxNYLJa_xWmNzsYce8c
[online course]: https://course.spacy.io
[blog]: https://explosion.ai
[project templates]: https://github.com/explosion/projects
[changelog]: https://spacy.io/usage#changelog
[contribute]: https://github.com/explosion/spaCy/blob/master/CONTRIBUTING.md
[swag]: https://explosion.ai/merch
## 💬 Where to ask questions
@ -80,14 +69,13 @@ more people can benefit from it.
| Type | Platforms |
| ------------------------------- | --------------------------------------- |
| 🚨 **Bug Reports** | [GitHub Issue Tracker] |
| 🎁 **Feature Requests & Ideas** | [GitHub Discussions] · [Live Stream] |
| 🎁 **Feature Requests & Ideas** | [GitHub Discussions] |
| 👩‍💻 **Usage Questions** | [GitHub Discussions] · [Stack Overflow] |
| 🗯 **General Discussion** | [GitHub Discussions] · [Live Stream] |
| 🗯 **General Discussion** | [GitHub Discussions] |
[github issue tracker]: https://github.com/explosion/spaCy/issues
[github discussions]: https://github.com/explosion/spaCy/discussions
[stack overflow]: https://stackoverflow.com/questions/tagged/spacy
[live stream]: https://www.youtube.com/playlist?list=PLBmcuObd5An5_iAxNYLJa_xWmNzsYce8c
## Features
@ -98,9 +86,7 @@ more people can benefit from it.
- State-of-the-art speed
- Production-ready **training system**
- Linguistically-motivated **tokenization**
- Components for named **entity recognition**, part-of-speech-tagging,
dependency parsing, sentence segmentation, **text classification**,
lemmatization, morphological analysis, entity linking and more
- Components for named **entity recognition**, part-of-speech-tagging, dependency parsing, sentence segmentation, **text classification**, lemmatization, morphological analysis, entity linking and more
- Easily extensible with **custom components** and attributes
- Support for custom models in **PyTorch**, **TensorFlow** and other frameworks
- Built in **visualizers** for syntax and NER
@ -117,7 +103,7 @@ For detailed installation instructions, see the
- **Operating system**: macOS / OS X · Linux · Windows (Cygwin, MinGW, Visual
Studio)
- **Python version**: Python >=3.7, <3.13 (only 64 bit)
- **Python version**: Python 3.6+ (only 64 bit)
- **Package managers**: [pip] · [conda] (via `conda-forge`)
[pip]: https://pypi.org/project/spacy/
@ -126,8 +112,8 @@ For detailed installation instructions, see the
### pip
Using pip, spaCy releases are available as source packages and binary wheels.
Before you install spaCy and its dependencies, make sure that your `pip`,
`setuptools` and `wheel` are up to date.
Before you install spaCy and its dependencies, make sure that
your `pip`, `setuptools` and `wheel` are up to date.
```bash
pip install -U pip setuptools wheel
@ -182,9 +168,9 @@ with the new version.
## 📦 Download model packages
Trained pipelines for spaCy can be installed as **Python packages**. This means
that they're a component of your application, just like any other module. Models
can be installed using spaCy's [`download`](https://spacy.io/api/cli#download)
Trained pipelines for spaCy can be installed as **Python packages**. This
means that they're a component of your application, just like any other module.
Models can be installed using spaCy's [`download`](https://spacy.io/api/cli#download)
command, or manually by pointing pip to a path or URL.
| Documentation | |
@ -250,7 +236,8 @@ do that depends on your system.
| **Mac** | Install a recent version of [XCode](https://developer.apple.com/xcode/), including the so-called "Command Line Tools". macOS and OS X ship with Python and git preinstalled. |
| **Windows** | Install a version of the [Visual C++ Build Tools](https://visualstudio.microsoft.com/visual-cpp-build-tools/) or [Visual Studio Express](https://visualstudio.microsoft.com/vs/express/) that matches the version that was used to compile your Python interpreter. |
For more details and instructions, see the documentation on
For more details
and instructions, see the documentation on
[compiling spaCy from source](https://spacy.io/usage#source) and the
[quickstart widget](https://spacy.io/usage#section-quickstart) to get the right
commands for your platform and Python version.

103
azure-pipelines.yml Normal file
View File

@ -0,0 +1,103 @@
trigger:
batch: true
branches:
include:
- "*"
exclude:
- "spacy.io"
- "nightly.spacy.io"
- "v2.spacy.io"
paths:
exclude:
- "website/*"
- "*.md"
- ".github/workflows/*"
pr:
paths:
exclude:
- "*.md"
- "website/docs/*"
- "website/src/*"
- ".github/workflows/*"
jobs:
# Perform basic checks for most important errors (syntax etc.) Uses the config
# defined in .flake8 and overwrites the selected codes.
- job: "Validate"
pool:
vmImage: "ubuntu-latest"
steps:
- task: UsePythonVersion@0
inputs:
versionSpec: "3.7"
- script: |
pip install flake8==5.0.4
python -m flake8 spacy --count --select=E901,E999,F821,F822,F823,W605 --show-source --statistics
displayName: "flake8"
- job: "Test"
dependsOn: "Validate"
strategy:
matrix:
# We're only running one platform per Python version to speed up builds
Python36Linux:
imageName: "ubuntu-20.04"
python.version: "3.6"
# Python36Windows:
# imageName: "windows-latest"
# python.version: "3.6"
# Python36Mac:
# imageName: "macos-latest"
# python.version: "3.6"
# Python37Linux:
# imageName: "ubuntu-20.04"
# python.version: "3.7"
Python37Windows:
imageName: "windows-latest"
python.version: "3.7"
# Python37Mac:
# imageName: "macos-latest"
# python.version: "3.7"
# Python38Linux:
# imageName: "ubuntu-latest"
# python.version: "3.8"
# Python38Windows:
# imageName: "windows-latest"
# python.version: "3.8"
Python38Mac:
imageName: "macos-latest"
python.version: "3.8"
Python39Linux:
imageName: "ubuntu-latest"
python.version: "3.9"
# Python39Windows:
# imageName: "windows-latest"
# python.version: "3.9"
# Python39Mac:
# imageName: "macos-latest"
# python.version: "3.9"
# Python310Linux:
# imageName: "ubuntu-latest"
# python.version: "3.10"
Python310Windows:
imageName: "windows-latest"
python.version: "3.10"
# Python310Mac:
# imageName: "macos-latest"
# python.version: "3.10"
Python311Linux:
imageName: 'ubuntu-latest'
python.version: '3.11'
Python311Windows:
imageName: 'windows-latest'
python.version: '3.11'
Python311Mac:
imageName: 'macos-latest'
python.version: '3.11'
maxParallel: 4
pool:
vmImage: $(imageName)
steps:
- template: .github/azure-steps.yml
parameters:
python_version: '$(python.version)'

View File

@ -1,20 +0,0 @@
#!/usr/bin/env bash
set -e
# Insist repository is clean
git diff-index --quiet HEAD
version=$(grep "__version__ = " spacy/about.py)
version=${version/__version__ = }
version=${version/\'/}
version=${version/\'/}
version=${version/\"/}
version=${version/\"/}
echo "Pushing release-v"$version
git tag -d release-v$version || true
git push origin :release-v$version || true
git tag release-v$version
git push origin release-v$version

View File

@ -1,2 +1,8 @@
# build version constraints for use with wheelwright
numpy>=2.0.0,<3.0.0
# build version constraints for use with wheelwright + multibuild
numpy==1.15.0; python_version<='3.7' and platform_machine!='aarch64'
numpy==1.19.2; python_version<='3.7' and platform_machine=='aarch64'
numpy==1.17.3; python_version=='3.8' and platform_machine!='aarch64'
numpy==1.19.2; python_version=='3.8' and platform_machine=='aarch64'
numpy==1.19.3; python_version=='3.9'
numpy==1.21.3; python_version=='3.10'
numpy; python_version>='3.11'

View File

@ -1,17 +1,14 @@
# Listeners
- [1. Overview](#1-overview)
- [2. Initialization](#2-initialization)
- [2A. Linking listeners to the embedding component](#2a-linking-listeners-to-the-embedding-component)
- [2B. Shape inference](#2b-shape-inference)
- [3. Internal communication](#3-internal-communication)
- [3A. During prediction](#3a-during-prediction)
- [3B. During training](#3b-during-training)
- [Training with multiple listeners](#training-with-multiple-listeners)
- [3C. Frozen components](#3c-frozen-components)
- [The Tok2Vec or Transformer is frozen](#the-tok2vec-or-transformer-is-frozen)
- [The upstream component is frozen](#the-upstream-component-is-frozen)
- [4. Replacing listener with standalone](#4-replacing-listener-with-standalone)
1. [Overview](#1-overview)
2. [Initialization](#2-initialization)
- [A. Linking listeners to the embedding component](#2a-linking-listeners-to-the-embedding-component)
- [B. Shape inference](#2b-shape-inference)
3. [Internal communication](#3-internal-communication)
- [A. During prediction](#3a-during-prediction)
- [B. During training](#3b-during-training)
- [C. Frozen components](#3c-frozen-components)
4. [Replacing listener with standalone](#4-replacing-listener-with-standalone)
## 1. Overview
@ -221,15 +218,3 @@ new_model = tok2vec_model.attrs["replace_listener"](new_model)
The new config and model are then properly stored on the `nlp` object.
Note that this functionality (running the replacement for a transformer listener) was broken prior to
`spacy-transformers` 1.0.5.
In spaCy 3.7, `Language.replace_listeners` was updated to pass the following additional arguments to the `replace_listener` callback:
the listener to be replaced and the `tok2vec`/`transformer` pipe from which the new model was copied. To maintain backwards-compatiblity,
the method only passes these extra arguments for callbacks that support them:
```
def replace_listener_pre_37(copied_tok2vec_model):
...
def replace_listener_post_37(copied_tok2vec_model, replaced_listener, tok2vec_pipe):
...
```

View File

@ -158,45 +158,3 @@ AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.
SciPy
-----
* Files: scorer.py
The implementation of trapezoid() is adapted from SciPy, which is distributed
under the following license:
New BSD License
Copyright (c) 2001-2002 Enthought, Inc. 2003-2023, SciPy Developers.
All rights reserved.
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions
are met:
1. Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.
2. Redistributions in binary form must reproduce the above
copyright notice, this list of conditions and the following
disclaimer in the documentation and/or other materials provided
with the distribution.
3. Neither the name of the copyright holder nor the names of its
contributors may be used to endorse or promote products derived
from this software without specific prior written permission.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

View File

@ -1,67 +1,11 @@
[build-system]
requires = [
"setuptools",
"cython>=3.0,<4.0",
"cython>=0.25,<3.0",
"cymem>=2.0.2,<2.1.0",
"preshed>=3.0.2,<3.1.0",
"murmurhash>=0.28.0,<1.1.0",
"thinc>=8.3.4,<8.4.0",
"numpy>=2.0.0,<3.0.0"
"thinc>=8.1.0,<8.2.0",
"numpy>=1.15.0",
]
build-backend = "setuptools.build_meta"
[tool.cibuildwheel]
build = "*"
skip = "pp* cp36* cp37* cp38* *-win32 *i686*"
test-skip = ""
free-threaded-support = false
archs = ["native"]
build-frontend = "default"
config-settings = {}
dependency-versions = "pinned"
environment = { PIP_CONSTRAINT = "build-constraints.txt" }
environment-pass = []
build-verbosity = 0
before-all = "curl https://sh.rustup.rs -sSf | sh -s -- -y --profile minimal --default-toolchain stable"
before-build = "pip install -r requirements.txt && python setup.py clean"
repair-wheel-command = ""
test-command = ""
before-test = ""
test-requires = []
test-extras = []
container-engine = "docker"
manylinux-x86_64-image = "manylinux2014"
manylinux-i686-image = "manylinux2014"
manylinux-aarch64-image = "manylinux2014"
manylinux-ppc64le-image = "manylinux2014"
manylinux-s390x-image = "manylinux2014"
manylinux-pypy_x86_64-image = "manylinux2014"
manylinux-pypy_i686-image = "manylinux2014"
manylinux-pypy_aarch64-image = "manylinux2014"
musllinux-x86_64-image = "musllinux_1_2"
musllinux-i686-image = "musllinux_1_2"
musllinux-aarch64-image = "musllinux_1_2"
musllinux-ppc64le-image = "musllinux_1_2"
musllinux-s390x-image = "musllinux_1_2"
[tool.cibuildwheel.linux]
repair-wheel-command = "auditwheel repair -w {dest_dir} {wheel}"
[tool.cibuildwheel.macos]
repair-wheel-command = "delocate-wheel --require-archs {delocate_archs} -w {dest_dir} -v {wheel}"
[tool.cibuildwheel.windows]
[tool.cibuildwheel.pyodide]
[tool.isort]
profile = "black"

View File

@ -1,38 +1,40 @@
# Our libraries
spacy-legacy>=3.0.11,<3.1.0
spacy-legacy>=3.0.10,<3.1.0
spacy-loggers>=1.0.0,<2.0.0
cymem>=2.0.2,<2.1.0
preshed>=3.0.2,<3.1.0
thinc>=8.3.4,<8.4.0
thinc>=8.1.0,<8.2.0
ml_datasets>=0.2.0,<0.3.0
murmurhash>=0.28.0,<1.1.0
wasabi>=0.9.1,<1.2.0
wasabi>=0.9.1,<1.1.0
srsly>=2.4.3,<3.0.0
catalogue>=2.0.6,<2.1.0
typer-slim>=0.3.0,<1.0.0
weasel>=0.1.0,<0.5.0
typer>=0.3.0,<0.8.0
pathy>=0.3.5
smart-open>=5.2.1,<7.0.0
# Third party dependencies
numpy>=2.0.0,<3.0.0
numpy>=1.15.0
requests>=2.13.0,<3.0.0
tqdm>=4.38.0,<5.0.0
pydantic>=1.7.4,!=1.8,!=1.8.1,<3.0.0
pydantic>=1.7.4,!=1.8,!=1.8.1,<1.11.0
jinja2
langcodes>=3.2.0,<4.0.0
# Official Python utilities
setuptools
packaging>=20.0
typing_extensions>=3.7.4.1,<4.2.0; python_version < "3.8"
# Development dependencies
pre-commit>=2.13.0
cython>=3.0,<4.0
cython>=0.25,<3.0
pytest>=5.2.0,!=7.1.0
pytest-timeout>=1.3.0,<2.0.0
mock>=2.0.0,<3.0.0
flake8>=3.8.0,<6.0.0
hypothesis>=3.27.0,<7.0.0
mypy>=1.5.0,<1.6.0; platform_machine != "aarch64" and python_version >= "3.8"
mypy>=0.980,<0.990; platform_machine != "aarch64" and python_version >= "3.7"
types-dataclasses>=0.1.3; python_version < "3.7"
types-mock>=0.1.1
types-setuptools>=57.0.0
types-requests
types-setuptools>=57.0.0
black==22.3.0
cython-lint>=0.15.0
isort>=5.0,<6.0
black>=22.0,<23.0

View File

@ -17,11 +17,11 @@ classifiers =
Operating System :: Microsoft :: Windows
Programming Language :: Cython
Programming Language :: Python :: 3
Programming Language :: Python :: 3.6
Programming Language :: Python :: 3.7
Programming Language :: Python :: 3.8
Programming Language :: Python :: 3.9
Programming Language :: Python :: 3.10
Programming Language :: Python :: 3.11
Programming Language :: Python :: 3.12
Programming Language :: Python :: 3.13
Topic :: Scientific/Engineering
project_urls =
Release notes = https://github.com/explosion/spaCy/releases
@ -30,41 +30,40 @@ project_urls =
[options]
zip_safe = false
include_package_data = true
python_requires = >=3.9,<3.14
# NOTE: This section is superseded by pyproject.toml and will be removed in
# spaCy v4
python_requires = >=3.6
setup_requires =
cython>=3.0,<4.0
numpy>=2.0.0,<3.0.0; python_version < "3.9"
numpy>=2.0.0,<3.0.0; python_version >= "3.9"
cython>=0.25,<3.0
numpy>=1.15.0
# We also need our Cython packages here to compile against
cymem>=2.0.2,<2.1.0
preshed>=3.0.2,<3.1.0
murmurhash>=0.28.0,<1.1.0
thinc>=8.3.4,<8.4.0
thinc>=8.1.0,<8.2.0
install_requires =
# Our libraries
spacy-legacy>=3.0.11,<3.1.0
spacy-legacy>=3.0.10,<3.1.0
spacy-loggers>=1.0.0,<2.0.0
murmurhash>=0.28.0,<1.1.0
cymem>=2.0.2,<2.1.0
preshed>=3.0.2,<3.1.0
thinc>=8.3.4,<8.4.0
wasabi>=0.9.1,<1.2.0
thinc>=8.1.0,<8.2.0
wasabi>=0.9.1,<1.1.0
srsly>=2.4.3,<3.0.0
catalogue>=2.0.6,<2.1.0
weasel>=0.1.0,<0.5.0
# Third-party dependencies
typer-slim>=0.3.0,<1.0.0
typer>=0.3.0,<0.8.0
pathy>=0.3.5
smart-open>=5.2.1,<7.0.0
tqdm>=4.38.0,<5.0.0
numpy>=1.15.0; python_version < "3.9"
numpy>=1.19.0; python_version >= "3.9"
numpy>=1.15.0
requests>=2.13.0,<3.0.0
pydantic>=1.7.4,!=1.8,!=1.8.1,<3.0.0
pydantic>=1.7.4,!=1.8,!=1.8.1,<1.11.0
jinja2
# Official Python utilities
setuptools
packaging>=20.0
typing_extensions>=3.7.4,<4.2.0; python_version < "3.8"
langcodes>=3.2.0,<4.0.0
[options.entry_points]
console_scripts =
@ -74,47 +73,47 @@ console_scripts =
lookups =
spacy_lookups_data>=1.0.3,<1.1.0
transformers =
spacy_transformers>=1.1.2,<1.4.0
spacy_transformers>=1.1.2,<1.2.0
ray =
spacy_ray>=0.1.0,<1.0.0
cuda =
cupy>=5.0.0b4,<13.0.0
cupy>=5.0.0b4,<12.0.0
cuda80 =
cupy-cuda80>=5.0.0b4,<13.0.0
cupy-cuda80>=5.0.0b4,<12.0.0
cuda90 =
cupy-cuda90>=5.0.0b4,<13.0.0
cupy-cuda90>=5.0.0b4,<12.0.0
cuda91 =
cupy-cuda91>=5.0.0b4,<13.0.0
cupy-cuda91>=5.0.0b4,<12.0.0
cuda92 =
cupy-cuda92>=5.0.0b4,<13.0.0
cupy-cuda92>=5.0.0b4,<12.0.0
cuda100 =
cupy-cuda100>=5.0.0b4,<13.0.0
cupy-cuda100>=5.0.0b4,<12.0.0
cuda101 =
cupy-cuda101>=5.0.0b4,<13.0.0
cupy-cuda101>=5.0.0b4,<12.0.0
cuda102 =
cupy-cuda102>=5.0.0b4,<13.0.0
cupy-cuda102>=5.0.0b4,<12.0.0
cuda110 =
cupy-cuda110>=5.0.0b4,<13.0.0
cupy-cuda110>=5.0.0b4,<12.0.0
cuda111 =
cupy-cuda111>=5.0.0b4,<13.0.0
cupy-cuda111>=5.0.0b4,<12.0.0
cuda112 =
cupy-cuda112>=5.0.0b4,<13.0.0
cupy-cuda112>=5.0.0b4,<12.0.0
cuda113 =
cupy-cuda113>=5.0.0b4,<13.0.0
cupy-cuda113>=5.0.0b4,<12.0.0
cuda114 =
cupy-cuda114>=5.0.0b4,<13.0.0
cupy-cuda114>=5.0.0b4,<12.0.0
cuda115 =
cupy-cuda115>=5.0.0b4,<13.0.0
cupy-cuda115>=5.0.0b4,<12.0.0
cuda116 =
cupy-cuda116>=5.0.0b4,<13.0.0
cupy-cuda116>=5.0.0b4,<12.0.0
cuda117 =
cupy-cuda117>=5.0.0b4,<13.0.0
cupy-cuda117>=5.0.0b4,<12.0.0
cuda11x =
cupy-cuda11x>=11.0.0,<13.0.0
cuda12x =
cupy-cuda12x>=11.5.0,<13.0.0
cupy-cuda11x>=11.0.0,<12.0.0
cuda-autodetect =
cupy-wheel>=11.0.0,<13.0.0
cupy-wheel>=11.0.0,<12.0.0
apple =
thinc-apple-ops>=1.0.0,<2.0.0
thinc-apple-ops>=0.1.0.dev0,<1.0.0
# Language tokenizers with external dependencies
ja =
sudachipy>=0.5.2,!=0.6.1

View File

@ -1,9 +1,10 @@
#!/usr/bin/env python
from setuptools import Extension, setup, find_packages
import sys
import platform
import numpy
from setuptools.command.build_ext import build_ext
from sysconfig import get_path
from distutils.command.build_ext import build_ext
from distutils.sysconfig import get_python_inc
from pathlib import Path
import shutil
from Cython.Build import cythonize
@ -29,9 +30,7 @@ MOD_NAMES = [
"spacy.lexeme",
"spacy.vocab",
"spacy.attrs",
"spacy.kb.candidate",
"spacy.kb.kb",
"spacy.kb.kb_in_memory",
"spacy.kb",
"spacy.ml.parser_model",
"spacy.morphology",
"spacy.pipeline.dep_parser",
@ -78,7 +77,6 @@ COMPILER_DIRECTIVES = {
"language_level": -3,
"embedsignature": True,
"annotation_typing": False,
"profile": sys.version_info < (3, 12),
}
# Files to copy into the package that are otherwise not included
COPY_FILES = {
@ -88,6 +86,30 @@ COPY_FILES = {
}
def is_new_osx():
"""Check whether we're on OSX >= 10.7"""
if sys.platform != "darwin":
return False
mac_ver = platform.mac_ver()[0]
if mac_ver.startswith("10"):
minor_version = int(mac_ver.split(".")[1])
if minor_version >= 7:
return True
else:
return False
return False
if is_new_osx():
# On Mac, use libc++ because Apple deprecated use of
# libstdc
COMPILE_OPTIONS["other"].append("-stdlib=libc++")
LINK_OPTIONS["other"].append("-lc++")
# g++ (used by unix compiler on mac) links to libstdc++ as a default lib.
# See: https://stackoverflow.com/questions/1653047/avoid-linking-to-libstdc
LINK_OPTIONS["other"].append("-nodefaultlibs")
# By subclassing build_extensions we have the actual compiler that will be used which is really known only after finalize_options
# http://stackoverflow.com/questions/724664/python-distutils-how-to-get-a-compiler-that-is-going-to-be-used
class build_ext_options:
@ -180,7 +202,7 @@ def setup_package():
include_dirs = [
numpy.get_include(),
get_path("include"),
get_python_inc(plat_specific=True),
]
ext_modules = []
ext_modules.append(

View File

@ -1,6 +1,6 @@
import sys
from typing import Union, Iterable, Dict, Any
from pathlib import Path
from typing import Any, Dict, Iterable, Union
import sys
# set library-specific custom warning handling before doing anything else
from .errors import setup_default_warnings
@ -8,18 +8,20 @@ from .errors import setup_default_warnings
setup_default_warnings() # noqa: E402
# These are imported as part of the API
from thinc.api import Config, prefer_gpu, require_cpu, require_gpu # noqa: F401
from thinc.api import prefer_gpu, require_gpu, require_cpu # noqa: F401
from thinc.api import Config
from . import pipeline # noqa: F401
from . import util
from .about import __version__ # noqa: F401
from .cli.info import info # noqa: F401
from .errors import Errors
from .glossary import explain # noqa: F401
from .about import __version__ # noqa: F401
from .util import registry, logger # noqa: F401
from .errors import Errors
from .language import Language
from .registrations import REGISTRY_POPULATED, populate_registry
from .util import logger, registry # noqa: F401
from .vocab import Vocab
from . import util
if sys.maxunicode == 65535:
raise SystemError(Errors.E130)

View File

@ -1,5 +1,7 @@
# fmt: off
__title__ = "spacy"
__version__ = "3.8.7"
__version__ = "3.4.4"
__download_url__ = "https://github.com/explosion/spacy-models/releases/download"
__compatibility__ = "https://raw.githubusercontent.com/explosion/spacy-models/master/compatibility.json"
__projects__ = "https://github.com/explosion/projects"
__projects_branch__ = "v3"

View File

@ -1,7 +1,6 @@
# Reserve 64 values for flag features
from . cimport symbols
cdef enum attr_id_t:
NULL_ATTR
IS_ALPHA

View File

@ -1,4 +1,3 @@
# cython: profile=False
from .errors import Errors
IOB_STRINGS = ("", "I", "O", "B")
@ -118,7 +117,7 @@ def intify_attrs(stringy_attrs, strings_map=None, _do_deprecated=False):
if "pos" in stringy_attrs:
stringy_attrs["TAG"] = stringy_attrs.pop("pos")
if "morph" in stringy_attrs:
morphs = stringy_attrs.pop("morph") # no-cython-lint
morphs = stringy_attrs.pop("morph")
if "number" in stringy_attrs:
stringy_attrs.pop("number")
if "tenspect" in stringy_attrs:

View File

@ -1,40 +1,32 @@
from wasabi import msg
# Needed for testing
from . import download as download_module # noqa: F401
from ._util import app, setup_cli # noqa: F401
from .apply import apply # noqa: F401
from .assemble import assemble_cli # noqa: F401
# These are the actual functions, NOT the wrapped CLI commands. The CLI commands
# are registered automatically and won't have to be imported here.
from .benchmark_speed import benchmark_speed_cli # noqa: F401
from .convert import convert # noqa: F401
from .debug_config import debug_config # noqa: F401
from .debug_data import debug_data # noqa: F401
from .debug_diff import debug_diff # noqa: F401
from .debug_model import debug_model # noqa: F401
from .download import download # noqa: F401
from .evaluate import evaluate # noqa: F401
from .find_function import find_function # noqa: F401
from .find_threshold import find_threshold # noqa: F401
from .info import info # noqa: F401
from .init_config import fill_config, init_config # noqa: F401
from .init_pipeline import init_pipeline_cli # noqa: F401
from .package import package # noqa: F401
from .pretrain import pretrain # noqa: F401
from .profile import profile # noqa: F401
from .project.assets import project_assets # type: ignore[attr-defined] # noqa: F401
from .project.clone import project_clone # type: ignore[attr-defined] # noqa: F401
from .project.document import ( # type: ignore[attr-defined] # noqa: F401
project_document,
)
from .project.dvc import project_update_dvc # type: ignore[attr-defined] # noqa: F401
from .project.pull import project_pull # type: ignore[attr-defined] # noqa: F401
from .project.push import project_push # type: ignore[attr-defined] # noqa: F401
from .project.run import project_run # type: ignore[attr-defined] # noqa: F401
from .train import train_cli # type: ignore[attr-defined] # noqa: F401
from .validate import validate # type: ignore[attr-defined] # noqa: F401
from .train import train_cli # noqa: F401
from .assemble import assemble_cli # noqa: F401
from .pretrain import pretrain # noqa: F401
from .debug_data import debug_data # noqa: F401
from .debug_config import debug_config # noqa: F401
from .debug_model import debug_model # noqa: F401
from .debug_diff import debug_diff # noqa: F401
from .evaluate import evaluate # noqa: F401
from .convert import convert # noqa: F401
from .init_pipeline import init_pipeline_cli # noqa: F401
from .init_config import init_config, fill_config # noqa: F401
from .validate import validate # noqa: F401
from .project.clone import project_clone # noqa: F401
from .project.assets import project_assets # noqa: F401
from .project.run import project_run # noqa: F401
from .project.dvc import project_update_dvc # noqa: F401
from .project.push import project_push # noqa: F401
from .project.pull import project_pull # noqa: F401
from .project.document import project_document # noqa: F401
@app.command("link", no_args_is_help=True, deprecated=True, hidden=True)

View File

@ -1,50 +1,36 @@
import hashlib
import os
import shutil
from typing import Dict, Any, Union, List, Optional, Tuple, Iterable
from typing import TYPE_CHECKING, overload
import sys
from configparser import InterpolationError
from contextlib import contextmanager
import shutil
from pathlib import Path
from typing import (
TYPE_CHECKING,
Any,
Dict,
Iterable,
List,
Optional,
Tuple,
Union,
overload,
)
from wasabi import msg, Printer
import srsly
import hashlib
import typer
from click import NoSuchOption
from click.parser import split_arg_string
from typer.main import get_command
from contextlib import contextmanager
from thinc.api import Config, ConfigValidationError, require_gpu
from thinc.util import gpu_is_available
from typer.main import get_command
from wasabi import Printer, msg
from weasel import app as project_cli
from configparser import InterpolationError
import os
from .. import about
from ..compat import Literal
from ..schemas import validate
from ..util import (
ENV_VARS,
SimpleFrozenDict,
import_file,
is_compatible_version,
logger,
make_tempdir,
registry,
run_command,
)
from ..schemas import ProjectConfigSchema, validate
from ..util import import_file, run_command, make_tempdir, registry, logger
from ..util import is_compatible_version, SimpleFrozenDict, ENV_VARS
from .. import about
if TYPE_CHECKING:
from pathy import Pathy # noqa: F401
SDIST_SUFFIX = ".tar.gz"
WHEEL_SUFFIX = "-py3-none-any.whl"
PROJECT_FILE = "project.yml"
PROJECT_LOCK = "project.lock"
COMMAND = "python -m spacy"
NAME = "spacy"
HELP = """spaCy Command-line Interface
@ -60,7 +46,6 @@ DEBUG_HELP = """Suite of helpful commands for debugging and profiling. Includes
commands to check and validate your config files, training and evaluation data,
and custom model implementations.
"""
BENCHMARK_HELP = """Commands for benchmarking pipelines."""
INIT_HELP = """Commands for initializing configs and pipeline packages."""
# Wrappers for Typer's annotations. Initially created to set defaults and to
@ -69,13 +54,12 @@ Arg = typer.Argument
Opt = typer.Option
app = typer.Typer(name=NAME, help=HELP)
benchmark_cli = typer.Typer(name="benchmark", help=BENCHMARK_HELP, no_args_is_help=True)
project_cli = typer.Typer(name="project", help=PROJECT_HELP, no_args_is_help=True)
debug_cli = typer.Typer(name="debug", help=DEBUG_HELP, no_args_is_help=True)
init_cli = typer.Typer(name="init", help=INIT_HELP, no_args_is_help=True)
app.add_typer(project_cli, name="project", help=PROJECT_HELP, no_args_is_help=True)
app.add_typer(project_cli)
app.add_typer(debug_cli)
app.add_typer(benchmark_cli)
app.add_typer(init_cli)
@ -103,9 +87,9 @@ def parse_config_overrides(
cli_overrides = _parse_overrides(args, is_cli=True)
if cli_overrides:
keys = [k for k in cli_overrides if k not in env_overrides]
logger.debug("Config overrides from CLI: %s", keys)
logger.debug(f"Config overrides from CLI: {keys}")
if env_overrides:
logger.debug("Config overrides from env variables: %s", list(env_overrides))
logger.debug(f"Config overrides from env variables: {list(env_overrides)}")
return {**cli_overrides, **env_overrides}
@ -148,6 +132,148 @@ def _parse_override(value: Any) -> Any:
return str(value)
def load_project_config(
path: Path, interpolate: bool = True, overrides: Dict[str, Any] = SimpleFrozenDict()
) -> Dict[str, Any]:
"""Load the project.yml file from a directory and validate it. Also make
sure that all directories defined in the config exist.
path (Path): The path to the project directory.
interpolate (bool): Whether to substitute project variables.
overrides (Dict[str, Any]): Optional config overrides.
RETURNS (Dict[str, Any]): The loaded project.yml.
"""
config_path = path / PROJECT_FILE
if not config_path.exists():
msg.fail(f"Can't find {PROJECT_FILE}", config_path, exits=1)
invalid_err = f"Invalid {PROJECT_FILE}. Double-check that the YAML is correct."
try:
config = srsly.read_yaml(config_path)
except ValueError as e:
msg.fail(invalid_err, e, exits=1)
errors = validate(ProjectConfigSchema, config)
if errors:
msg.fail(invalid_err)
print("\n".join(errors))
sys.exit(1)
validate_project_version(config)
validate_project_commands(config)
# Make sure directories defined in config exist
for subdir in config.get("directories", []):
dir_path = path / subdir
if not dir_path.exists():
dir_path.mkdir(parents=True)
if interpolate:
err = f"{PROJECT_FILE} validation error"
with show_validation_error(title=err, hint_fill=False):
config = substitute_project_variables(config, overrides)
return config
def substitute_project_variables(
config: Dict[str, Any],
overrides: Dict[str, Any] = SimpleFrozenDict(),
key: str = "vars",
env_key: str = "env",
) -> Dict[str, Any]:
"""Interpolate variables in the project file using the config system.
config (Dict[str, Any]): The project config.
overrides (Dict[str, Any]): Optional config overrides.
key (str): Key containing variables in project config.
env_key (str): Key containing environment variable mapping in project config.
RETURNS (Dict[str, Any]): The interpolated project config.
"""
config.setdefault(key, {})
config.setdefault(env_key, {})
# Substitute references to env vars with their values
for config_var, env_var in config[env_key].items():
config[env_key][config_var] = _parse_override(os.environ.get(env_var, ""))
# Need to put variables in the top scope again so we can have a top-level
# section "project" (otherwise, a list of commands in the top scope wouldn't)
# be allowed by Thinc's config system
cfg = Config({"project": config, key: config[key], env_key: config[env_key]})
cfg = Config().from_str(cfg.to_str(), overrides=overrides)
interpolated = cfg.interpolate()
return dict(interpolated["project"])
def validate_project_version(config: Dict[str, Any]) -> None:
"""If the project defines a compatible spaCy version range, chec that it's
compatible with the current version of spaCy.
config (Dict[str, Any]): The loaded config.
"""
spacy_version = config.get("spacy_version", None)
if spacy_version and not is_compatible_version(about.__version__, spacy_version):
err = (
f"The {PROJECT_FILE} specifies a spaCy version range ({spacy_version}) "
f"that's not compatible with the version of spaCy you're running "
f"({about.__version__}). You can edit version requirement in the "
f"{PROJECT_FILE} to load it, but the project may not run as expected."
)
msg.fail(err, exits=1)
def validate_project_commands(config: Dict[str, Any]) -> None:
"""Check that project commands and workflows are valid, don't contain
duplicates, don't clash and only refer to commands that exist.
config (Dict[str, Any]): The loaded config.
"""
command_names = [cmd["name"] for cmd in config.get("commands", [])]
workflows = config.get("workflows", {})
duplicates = set([cmd for cmd in command_names if command_names.count(cmd) > 1])
if duplicates:
err = f"Duplicate commands defined in {PROJECT_FILE}: {', '.join(duplicates)}"
msg.fail(err, exits=1)
for workflow_name, workflow_steps in workflows.items():
if workflow_name in command_names:
err = f"Can't use workflow name '{workflow_name}': name already exists as a command"
msg.fail(err, exits=1)
for step in workflow_steps:
if step not in command_names:
msg.fail(
f"Unknown command specified in workflow '{workflow_name}': {step}",
f"Workflows can only refer to commands defined in the 'commands' "
f"section of the {PROJECT_FILE}.",
exits=1,
)
def get_hash(data, exclude: Iterable[str] = tuple()) -> str:
"""Get the hash for a JSON-serializable object.
data: The data to hash.
exclude (Iterable[str]): Top-level keys to exclude if data is a dict.
RETURNS (str): The hash.
"""
if isinstance(data, dict):
data = {k: v for k, v in data.items() if k not in exclude}
data_str = srsly.json_dumps(data, sort_keys=True).encode("utf8")
return hashlib.md5(data_str).hexdigest()
def get_checksum(path: Union[Path, str]) -> str:
"""Get the checksum for a file or directory given its file path. If a
directory path is provided, this uses all files in that directory.
path (Union[Path, str]): The file or directory path.
RETURNS (str): The checksum.
"""
path = Path(path)
if not (path.is_file() or path.is_dir()):
msg.fail(f"Can't get checksum for {path}: not a file or directory", exits=1)
if path.is_file():
return hashlib.md5(Path(path).read_bytes()).hexdigest()
else:
# TODO: this is currently pretty slow
dir_checksum = hashlib.md5()
for sub_file in sorted(fp for fp in path.rglob("*") if fp.is_file()):
dir_checksum.update(sub_file.read_bytes())
return dir_checksum.hexdigest()
@contextmanager
def show_validation_error(
file_path: Optional[Union[str, Path]] = None,
@ -205,10 +331,159 @@ def import_code(code_path: Optional[Union[Path, str]]) -> None:
msg.fail(f"Couldn't load Python code: {code_path}", e, exits=1)
def upload_file(src: Path, dest: Union[str, "Pathy"]) -> None:
"""Upload a file.
src (Path): The source path.
url (str): The destination URL to upload to.
"""
import smart_open
dest = str(dest)
with smart_open.open(dest, mode="wb") as output_file:
with src.open(mode="rb") as input_file:
output_file.write(input_file.read())
def download_file(src: Union[str, "Pathy"], dest: Path, *, force: bool = False) -> None:
"""Download a file using smart_open.
url (str): The URL of the file.
dest (Path): The destination path.
force (bool): Whether to force download even if file exists.
If False, the download will be skipped.
"""
import smart_open
if dest.exists() and not force:
return None
src = str(src)
with smart_open.open(src, mode="rb", compression="disable") as input_file:
with dest.open(mode="wb") as output_file:
shutil.copyfileobj(input_file, output_file)
def ensure_pathy(path):
"""Temporary helper to prevent importing Pathy globally (which can cause
slow and annoying Google Cloud warning)."""
from pathy import Pathy # noqa: F811
return Pathy(path)
def git_checkout(
repo: str, subpath: str, dest: Path, *, branch: str = "master", sparse: bool = False
):
git_version = get_git_version()
if dest.exists():
msg.fail("Destination of checkout must not exist", exits=1)
if not dest.parent.exists():
msg.fail("Parent of destination of checkout must exist", exits=1)
if sparse and git_version >= (2, 22):
return git_sparse_checkout(repo, subpath, dest, branch)
elif sparse:
# Only show warnings if the user explicitly wants sparse checkout but
# the Git version doesn't support it
err_old = (
f"You're running an old version of Git (v{git_version[0]}.{git_version[1]}) "
f"that doesn't fully support sparse checkout yet."
)
err_unk = "You're running an unknown version of Git, so sparse checkout has been disabled."
msg.warn(
f"{err_unk if git_version == (0, 0) else err_old} "
f"This means that more files than necessary may be downloaded "
f"temporarily. To only download the files needed, make sure "
f"you're using Git v2.22 or above."
)
with make_tempdir() as tmp_dir:
cmd = f"git -C {tmp_dir} clone {repo} . -b {branch}"
run_command(cmd, capture=True)
# We need Path(name) to make sure we also support subdirectories
try:
source_path = tmp_dir / Path(subpath)
if not is_subpath_of(tmp_dir, source_path):
err = f"'{subpath}' is a path outside of the cloned repository."
msg.fail(err, repo, exits=1)
shutil.copytree(str(source_path), str(dest))
except FileNotFoundError:
err = f"Can't clone {subpath}. Make sure the directory exists in the repo (branch '{branch}')"
msg.fail(err, repo, exits=1)
def git_sparse_checkout(repo, subpath, dest, branch):
# We're using Git, partial clone and sparse checkout to
# only clone the files we need
# This ends up being RIDICULOUS. omg.
# So, every tutorial and SO post talks about 'sparse checkout'...But they
# go and *clone* the whole repo. Worthless. And cloning part of a repo
# turns out to be completely broken. The only way to specify a "path" is..
# a path *on the server*? The contents of which, specifies the paths. Wat.
# Obviously this is hopelessly broken and insecure, because you can query
# arbitrary paths on the server! So nobody enables this.
# What we have to do is disable *all* files. We could then just checkout
# the path, and it'd "work", but be hopelessly slow...Because it goes and
# transfers every missing object one-by-one. So the final piece is that we
# need to use some weird git internals to fetch the missings in bulk, and
# *that* we can do by path.
# We're using Git and sparse checkout to only clone the files we need
with make_tempdir() as tmp_dir:
# This is the "clone, but don't download anything" part.
cmd = (
f"git clone {repo} {tmp_dir} --no-checkout --depth 1 "
f"-b {branch} --filter=blob:none"
)
run_command(cmd)
# Now we need to find the missing filenames for the subpath we want.
# Looking for this 'rev-list' command in the git --help? Hah.
cmd = f"git -C {tmp_dir} rev-list --objects --all --missing=print -- {subpath}"
ret = run_command(cmd, capture=True)
git_repo = _http_to_git(repo)
# Now pass those missings into another bit of git internals
missings = " ".join([x[1:] for x in ret.stdout.split() if x.startswith("?")])
if not missings:
err = (
f"Could not find any relevant files for '{subpath}'. "
f"Did you specify a correct and complete path within repo '{repo}' "
f"and branch {branch}?"
)
msg.fail(err, exits=1)
cmd = f"git -C {tmp_dir} fetch-pack {git_repo} {missings}"
run_command(cmd, capture=True)
# And finally, we can checkout our subpath
cmd = f"git -C {tmp_dir} checkout {branch} {subpath}"
run_command(cmd, capture=True)
# Get a subdirectory of the cloned path, if appropriate
source_path = tmp_dir / Path(subpath)
if not is_subpath_of(tmp_dir, source_path):
err = f"'{subpath}' is a path outside of the cloned repository."
msg.fail(err, repo, exits=1)
shutil.move(str(source_path), str(dest))
def git_repo_branch_exists(repo: str, branch: str) -> bool:
"""Uses 'git ls-remote' to check if a repository and branch exists
repo (str): URL to get repo.
branch (str): Branch on repo to check.
RETURNS (bool): True if repo:branch exists.
"""
get_git_version()
cmd = f"git ls-remote {repo} {branch}"
# We might be tempted to use `--exit-code` with `git ls-remote`, but
# `run_command` handles the `returncode` for us, so we'll rely on
# the fact that stdout returns '' if the requested branch doesn't exist
ret = run_command(cmd, capture=True)
exists = ret.stdout != ""
return exists
def get_git_version(
error: str = "Could not run 'git'. Make sure it's installed and the executable is available.",
) -> Tuple[int, int]:
"""Get the version of git and raise an error if calling 'git --version' fails.
error (str): The error message to show.
RETURNS (Tuple[int, int]): The version as a (major, minor) tuple. Returns
(0, 0) if the version couldn't be determined.
@ -224,6 +499,30 @@ def get_git_version(
return int(version[0]), int(version[1])
def _http_to_git(repo: str) -> str:
if repo.startswith("http://"):
repo = repo.replace(r"http://", r"https://")
if repo.startswith(r"https://"):
repo = repo.replace("https://", "git@").replace("/", ":", 1)
if repo.endswith("/"):
repo = repo[:-1]
repo = f"{repo}.git"
return repo
def is_subpath_of(parent, child):
"""
Check whether `child` is a path contained within `parent`.
"""
# Based on https://stackoverflow.com/a/37095733 .
# In Python 3.9, the `Path.is_relative_to()` method will supplant this, so
# we can stop using crusty old os.path functions.
parent_realpath = os.path.realpath(parent)
child_realpath = os.path.realpath(child)
return os.path.commonpath([parent_realpath, child_realpath]) == parent_realpath
@overload
def string_to_list(value: str, intify: Literal[False] = ...) -> List[str]:
...
@ -276,33 +575,6 @@ def setup_gpu(use_gpu: int, silent=None) -> None:
local_msg.info("To switch to GPU 0, use the option: --gpu-id 0")
def walk_directory(path: Path, suffix: Optional[str] = None) -> List[Path]:
"""Given a directory and a suffix, recursively find all files matching the suffix.
Directories or files with names beginning with a . are ignored, but hidden flags on
filesystems are not checked.
When provided with a suffix `None`, there is no suffix-based filtering."""
if not path.is_dir():
return [path]
paths = [path]
locs = []
seen = set()
for path in paths:
if str(path) in seen:
continue
seen.add(str(path))
if path.parts[-1].startswith("."):
continue
elif path.is_dir():
paths.extend(path.iterdir())
elif suffix is not None and not path.parts[-1].endswith(suffix):
continue
else:
locs.append(path)
# It's good to sort these, in case the ordering messes up cache.
locs.sort()
return locs
def _format_number(number: Union[int, float], ndigits: int = 2) -> str:
"""Formats a number (float or int) rounding to `ndigits`, without truncating trailing 0s,
as happens with `round(number, ndigits)`"""

View File

@ -1,142 +0,0 @@
from itertools import chain
from pathlib import Path
from typing import Iterable, List, Optional, Union, cast
import srsly
import tqdm
from wasabi import msg
from ..tokens import Doc, DocBin
from ..util import ensure_path, load_model
from ..vocab import Vocab
from ._util import Arg, Opt, app, import_code, setup_gpu, walk_directory
path_help = """Location of the documents to predict on.
Can be a single file in .spacy format or a .jsonl file.
Files with other extensions are treated as single plain text documents.
If a directory is provided it is traversed recursively to grab
all files to be processed.
The files can be a mixture of .spacy, .jsonl and text files.
If .jsonl is provided the specified field is going
to be grabbed ("text" by default)."""
out_help = "Path to save the resulting .spacy file"
code_help = (
"Path to Python file with additional " "code (registered functions) to be imported"
)
gold_help = "Use gold preprocessing provided in the .spacy files"
force_msg = (
"The provided output file already exists. "
"To force overwriting the output file, set the --force or -F flag."
)
DocOrStrStream = Union[Iterable[str], Iterable[Doc]]
def _stream_docbin(path: Path, vocab: Vocab) -> Iterable[Doc]:
"""
Stream Doc objects from DocBin.
"""
docbin = DocBin().from_disk(path)
for doc in docbin.get_docs(vocab):
yield doc
def _stream_jsonl(path: Path, field: str) -> Iterable[str]:
"""
Stream "text" field from JSONL. If the field "text" is
not found it raises error.
"""
for entry in srsly.read_jsonl(path):
if field not in entry:
msg.fail(f"{path} does not contain the required '{field}' field.", exits=1)
else:
yield entry[field]
def _stream_texts(paths: Iterable[Path]) -> Iterable[str]:
"""
Yields strings from text files in paths.
"""
for path in paths:
with open(path, "r") as fin:
text = fin.read()
yield text
@app.command("apply")
def apply_cli(
# fmt: off
model: str = Arg(..., help="Model name or path"),
data_path: Path = Arg(..., help=path_help, exists=True),
output_file: Path = Arg(..., help=out_help, dir_okay=False),
code_path: Optional[Path] = Opt(None, "--code", "-c", help=code_help),
text_key: str = Opt("text", "--text-key", "-tk", help="Key containing text string for JSONL"),
force_overwrite: bool = Opt(False, "--force", "-F", help="Force overwriting the output file"),
use_gpu: int = Opt(-1, "--gpu-id", "-g", help="GPU ID or -1 for CPU."),
batch_size: int = Opt(1, "--batch-size", "-b", help="Batch size."),
n_process: int = Opt(1, "--n-process", "-n", help="number of processors to use.")
):
"""
Apply a trained pipeline to documents to get predictions.
Expects a loadable spaCy pipeline and path to the data, which
can be a directory or a file.
The data files can be provided in multiple formats:
1. .spacy files
2. .jsonl files with a specified "field" to read the text from.
3. Files with any other extension are assumed to be containing
a single document.
DOCS: https://spacy.io/api/cli#apply
"""
data_path = ensure_path(data_path)
output_file = ensure_path(output_file)
code_path = ensure_path(code_path)
if output_file.exists() and not force_overwrite:
msg.fail(force_msg, exits=1)
if not data_path.exists():
msg.fail(f"Couldn't find data path: {data_path}", exits=1)
import_code(code_path)
setup_gpu(use_gpu)
apply(data_path, output_file, model, text_key, batch_size, n_process)
def apply(
data_path: Path,
output_file: Path,
model: str,
json_field: str,
batch_size: int,
n_process: int,
):
docbin = DocBin(store_user_data=True)
paths = walk_directory(data_path)
if len(paths) == 0:
docbin.to_disk(output_file)
msg.warn(
"Did not find data to process,"
f" {data_path} seems to be an empty directory."
)
return
nlp = load_model(model)
msg.good(f"Loaded model {model}")
vocab = nlp.vocab
streams: List[DocOrStrStream] = []
text_files = []
for path in paths:
if path.suffix == ".spacy":
streams.append(_stream_docbin(path, vocab))
elif path.suffix == ".jsonl":
streams.append(_stream_jsonl(path, json_field))
else:
text_files.append(path)
if len(text_files) > 0:
streams.append(_stream_texts(text_files))
datagen = cast(DocOrStrStream, chain(*streams))
for doc in tqdm.tqdm(
nlp.pipe(datagen, batch_size=batch_size, n_process=n_process), disable=None
):
docbin.add(doc)
if output_file.suffix == "":
output_file = output_file.with_suffix(".spacy")
docbin.to_disk(output_file)

View File

@ -1,20 +1,13 @@
import logging
from pathlib import Path
from typing import Optional
import typer
from pathlib import Path
from wasabi import msg
import typer
import logging
from ._util import app, Arg, Opt, parse_config_overrides, show_validation_error
from ._util import import_code
from .. import util
from ..util import get_sourced_components, load_model_from_config
from ._util import (
Arg,
Opt,
app,
import_code,
parse_config_overrides,
show_validation_error,
)
@app.command(
@ -40,8 +33,7 @@ def assemble_cli(
DOCS: https://spacy.io/api/cli#assemble
"""
if verbose:
util.logger.setLevel(logging.DEBUG)
util.logger.setLevel(logging.DEBUG if verbose else logging.INFO)
# Make sure all files and paths exists if they are needed
if not config_path or (str(config_path) != "-" and not config_path.exists()):
msg.fail("Config file not found", config_path, exits=1)

View File

@ -1,177 +0,0 @@
import random
import time
from itertools import islice
from pathlib import Path
from typing import Iterable, List, Optional
import numpy
import typer
from tqdm import tqdm
from wasabi import msg
from .. import util
from ..language import Language
from ..tokens import Doc
from ..training import Corpus
from ._util import Arg, Opt, benchmark_cli, import_code, setup_gpu
@benchmark_cli.command(
"speed",
context_settings={"allow_extra_args": True, "ignore_unknown_options": True},
)
def benchmark_speed_cli(
# fmt: off
ctx: typer.Context,
model: str = Arg(..., help="Model name or path"),
data_path: Path = Arg(..., help="Location of binary evaluation data in .spacy format", exists=True),
batch_size: Optional[int] = Opt(None, "--batch-size", "-b", min=1, help="Override the pipeline batch size"),
no_shuffle: bool = Opt(False, "--no-shuffle", help="Do not shuffle benchmark data"),
use_gpu: int = Opt(-1, "--gpu-id", "-g", help="GPU ID or -1 for CPU"),
n_batches: int = Opt(50, "--batches", help="Minimum number of batches to benchmark", min=30,),
warmup_epochs: int = Opt(3, "--warmup", "-w", min=0, help="Number of iterations over the data for warmup"),
code_path: Optional[Path] = Opt(None, "--code", "-c", help="Path to Python file with additional code (registered functions) to be imported"),
# fmt: on
):
"""
Benchmark a pipeline. Expects a loadable spaCy pipeline and benchmark
data in the binary .spacy format.
"""
import_code(code_path)
setup_gpu(use_gpu=use_gpu, silent=False)
nlp = util.load_model(model)
batch_size = batch_size if batch_size is not None else nlp.batch_size
corpus = Corpus(data_path)
docs = [eg.predicted for eg in corpus(nlp)]
if len(docs) == 0:
msg.fail("Cannot benchmark speed using an empty corpus.", exits=1)
print(f"Warming up for {warmup_epochs} epochs...")
warmup(nlp, docs, warmup_epochs, batch_size)
print()
print(f"Benchmarking {n_batches} batches...")
wps = benchmark(nlp, docs, n_batches, batch_size, not no_shuffle)
print()
print_outliers(wps)
print_mean_with_ci(wps)
# Lowercased, behaves as a context manager function.
class time_context:
"""Register the running time of a context."""
def __enter__(self):
self.start = time.perf_counter()
return self
def __exit__(self, type, value, traceback):
self.elapsed = time.perf_counter() - self.start
class Quartiles:
"""Calculate the q1, q2, q3 quartiles and the inter-quartile range (iqr)
of a sample."""
q1: float
q2: float
q3: float
iqr: float
def __init__(self, sample: numpy.ndarray) -> None:
self.q1 = numpy.quantile(sample, 0.25)
self.q2 = numpy.quantile(sample, 0.5)
self.q3 = numpy.quantile(sample, 0.75)
self.iqr = self.q3 - self.q1
def annotate(
nlp: Language, docs: List[Doc], batch_size: Optional[int]
) -> numpy.ndarray:
docs = nlp.pipe(tqdm(docs, unit="doc", disable=None), batch_size=batch_size)
wps = []
while True:
with time_context() as elapsed:
batch_docs = list(
islice(docs, batch_size if batch_size else nlp.batch_size)
)
if len(batch_docs) == 0:
break
n_tokens = count_tokens(batch_docs)
wps.append(n_tokens / elapsed.elapsed)
return numpy.array(wps)
def benchmark(
nlp: Language,
docs: List[Doc],
n_batches: int,
batch_size: int,
shuffle: bool,
) -> numpy.ndarray:
if shuffle:
bench_docs = [
nlp.make_doc(random.choice(docs).text)
for _ in range(n_batches * batch_size)
]
else:
bench_docs = [
nlp.make_doc(docs[i % len(docs)].text)
for i in range(n_batches * batch_size)
]
return annotate(nlp, bench_docs, batch_size)
def bootstrap(x, statistic=numpy.mean, iterations=10000) -> numpy.ndarray:
"""Apply a statistic to repeated random samples of an array."""
return numpy.fromiter(
(
statistic(numpy.random.choice(x, len(x), replace=True))
for _ in range(iterations)
),
numpy.float64,
)
def count_tokens(docs: Iterable[Doc]) -> int:
return sum(len(doc) for doc in docs)
def print_mean_with_ci(sample: numpy.ndarray):
mean = numpy.mean(sample)
bootstrap_means = bootstrap(sample)
bootstrap_means.sort()
# 95% confidence interval
low = bootstrap_means[int(len(bootstrap_means) * 0.025)]
high = bootstrap_means[int(len(bootstrap_means) * 0.975)]
print(f"Mean: {mean:.1f} words/s (95% CI: {low-mean:.1f} +{high-mean:.1f})")
def print_outliers(sample: numpy.ndarray):
quartiles = Quartiles(sample)
n_outliers = numpy.sum(
(sample < (quartiles.q1 - 1.5 * quartiles.iqr))
| (sample > (quartiles.q3 + 1.5 * quartiles.iqr))
)
n_extreme_outliers = numpy.sum(
(sample < (quartiles.q1 - 3.0 * quartiles.iqr))
| (sample > (quartiles.q3 + 3.0 * quartiles.iqr))
)
print(
f"Outliers: {(100 * n_outliers) / len(sample):.1f}%, extreme outliers: {(100 * n_extreme_outliers) / len(sample)}%"
)
def warmup(
nlp: Language, docs: List[Doc], warmup_epochs: int, batch_size: Optional[int]
) -> numpy.ndarray:
docs = [doc.copy() for doc in docs * warmup_epochs]
return annotate(nlp, docs, batch_size)

View File

@ -1,22 +1,18 @@
import itertools
import re
import sys
from typing import Callable, Iterable, Mapping, Optional, Any, List, Union
from enum import Enum
from pathlib import Path
from typing import Any, Callable, Iterable, Mapping, Optional, Union
import srsly
from wasabi import Printer
import srsly
import re
import sys
import itertools
from ..tokens import Doc, DocBin
from ._util import app, Arg, Opt
from ..training import docs_to_json
from ..training.converters import (
conll_ner_to_docs,
conllu_to_docs,
iob_to_docs,
json_to_docs,
)
from ._util import Arg, Opt, app, walk_directory
from ..tokens import Doc, DocBin
from ..training.converters import iob_to_docs, conll_ner_to_docs, json_to_docs
from ..training.converters import conllu_to_docs
# Converters are matched by file extension except for ner/iob, which are
# matched by file extension and content. To add a converter, add a new
@ -32,8 +28,6 @@ CONVERTERS: Mapping[str, Callable[..., Iterable[Doc]]] = {
"json": json_to_docs,
}
AUTO = "auto"
# File types that can be written to stdout
FILE_TYPES_STDOUT = ("json",)
@ -55,7 +49,7 @@ def convert_cli(
model: Optional[str] = Opt(None, "--model", "--base", "-b", help="Trained spaCy pipeline for sentence segmentation to use as base (for --seg-sents)"),
morphology: bool = Opt(False, "--morphology", "-m", help="Enable appending morphology to tags"),
merge_subtokens: bool = Opt(False, "--merge-subtokens", "-T", help="Merge CoNLL-U subtokens"),
converter: str = Opt(AUTO, "--converter", "-c", help=f"Converter: {tuple(CONVERTERS.keys())}"),
converter: str = Opt("auto", "--converter", "-c", help=f"Converter: {tuple(CONVERTERS.keys())}"),
ner_map: Optional[Path] = Opt(None, "--ner-map", "-nm", help="NER tag mapping (as JSON-encoded dict of entity types)", exists=True),
lang: Optional[str] = Opt(None, "--lang", "-l", help="Language (if tokenizer required)"),
concatenate: bool = Opt(None, "--concatenate", "-C", help="Concatenate output to a single file"),
@ -76,8 +70,8 @@ def convert_cli(
output_dir: Union[str, Path] = "-" if output_dir == Path("-") else output_dir
silent = output_dir == "-"
msg = Printer(no_print=silent)
converter = _get_converter(msg, converter, input_path)
verify_cli_args(msg, input_path, output_dir, file_type.value, converter, ner_map)
converter = _get_converter(msg, converter, input_path)
convert(
input_path,
output_dir,
@ -106,7 +100,7 @@ def convert(
model: Optional[str] = None,
morphology: bool = False,
merge_subtokens: bool = False,
converter: str,
converter: str = "auto",
ner_map: Optional[Path] = None,
lang: Optional[str] = None,
concatenate: bool = False,
@ -195,6 +189,33 @@ def autodetect_ner_format(input_data: str) -> Optional[str]:
return None
def walk_directory(path: Path, converter: str) -> List[Path]:
if not path.is_dir():
return [path]
paths = [path]
locs = []
seen = set()
for path in paths:
if str(path) in seen:
continue
seen.add(str(path))
if path.parts[-1].startswith("."):
continue
elif path.is_dir():
paths.extend(path.iterdir())
elif converter == "json" and not path.parts[-1].endswith("json"):
continue
elif converter == "conll" and not path.parts[-1].endswith("conll"):
continue
elif converter == "iob" and not path.parts[-1].endswith("iob"):
continue
else:
locs.append(path)
# It's good to sort these, in case the ordering messes up cache.
locs.sort()
return locs
def verify_cli_args(
msg: Printer,
input_path: Path,
@ -218,22 +239,18 @@ def verify_cli_args(
input_locs = walk_directory(input_path, converter)
if len(input_locs) == 0:
msg.fail("No input files in directory", input_path, exits=1)
if converter not in CONVERTERS:
file_types = list(set([loc.suffix[1:] for loc in input_locs]))
if converter == "auto" and len(file_types) >= 2:
file_types_str = ",".join(file_types)
msg.fail("All input files must be same type", file_types_str, exits=1)
if converter != "auto" and converter not in CONVERTERS:
msg.fail(f"Can't find converter for {converter}", exits=1)
def _get_converter(msg, converter, input_path: Path):
if input_path.is_dir():
if converter == AUTO:
input_locs = walk_directory(input_path, suffix=None)
file_types = list(set([loc.suffix[1:] for loc in input_locs]))
if len(file_types) >= 2:
file_types_str = ",".join(file_types)
msg.fail("All input files must be same type", file_types_str, exits=1)
input_path = input_locs[0]
else:
input_path = walk_directory(input_path, suffix=converter)[0]
if converter == AUTO:
input_path = walk_directory(input_path, converter)[0]
if converter == "auto":
converter = input_path.suffix[1:]
if converter == "ner" or converter == "iob":
with input_path.open(encoding="utf8") as file_:

View File

@ -1,22 +1,15 @@
from typing import Optional, Dict, Any, Union, List
from pathlib import Path
from typing import Any, Dict, List, Optional, Union
import typer
from wasabi import msg, table
from thinc.api import Config
from thinc.config import VARIABLE_RE
from wasabi import msg, table
import typer
from .. import util
from ._util import Arg, Opt, show_validation_error, parse_config_overrides
from ._util import import_code, debug_cli
from ..schemas import ConfigSchemaInit, ConfigSchemaTraining
from ..util import registry
from ._util import (
Arg,
Opt,
debug_cli,
import_code,
parse_config_overrides,
show_validation_error,
)
from .. import util
@debug_cli.command(

View File

@ -1,49 +1,28 @@
import math
import sys
from collections import Counter
from typing import Any, Dict, Iterable, List, Optional, Sequence, Set, Tuple, Union
from typing import cast, overload
from pathlib import Path
from typing import (
Any,
Dict,
Iterable,
List,
Optional,
Sequence,
Set,
Tuple,
Union,
cast,
overload,
)
import numpy
from collections import Counter
import sys
import srsly
from wasabi import Printer, MESSAGES, msg
import typer
from wasabi import MESSAGES, Printer, msg
import math
from .. import util
from ..compat import Literal
from ..language import Language
from ..morphology import Morphology
from ..pipeline import Morphologizer, SpanCategorizer, TrainablePipe
from ..pipeline._edit_tree_internals.edit_trees import EditTrees
from ..pipeline._parser_internals import nonproj
from ..pipeline._parser_internals.nonproj import DELIMITER
from ..schemas import ConfigSchemaTraining
from ._util import app, Arg, Opt, show_validation_error, parse_config_overrides
from ._util import import_code, debug_cli, _format_number
from ..training import Example, remove_bilu_prefix
from ..training.initialize import get_sourced_components
from ..schemas import ConfigSchemaTraining
from ..pipeline._parser_internals import nonproj
from ..pipeline._parser_internals.nonproj import DELIMITER
from ..pipeline import Morphologizer, SpanCategorizer
from ..morphology import Morphology
from ..language import Language
from ..util import registry, resolve_dot_names
from ..compat import Literal
from ..vectors import Mode as VectorsMode
from ._util import (
Arg,
Opt,
_format_number,
app,
debug_cli,
import_code,
parse_config_overrides,
show_validation_error,
)
from .. import util
# Minimum number of expected occurrences of NER label in data to train new label
NEW_LABEL_THRESHOLD = 50
@ -230,7 +209,7 @@ def debug_data(
else:
msg.info("No word vectors present in the package")
if "spancat" in factory_names or "spancat_singlelabel" in factory_names:
if "spancat" in factory_names:
model_labels_spancat = _get_labels_from_spancat(nlp)
has_low_data_warning = False
has_no_neg_warning = False
@ -355,7 +334,7 @@ def debug_data(
show=verbose,
)
else:
msg.good("Examples without occurrences available for all labels")
msg.good("Examples without ocurrences available for all labels")
if "ner" in factory_names:
# Get all unique NER labels present in the data
@ -540,13 +519,9 @@ def debug_data(
if "tagger" in factory_names:
msg.divider("Part-of-speech Tagging")
label_list, counts = zip(*gold_train_data["tags"].items())
msg.info(f"{len(label_list)} label(s) in train data")
p = numpy.array(counts)
p = p / p.sum()
norm_entropy = (-p * numpy.log2(p)).sum() / numpy.log2(len(label_list))
msg.info(f"{norm_entropy} is the normalised label entropy")
label_list = [label for label in gold_train_data["tags"]]
model_labels = _get_labels_from_model(nlp, "tagger")
msg.info(f"{len(label_list)} label(s) in train data")
labels = set(label_list)
missing_labels = model_labels - labels
if missing_labels:
@ -695,59 +670,6 @@ def debug_data(
f"Found {gold_train_data['n_cycles']} projectivized train sentence(s) with cycles"
)
if "trainable_lemmatizer" in factory_names:
msg.divider("Trainable Lemmatizer")
trees_train: Set[str] = gold_train_data["lemmatizer_trees"]
trees_dev: Set[str] = gold_dev_data["lemmatizer_trees"]
# This is necessary context when someone is attempting to interpret whether the
# number of trees exclusively in the dev set is meaningful.
msg.info(f"{len(trees_train)} lemmatizer trees generated from training data")
msg.info(f"{len(trees_dev)} lemmatizer trees generated from dev data")
dev_not_train = trees_dev - trees_train
if len(dev_not_train) != 0:
pct = len(dev_not_train) / len(trees_dev)
msg.info(
f"{len(dev_not_train)} lemmatizer trees ({pct*100:.1f}% of dev trees)"
" were found exclusively in the dev data."
)
else:
# Would we ever expect this case? It seems like it would be pretty rare,
# and we might actually want a warning?
msg.info("All trees in dev data present in training data.")
if gold_train_data["n_low_cardinality_lemmas"] > 0:
n = gold_train_data["n_low_cardinality_lemmas"]
msg.warn(f"{n} training docs with 0 or 1 unique lemmas.")
if gold_dev_data["n_low_cardinality_lemmas"] > 0:
n = gold_dev_data["n_low_cardinality_lemmas"]
msg.warn(f"{n} dev docs with 0 or 1 unique lemmas.")
if gold_train_data["no_lemma_annotations"] > 0:
n = gold_train_data["no_lemma_annotations"]
msg.warn(f"{n} training docs with no lemma annotations.")
else:
msg.good("All training docs have lemma annotations.")
if gold_dev_data["no_lemma_annotations"] > 0:
n = gold_dev_data["no_lemma_annotations"]
msg.warn(f"{n} dev docs with no lemma annotations.")
else:
msg.good("All dev docs have lemma annotations.")
if gold_train_data["partial_lemma_annotations"] > 0:
n = gold_train_data["partial_lemma_annotations"]
msg.info(f"{n} training docs with partial lemma annotations.")
else:
msg.good("All training docs have complete lemma annotations.")
if gold_dev_data["partial_lemma_annotations"] > 0:
n = gold_dev_data["partial_lemma_annotations"]
msg.info(f"{n} dev docs with partial lemma annotations.")
else:
msg.good("All dev docs have complete lemma annotations.")
msg.divider("Summary")
good_counts = msg.counts[MESSAGES.GOOD]
warn_counts = msg.counts[MESSAGES.WARN]
@ -809,13 +731,7 @@ def _compile_gold(
"n_cats_multilabel": 0,
"n_cats_bad_values": 0,
"texts": set(),
"lemmatizer_trees": set(),
"no_lemma_annotations": 0,
"partial_lemma_annotations": 0,
"n_low_cardinality_lemmas": 0,
}
if "trainable_lemmatizer" in factory_names:
trees = EditTrees(nlp.vocab.strings)
for eg in examples:
gold = eg.reference
doc = eg.predicted
@ -848,7 +764,7 @@ def _compile_gold(
data["boundary_cross_ents"] += 1
elif label == "-":
data["ner"]["-"] += 1
if "spancat" in factory_names or "spancat_singlelabel" in factory_names:
if "spancat" in factory_names:
for spans_key in list(eg.reference.spans.keys()):
# Obtain the span frequency
if spans_key not in data["spancat"]:
@ -945,25 +861,6 @@ def _compile_gold(
data["n_nonproj"] += 1
if nonproj.contains_cycle(aligned_heads):
data["n_cycles"] += 1
if "trainable_lemmatizer" in factory_names:
# from EditTreeLemmatizer._labels_from_data
if all(token.lemma == 0 for token in gold):
data["no_lemma_annotations"] += 1
continue
if any(token.lemma == 0 for token in gold):
data["partial_lemma_annotations"] += 1
lemma_set = set()
for token in gold:
if token.lemma != 0:
lemma_set.add(token.lemma)
tree_id = trees.add(token.text, token.lemma_)
tree_str = trees.tree_to_str(tree_id)
data["lemmatizer_trees"].add(tree_str)
# We want to identify cases where lemmas aren't assigned
# or are all assigned the same value, as this would indicate
# an issue since we're expecting a large set of lemmas
if len(lemma_set) < 2 and len(gold) > 1:
data["n_low_cardinality_lemmas"] += 1
return data
@ -1037,7 +934,6 @@ def _get_labels_from_model(nlp: Language, factory_name: str) -> Set[str]:
labels: Set[str] = set()
for pipe_name in pipe_names:
pipe = nlp.get_pipe(pipe_name)
assert isinstance(pipe, TrainablePipe)
labels.update(pipe.labels)
return labels
@ -1046,7 +942,7 @@ def _get_labels_from_spancat(nlp: Language) -> Dict[str, Set[str]]:
pipe_names = [
pipe_name
for pipe_name in nlp.pipe_names
if nlp.get_pipe_meta(pipe_name).factory in ("spancat", "spancat_singlelabel")
if nlp.get_pipe_meta(pipe_name).factory == "spancat"
]
labels: Dict[str, Set[str]] = {}
for pipe_name in pipe_names:

View File

@ -1,13 +1,13 @@
from pathlib import Path
from typing import Optional
import typer
from wasabi import Printer, diff_strings, MarkdownRenderer
from pathlib import Path
from thinc.api import Config
from wasabi import MarkdownRenderer, Printer, diff_strings
from ._util import debug_cli, Arg, Opt, show_validation_error, parse_config_overrides
from ..util import load_config
from ._util import Arg, Opt, debug_cli, parse_config_overrides, show_validation_error
from .init_config import Optimizations, init_config
from .init_config import init_config, Optimizations
@debug_cli.command(

View File

@ -1,32 +1,19 @@
import itertools
from typing import Dict, Any, Optional
from pathlib import Path
from typing import Any, Dict, Optional
import typer
from thinc.api import (
Model,
data_validation,
fix_random_seed,
set_dropout_rate,
set_gpu_allocator,
)
from wasabi import msg
import itertools
from spacy.training import Example
from spacy.util import resolve_dot_names
from wasabi import msg
from thinc.api import fix_random_seed, set_dropout_rate
from thinc.api import Model, data_validation, set_gpu_allocator
import typer
from .. import util
from ._util import Arg, Opt, debug_cli, show_validation_error
from ._util import parse_config_overrides, string_to_list, setup_gpu
from ..schemas import ConfigSchemaTraining
from ..util import registry
from ._util import (
Arg,
Opt,
debug_cli,
parse_config_overrides,
setup_gpu,
show_validation_error,
string_to_list,
)
from .. import util
@debug_cli.command(
@ -170,7 +157,7 @@ def debug_model(
msg.divider(f"STEP 3 - prediction")
msg.info(str(prediction))
msg.good(f"Successfully ended analysis - model looks good.")
msg.good(f"Succesfully ended analysis - model looks good.")
def _sentences():

View File

@ -1,22 +1,14 @@
import sys
from typing import Optional, Sequence
from urllib.parse import urljoin
import requests
import typer
import sys
from wasabi import msg
import typer
from ._util import app, Arg, Opt, WHEEL_SUFFIX, SDIST_SUFFIX
from .. import about
from ..util import is_package, get_minor_version, run_command
from ..util import is_prerelease_version
from ..errors import OLD_MODEL_SHORTCUTS
from ..util import (
get_minor_version,
is_in_interactive,
is_in_jupyter,
is_package,
is_prerelease_version,
run_command,
)
from ._util import SDIST_SUFFIX, WHEEL_SUFFIX, Arg, Opt, app
@app.command(
@ -64,13 +56,6 @@ def download(
)
pip_args = pip_args + ("--no-deps",)
if direct:
# Reject model names with '/', in order to prevent shenanigans.
if "/" in model:
msg.fail(
title="Model download rejected",
text=f"Cannot download model '{model}'. Models are expected to be file names, not URLs or fragments",
exits=True,
)
components = model.split("-")
model_name = "".join(components[:-1])
version = components[-1]
@ -92,33 +77,15 @@ def download(
"Download and installation successful",
f"You can now load the package via spacy.load('{model_name}')",
)
if is_in_jupyter():
reload_deps_msg = (
"If you are in a Jupyter or Colab notebook, you may need to "
"restart Python in order to load all the package's dependencies. "
"You can do this by selecting the 'Restart kernel' or 'Restart "
"runtime' option."
)
msg.warn(
"Restart to reload dependencies",
reload_deps_msg,
)
elif is_in_interactive():
reload_deps_msg = (
"If you are in an interactive Python session, you may need to "
"exit and restart Python to load all the package's dependencies. "
"You can exit with Ctrl-D (or Ctrl-Z and Enter on Windows)."
)
msg.warn(
"Restart to reload dependencies",
reload_deps_msg,
)
def get_model_filename(model_name: str, version: str, sdist: bool = False) -> str:
dl_tpl = "{m}-{v}/{m}-{v}{s}"
egg_tpl = "#egg={m}=={v}"
suffix = SDIST_SUFFIX if sdist else WHEEL_SUFFIX
filename = dl_tpl.format(m=model_name, v=version, s=suffix)
if sdist:
filename += egg_tpl.format(m=model_name, v=version)
return filename
@ -161,16 +128,7 @@ def get_latest_version(model: str) -> str:
def download_model(
filename: str, user_pip_args: Optional[Sequence[str]] = None
) -> None:
# Construct the download URL carefully. We need to make sure we don't
# allow relative paths or other shenanigans to trick us into download
# from outside our own repo.
base_url = about.__download_url__
# urljoin requires that the path ends with /, or the last path part will be dropped
if not base_url.endswith("/"):
base_url = about.__download_url__ + "/"
download_url = urljoin(base_url, filename)
if not download_url.startswith(about.__download_url__):
raise ValueError(f"Download from {filename} rejected. Was it a relative path?")
download_url = about.__download_url__ + "/" + filename
pip_args = list(user_pip_args) if user_pip_args is not None else []
cmd = [sys.executable, "-m", "pip", "install"] + pip_args + [download_url]
run_command(cmd)

View File

@ -1,21 +1,18 @@
import re
from typing import Optional, List, Dict, Any, Union
from wasabi import Printer
from pathlib import Path
from typing import Any, Dict, List, Optional, Union
import re
import srsly
from thinc.api import fix_random_seed
from wasabi import Printer
from .. import displacy, util
from ..scorer import Scorer
from ..tokens import Doc
from ..training import Corpus
from ._util import Arg, Opt, app, benchmark_cli, import_code, setup_gpu
from ..tokens import Doc
from ._util import app, Arg, Opt, setup_gpu, import_code
from ..scorer import Scorer
from .. import util
from .. import displacy
@benchmark_cli.command(
"accuracy",
)
@app.command("evaluate")
def evaluate_cli(
# fmt: off
@ -27,8 +24,6 @@ def evaluate_cli(
gold_preproc: bool = Opt(False, "--gold-preproc", "-G", help="Use gold preprocessing"),
displacy_path: Optional[Path] = Opt(None, "--displacy-path", "-dp", help="Directory to output rendered parses as HTML", exists=True, file_okay=False),
displacy_limit: int = Opt(25, "--displacy-limit", "-dl", help="Limit of parses to render as HTML"),
per_component: bool = Opt(False, "--per-component", "-P", help="Return scores per component, only applicable when an output JSON file is specified."),
spans_key: str = Opt("sc", "--spans-key", "-sk", help="Spans key to use when evaluating Doc.spans"),
# fmt: on
):
"""
@ -41,7 +36,7 @@ def evaluate_cli(
dependency parses in a HTML file, set as output directory as the
displacy_path argument.
DOCS: https://spacy.io/api/cli#benchmark-accuracy
DOCS: https://spacy.io/api/cli#evaluate
"""
import_code(code_path)
evaluate(
@ -52,9 +47,7 @@ def evaluate_cli(
gold_preproc=gold_preproc,
displacy_path=displacy_path,
displacy_limit=displacy_limit,
per_component=per_component,
silent=False,
spans_key=spans_key,
)
@ -68,7 +61,6 @@ def evaluate(
displacy_limit: int = 25,
silent: bool = True,
spans_key: str = "sc",
per_component: bool = False,
) -> Dict[str, Any]:
msg = Printer(no_print=silent, pretty=not silent)
fix_random_seed()
@ -83,61 +75,50 @@ def evaluate(
corpus = Corpus(data_path, gold_preproc=gold_preproc)
nlp = util.load_model(model)
dev_dataset = list(corpus(nlp))
scores = nlp.evaluate(dev_dataset, per_component=per_component)
if per_component:
data = scores
if output is None:
msg.warn(
"The per-component option is enabled but there is no output JSON file provided to save the scores to."
)
else:
msg.info("Per-component scores will be saved to output JSON file.")
else:
metrics = {
"TOK": "token_acc",
"TAG": "tag_acc",
"POS": "pos_acc",
"MORPH": "morph_acc",
"LEMMA": "lemma_acc",
"UAS": "dep_uas",
"LAS": "dep_las",
"NER P": "ents_p",
"NER R": "ents_r",
"NER F": "ents_f",
"TEXTCAT": "cats_score",
"SENT P": "sents_p",
"SENT R": "sents_r",
"SENT F": "sents_f",
"SPAN P": f"spans_{spans_key}_p",
"SPAN R": f"spans_{spans_key}_r",
"SPAN F": f"spans_{spans_key}_f",
"SPEED": "speed",
}
results = {}
data = {}
for metric, key in metrics.items():
if key in scores:
if key == "cats_score":
metric = metric + " (" + scores.get("cats_score_desc", "unk") + ")"
if isinstance(scores[key], (int, float)):
if key == "speed":
results[metric] = f"{scores[key]:.0f}"
else:
results[metric] = f"{scores[key]*100:.2f}"
scores = nlp.evaluate(dev_dataset)
metrics = {
"TOK": "token_acc",
"TAG": "tag_acc",
"POS": "pos_acc",
"MORPH": "morph_acc",
"LEMMA": "lemma_acc",
"UAS": "dep_uas",
"LAS": "dep_las",
"NER P": "ents_p",
"NER R": "ents_r",
"NER F": "ents_f",
"TEXTCAT": "cats_score",
"SENT P": "sents_p",
"SENT R": "sents_r",
"SENT F": "sents_f",
"SPAN P": f"spans_{spans_key}_p",
"SPAN R": f"spans_{spans_key}_r",
"SPAN F": f"spans_{spans_key}_f",
"SPEED": "speed",
}
results = {}
data = {}
for metric, key in metrics.items():
if key in scores:
if key == "cats_score":
metric = metric + " (" + scores.get("cats_score_desc", "unk") + ")"
if isinstance(scores[key], (int, float)):
if key == "speed":
results[metric] = f"{scores[key]:.0f}"
else:
results[metric] = "-"
data[re.sub(r"[\s/]", "_", key.lower())] = scores[key]
results[metric] = f"{scores[key]*100:.2f}"
else:
results[metric] = "-"
data[re.sub(r"[\s/]", "_", key.lower())] = scores[key]
msg.table(results, title="Results")
data = handle_scores_per_type(scores, data, spans_key=spans_key, silent=silent)
msg.table(results, title="Results")
data = handle_scores_per_type(scores, data, spans_key=spans_key, silent=silent)
if displacy_path:
factory_names = [nlp.get_pipe_meta(pipe).factory for pipe in nlp.pipe_names]
docs = list(nlp.pipe(ex.reference.text for ex in dev_dataset[:displacy_limit]))
render_deps = "parser" in factory_names
render_ents = "ner" in factory_names
render_spans = "spancat" in factory_names
render_parses(
docs,
displacy_path,
@ -145,7 +126,6 @@ def evaluate(
limit=displacy_limit,
deps=render_deps,
ents=render_ents,
spans=render_spans,
)
msg.good(f"Generated {displacy_limit} parses as HTML", displacy_path)
@ -199,7 +179,6 @@ def render_parses(
limit: int = 250,
deps: bool = True,
ents: bool = True,
spans: bool = True,
):
docs[0].user_data["title"] = model_name
if ents:
@ -213,11 +192,6 @@ def render_parses(
with (output_path / "parses.html").open("w", encoding="utf8") as file_:
file_.write(html)
if spans:
html = displacy.render(docs[:limit], style="span", page=True)
with (output_path / "spans.html").open("w", encoding="utf8") as file_:
file_.write(html)
def print_prf_per_type(
msg: Printer, scores: Dict[str, Dict[str, float]], name: str, type: str

View File

@ -1,69 +0,0 @@
from typing import Optional, Tuple
from catalogue import RegistryError
from wasabi import msg
from ..util import registry
from ._util import Arg, Opt, app
@app.command("find-function")
def find_function_cli(
# fmt: off
func_name: str = Arg(..., help="Name of the registered function."),
registry_name: Optional[str] = Opt(None, "--registry", "-r", help="Name of the catalogue registry."),
# fmt: on
):
"""
Find the module, path and line number to the file the registered
function is defined in, if available.
func_name (str): Name of the registered function.
registry_name (Optional[str]): Name of the catalogue registry.
DOCS: https://spacy.io/api/cli#find-function
"""
if not registry_name:
registry_names = registry.get_registry_names()
for name in registry_names:
if registry.has(name, func_name):
registry_name = name
break
if not registry_name:
msg.fail(
f"Couldn't find registered function: '{func_name}'",
exits=1,
)
assert registry_name is not None
find_function(func_name, registry_name)
def find_function(func_name: str, registry_name: str) -> Tuple[str, int]:
registry_desc = None
try:
registry_desc = registry.find(registry_name, func_name)
except RegistryError as e:
msg.fail(
f"Couldn't find registered function: '{func_name}' in registry '{registry_name}'",
)
msg.fail(f"{e}", exits=1)
assert registry_desc is not None
registry_path = None
line_no = None
if registry_desc["file"]:
registry_path = registry_desc["file"]
line_no = registry_desc["line_no"]
if not registry_path or not line_no:
msg.fail(
f"Couldn't find path to registered function: '{func_name}' in registry '{registry_name}'",
exits=1,
)
assert registry_path is not None
assert line_no is not None
msg.good(f"Found registered function '{func_name}' at {registry_path}:{line_no}")
return str(registry_path), int(line_no)

View File

@ -1,233 +0,0 @@
import functools
import logging
import operator
from pathlib import Path
from typing import Any, Dict, List, Optional, Tuple
import numpy
import wasabi.tables
from .. import util
from ..errors import Errors
from ..pipeline import MultiLabel_TextCategorizer, TextCategorizer
from ..training import Corpus
from ._util import Arg, Opt, app, import_code, setup_gpu
_DEFAULTS = {
"n_trials": 11,
"use_gpu": -1,
"gold_preproc": False,
}
@app.command(
"find-threshold",
context_settings={"allow_extra_args": False, "ignore_unknown_options": True},
)
def find_threshold_cli(
# fmt: off
model: str = Arg(..., help="Model name or path"),
data_path: Path = Arg(..., help="Location of binary evaluation data in .spacy format", exists=True),
pipe_name: str = Arg(..., help="Name of pipe to examine thresholds for"),
threshold_key: str = Arg(..., help="Key of threshold attribute in component's configuration"),
scores_key: str = Arg(..., help="Metric to optimize"),
n_trials: int = Opt(_DEFAULTS["n_trials"], "--n_trials", "-n", help="Number of trials to determine optimal thresholds"),
code_path: Optional[Path] = Opt(None, "--code", "-c", help="Path to Python file with additional code (registered functions) to be imported"),
use_gpu: int = Opt(_DEFAULTS["use_gpu"], "--gpu-id", "-g", help="GPU ID or -1 for CPU"),
gold_preproc: bool = Opt(_DEFAULTS["gold_preproc"], "--gold-preproc", "-G", help="Use gold preprocessing"),
verbose: bool = Opt(False, "--verbose", "-V", "-VV", help="Display more information for debugging purposes"),
# fmt: on
):
"""
Runs prediction trials for a trained model with varying thresholds to maximize
the specified metric. The search space for the threshold is traversed linearly
from 0 to 1 in `n_trials` steps. Results are displayed in a table on `stdout`
(the corresponding API call to `spacy.cli.find_threshold.find_threshold()`
returns all results).
This is applicable only for components whose predictions are influenced by
thresholds - e.g. `textcat_multilabel` and `spancat`, but not `textcat`. Note
that the full path to the corresponding threshold attribute in the config has to
be provided.
DOCS: https://spacy.io/api/cli#find-threshold
"""
if verbose:
util.logger.setLevel(logging.DEBUG)
import_code(code_path)
find_threshold(
model=model,
data_path=data_path,
pipe_name=pipe_name,
threshold_key=threshold_key,
scores_key=scores_key,
n_trials=n_trials,
use_gpu=use_gpu,
gold_preproc=gold_preproc,
silent=False,
)
def find_threshold(
model: str,
data_path: Path,
pipe_name: str,
threshold_key: str,
scores_key: str,
*,
n_trials: int = _DEFAULTS["n_trials"], # type: ignore
use_gpu: int = _DEFAULTS["use_gpu"], # type: ignore
gold_preproc: bool = _DEFAULTS["gold_preproc"], # type: ignore
silent: bool = True,
) -> Tuple[float, float, Dict[float, float]]:
"""
Runs prediction trials for models with varying thresholds to maximize the specified metric.
model (Union[str, Path]): Pipeline to evaluate. Can be a package or a path to a data directory.
data_path (Path): Path to file with DocBin with docs to use for threshold search.
pipe_name (str): Name of pipe to examine thresholds for.
threshold_key (str): Key of threshold attribute in component's configuration.
scores_key (str): Name of score to metric to optimize.
n_trials (int): Number of trials to determine optimal thresholds.
use_gpu (int): GPU ID or -1 for CPU.
gold_preproc (bool): Whether to use gold preprocessing. Gold preprocessing helps the annotations align to the
tokenization, and may result in sequences of more consistent length. However, it may reduce runtime accuracy due
to train/test skew.
silent (bool): Whether to print non-error-related output to stdout.
RETURNS (Tuple[float, float, Dict[float, float]]): Best found threshold, the corresponding score, scores for all
evaluated thresholds.
"""
setup_gpu(use_gpu, silent=silent)
data_path = util.ensure_path(data_path)
if not data_path.exists():
wasabi.msg.fail("Evaluation data not found", data_path, exits=1)
nlp = util.load_model(model)
if pipe_name not in nlp.component_names:
raise AttributeError(
Errors.E001.format(name=pipe_name, opts=nlp.component_names)
)
pipe = nlp.get_pipe(pipe_name)
if not hasattr(pipe, "scorer"):
raise AttributeError(Errors.E1045)
if type(pipe) == TextCategorizer:
wasabi.msg.warn(
"The `textcat` component doesn't use a threshold as it's not applicable to the concept of "
"exclusive classes. All thresholds will yield the same results."
)
if not silent:
wasabi.msg.info(
title=f"Optimizing for {scores_key} for component '{pipe_name}' with {n_trials} "
f"trials."
)
# Load evaluation corpus.
corpus = Corpus(data_path, gold_preproc=gold_preproc)
dev_dataset = list(corpus(nlp))
config_keys = threshold_key.split(".")
def set_nested_item(
config: Dict[str, Any], keys: List[str], value: float
) -> Dict[str, Any]:
"""Set item in nested dictionary. Adapted from https://stackoverflow.com/a/54138200.
config (Dict[str, Any]): Configuration dictionary.
keys (List[Any]): Path to value to set.
value (float): Value to set.
RETURNS (Dict[str, Any]): Updated dictionary.
"""
functools.reduce(operator.getitem, keys[:-1], config)[keys[-1]] = value
return config
def filter_config(
config: Dict[str, Any], keys: List[str], full_key: str
) -> Dict[str, Any]:
"""Filters provided config dictionary so that only the specified keys path remains.
config (Dict[str, Any]): Configuration dictionary.
keys (List[Any]): Path to value to set.
full_key (str): Full user-specified key.
RETURNS (Dict[str, Any]): Filtered dictionary.
"""
if keys[0] not in config:
wasabi.msg.fail(
title=f"Failed to look up `{full_key}` in config: sub-key {[keys[0]]} not found.",
text=f"Make sure you specified {[keys[0]]} correctly. The following sub-keys are available instead: "
f"{list(config.keys())}",
exits=1,
)
return {
keys[0]: filter_config(config[keys[0]], keys[1:], full_key)
if len(keys) > 1
else config[keys[0]]
}
# Evaluate with varying threshold values.
scores: Dict[float, float] = {}
config_keys_full = ["components", pipe_name, *config_keys]
table_col_widths = (10, 10)
thresholds = numpy.linspace(0, 1, n_trials)
print(wasabi.tables.row(["Threshold", f"{scores_key}"], widths=table_col_widths))
for threshold in thresholds:
# Reload pipeline with overrides specifying the new threshold.
nlp = util.load_model(
model,
config=set_nested_item(
filter_config(
nlp.config, config_keys_full, ".".join(config_keys_full)
).copy(),
config_keys_full,
threshold,
),
)
if hasattr(pipe, "cfg"):
setattr(
nlp.get_pipe(pipe_name),
"cfg",
set_nested_item(getattr(pipe, "cfg"), config_keys, threshold),
)
eval_scores = nlp.evaluate(dev_dataset)
if scores_key not in eval_scores:
wasabi.msg.fail(
title=f"Failed to look up score `{scores_key}` in evaluation results.",
text=f"Make sure you specified the correct value for `scores_key`. The following scores are "
f"available: {list(eval_scores.keys())}",
exits=1,
)
scores[threshold] = eval_scores[scores_key]
if not isinstance(scores[threshold], (float, int)):
wasabi.msg.fail(
f"Returned score for key '{scores_key}' is not numeric. Threshold optimization only works for numeric "
f"scores.",
exits=1,
)
print(
wasabi.row(
[round(threshold, 3), round(scores[threshold], 3)],
widths=table_col_widths,
)
)
best_threshold = max(scores.keys(), key=(lambda key: scores[key]))
# If all scores are identical, emit warning.
if len(set(scores.values())) == 1:
wasabi.msg.warn(
title="All scores are identical. Verify that all settings are correct.",
text=""
if (
not isinstance(pipe, MultiLabel_TextCategorizer)
or scores_key in ("cats_macro_f", "cats_micro_f")
)
else "Use `cats_macro_f` or `cats_micro_f` when optimizing the threshold for `textcat_multilabel`.",
)
else:
if not silent:
print(
f"\nBest threshold: {round(best_threshold, ndigits=4)} with {scores_key} value of {scores[best_threshold]}."
)
return best_threshold, scores[best_threshold], scores

View File

@ -1,15 +1,15 @@
import json
from typing import Optional, Dict, Any, Union, List
import platform
import pkg_resources
import json
from pathlib import Path
from typing import Any, Dict, List, Optional, Union
from wasabi import Printer, MarkdownRenderer
import srsly
from wasabi import MarkdownRenderer, Printer
from .. import about, util
from ..compat import importlib_metadata
from ._util import Arg, Opt, app, string_to_list
from .download import get_latest_version, get_model_filename
from ._util import app, Arg, Opt, string_to_list
from .download import get_model_filename, get_latest_version
from .. import util
from .. import about
@app.command("info")
@ -137,14 +137,15 @@ def info_installed_model_url(model: str) -> Optional[str]:
dist-info available.
"""
try:
dist = importlib_metadata.distribution(model)
text = dist.read_text("direct_url.json")
if isinstance(text, str):
data = json.loads(text)
return data["url"]
dist = pkg_resources.get_distribution(model)
data = json.loads(dist.get_metadata("direct_url.json"))
return data["url"]
except pkg_resources.DistributionNotFound:
# no such package
return None
except Exception:
pass
return None
# something else, like no file or invalid JSON
return None
def info_model_url(model: str) -> Dict[str, Any]:

View File

@ -1,26 +1,19 @@
import re
from typing import Optional, List, Tuple
from enum import Enum
from pathlib import Path
from typing import List, Optional, Tuple
import srsly
from jinja2 import Template
from thinc.api import Config
from wasabi import Printer, diff_strings
from thinc.api import Config
import srsly
import re
from jinja2 import Template
from .. import util
from ..language import DEFAULT_CONFIG_PRETRAIN_PATH
from ..schemas import RecommendationSchema
from ..util import SimpleFrozenList
from ._util import (
COMMAND,
Arg,
Opt,
import_code,
init_cli,
show_validation_error,
string_to_list,
)
from ._util import init_cli, Arg, Opt, show_validation_error, COMMAND
from ._util import string_to_list, import_code
ROOT = Path(__file__).parent / "templates"
TEMPLATE_PATH = ROOT / "quickstart_training.jinja"

View File

@ -1,23 +1,15 @@
from typing import Optional
import logging
from pathlib import Path
from typing import Optional
import srsly
import typer
from wasabi import msg
import typer
import srsly
from .. import util
from ..training.initialize import init_nlp, convert_vectors
from ..language import Language
from ..training.initialize import convert_vectors, init_nlp
from ._util import (
Arg,
Opt,
import_code,
init_cli,
parse_config_overrides,
setup_gpu,
show_validation_error,
)
from ._util import init_cli, Arg, Opt, parse_config_overrides, show_validation_error
from ._util import import_code, setup_gpu
@init_cli.command("vectors")
@ -32,15 +24,13 @@ def init_vectors_cli(
name: Optional[str] = Opt(None, "--name", "-n", help="Optional name for the word vectors, e.g. en_core_web_lg.vectors"),
verbose: bool = Opt(False, "--verbose", "-V", "-VV", help="Display more information for debugging purposes"),
jsonl_loc: Optional[Path] = Opt(None, "--lexemes-jsonl", "-j", help="Location of JSONL-formatted attributes file", hidden=True),
attr: str = Opt("ORTH", "--attr", "-a", help="Optional token attribute to use for vectors, e.g. LOWER or NORM"),
# fmt: on
):
"""Convert word vectors for use with spaCy. Will export an nlp object that
you can use in the [initialize] block of your config to initialize
a model with vectors.
"""
if verbose:
util.logger.setLevel(logging.DEBUG)
util.logger.setLevel(logging.DEBUG if verbose else logging.INFO)
msg.info(f"Creating blank nlp object for language '{lang}'")
nlp = util.get_lang_class(lang)()
if jsonl_loc is not None:
@ -52,7 +42,6 @@ def init_vectors_cli(
prune=prune,
name=name,
mode=mode,
attr=attr,
)
msg.good(f"Successfully converted {len(nlp.vocab.vectors)} vectors")
nlp.to_disk(output_dir)
@ -88,8 +77,7 @@ def init_pipeline_cli(
use_gpu: int = Opt(-1, "--gpu-id", "-g", help="GPU ID or -1 for CPU")
# fmt: on
):
if verbose:
util.logger.setLevel(logging.DEBUG)
util.logger.setLevel(logging.DEBUG if verbose else logging.INFO)
overrides = parse_config_overrides(ctx.args)
import_code(code_path)
setup_gpu(use_gpu)
@ -118,8 +106,7 @@ def init_labels_cli(
"""Generate JSON files for the labels in the data. This helps speed up the
training process, since spaCy won't have to preprocess the data to
extract the labels."""
if verbose:
util.logger.setLevel(logging.DEBUG)
util.logger.setLevel(logging.DEBUG if verbose else logging.INFO)
if not output_path.exists():
output_path.mkdir(parents=True)
overrides = parse_config_overrides(ctx.args)

View File

@ -1,21 +1,18 @@
import os
import re
from typing import Optional, Union, Any, Dict, List, Tuple, cast
import shutil
import subprocess
import sys
from collections import defaultdict
from pathlib import Path
from typing import Any, Dict, List, Optional, Tuple, Union, cast
import srsly
from catalogue import RegistryError
from wasabi import Printer, MarkdownRenderer, get_raw_input
from thinc.api import Config
from wasabi import MarkdownRenderer, Printer, get_raw_input
from collections import defaultdict
from catalogue import RegistryError
import srsly
import sys
import re
from .. import about, util
from ..compat import importlib_metadata
from ..schemas import ModelMetaSchema, validate
from ._util import SDIST_SUFFIX, WHEEL_SUFFIX, Arg, Opt, app, string_to_list
from ._util import app, Arg, Opt, string_to_list, WHEEL_SUFFIX, SDIST_SUFFIX
from ..schemas import validate, ModelMetaSchema
from .. import util
from .. import about
@app.command("package")
@ -30,7 +27,6 @@ def package_cli(
version: Optional[str] = Opt(None, "--version", "-v", help="Package version to override meta"),
build: str = Opt("sdist", "--build", "-b", help="Comma-separated formats to build: sdist and/or wheel, or none."),
force: bool = Opt(False, "--force", "-f", "-F", help="Force overwriting existing data in output directory"),
require_parent: bool = Opt(True, "--require-parent/--no-require-parent", "-R", "-R", help="Include the parent package (e.g. spacy) in the requirements"),
# fmt: on
):
"""
@ -39,7 +35,7 @@ def package_cli(
specified output directory, and the data will be copied over. If
--create-meta is set and a meta.json already exists in the output directory,
the existing values will be used as the defaults in the command-line prompt.
After packaging, "python -m build --sdist" is run in the package directory,
After packaging, "python setup.py sdist" is run in the package directory,
which will create a .tar.gz archive that can be installed via "pip install".
If additional code files are provided (e.g. Python files containing custom
@ -61,7 +57,6 @@ def package_cli(
create_sdist=create_sdist,
create_wheel=create_wheel,
force=force,
require_parent=require_parent,
silent=False,
)
@ -76,7 +71,6 @@ def package(
create_meta: bool = False,
create_sdist: bool = True,
create_wheel: bool = False,
require_parent: bool = False,
force: bool = False,
silent: bool = True,
) -> None:
@ -84,17 +78,9 @@ def package(
input_path = util.ensure_path(input_dir)
output_path = util.ensure_path(output_dir)
meta_path = util.ensure_path(meta_path)
if create_wheel and not has_wheel() and not has_build():
err = (
"Generating wheels requires 'build' or 'wheel' (deprecated) to be installed"
)
msg.fail(err, "pip install build", exits=1)
if not has_build():
msg.warn(
"Generating packages without the 'build' package is deprecated and "
"will not be supported in the future. To install 'build': pip "
"install build"
)
if create_wheel and not has_wheel():
err = "Generating a binary .whl file requires wheel to be installed"
msg.fail(err, "pip install wheel", exits=1)
if not input_path or not input_path.exists():
msg.fail("Can't locate pipeline data", input_path, exits=1)
if not output_path or not output_path.exists():
@ -116,7 +102,7 @@ def package(
if not meta_path.exists() or not meta_path.is_file():
msg.fail("Can't load pipeline meta.json", meta_path, exits=1)
meta = srsly.read_json(meta_path)
meta = get_meta(input_dir, meta, require_parent=require_parent)
meta = get_meta(input_dir, meta)
if meta["requirements"]:
msg.good(
f"Including {len(meta['requirements'])} package requirement(s) from "
@ -189,7 +175,6 @@ def package(
imports.append(code_path.stem)
shutil.copy(str(code_path), str(package_path))
create_file(main_path / "meta.json", srsly.json_dumps(meta, indent=2))
create_file(main_path / "setup.py", TEMPLATE_SETUP)
create_file(main_path / "MANIFEST.in", TEMPLATE_MANIFEST)
init_py = TEMPLATE_INIT.format(
@ -199,37 +184,12 @@ def package(
msg.good(f"Successfully created package directory '{model_name_v}'", main_path)
if create_sdist:
with util.working_dir(main_path):
# run directly, since util.run_command is not designed to continue
# after a command fails
ret = subprocess.run(
[sys.executable, "-m", "build", ".", "--sdist"],
env=os.environ.copy(),
)
if ret.returncode != 0:
msg.warn(
"Creating sdist with 'python -m build' failed. Falling "
"back to deprecated use of 'python setup.py sdist'"
)
util.run_command([sys.executable, "setup.py", "sdist"], capture=False)
util.run_command([sys.executable, "setup.py", "sdist"], capture=False)
zip_file = main_path / "dist" / f"{model_name_v}{SDIST_SUFFIX}"
msg.good(f"Successfully created zipped Python package", zip_file)
if create_wheel:
with util.working_dir(main_path):
# run directly, since util.run_command is not designed to continue
# after a command fails
ret = subprocess.run(
[sys.executable, "-m", "build", ".", "--wheel"],
env=os.environ.copy(),
)
if ret.returncode != 0:
msg.warn(
"Creating wheel with 'python -m build' failed. Falling "
"back to deprecated use of 'wheel' with "
"'python setup.py bdist_wheel'"
)
util.run_command(
[sys.executable, "setup.py", "bdist_wheel"], capture=False
)
util.run_command([sys.executable, "setup.py", "bdist_wheel"], capture=False)
wheel_name_squashed = re.sub("_+", "_", model_name_v)
wheel = main_path / "dist" / f"{wheel_name_squashed}{WHEEL_SUFFIX}"
msg.good(f"Successfully created binary wheel", wheel)
@ -249,17 +209,6 @@ def has_wheel() -> bool:
return False
def has_build() -> bool:
# it's very likely that there is a local directory named build/ (especially
# in an editable install), so an import check is not sufficient; instead
# check that there is a package version
try:
importlib_metadata.version("build")
return True
except importlib_metadata.PackageNotFoundError: # type: ignore[attr-defined]
return False
def get_third_party_dependencies(
config: Config, exclude: List[str] = util.SimpleFrozenList()
) -> List[str]:
@ -303,11 +252,9 @@ def get_third_party_dependencies(
raise regerr from None
module_name = func_info.get("module") # type: ignore[attr-defined]
if module_name: # the code is part of a module, not a --code file
modules.add(func_info["module"].split(".")[0]) # type: ignore[union-attr]
modules.add(func_info["module"].split(".")[0]) # type: ignore[index]
dependencies = []
for module_name in modules:
if module_name == about.__title__:
continue
if module_name in distributions:
dist = distributions.get(module_name)
if dist:
@ -338,9 +285,7 @@ def create_file(file_path: Path, contents: str) -> None:
def get_meta(
model_path: Union[str, Path],
existing_meta: Dict[str, Any],
require_parent: bool = False,
model_path: Union[str, Path], existing_meta: Dict[str, Any]
) -> Dict[str, Any]:
meta: Dict[str, Any] = {
"lang": "en",
@ -369,8 +314,6 @@ def get_meta(
existing_reqs = [util.split_requirement(req)[0] for req in meta["requirements"]]
reqs = get_third_party_dependencies(nlp.config, exclude=existing_reqs)
meta["requirements"].extend(reqs)
if require_parent and about.__title__ not in meta["requirements"]:
meta["requirements"].append(about.__title__ + meta["spacy_version"])
return meta
@ -460,7 +403,7 @@ def _format_sources(data: Any) -> str:
if author:
result += " ({})".format(author)
sources.append(result)
return "<br>".join(sources)
return "<br />".join(sources)
def _format_accuracy(data: Dict[str, Any], exclude: List[str] = ["speed"]) -> str:
@ -545,11 +488,8 @@ def list_files(data_dir):
def list_requirements(meta):
# Up to version 3.7, we included the parent package
# in requirements by default. This behaviour is removed
# in 3.8, with a setting to include the parent package in
# the requirements list in the meta if desired.
requirements = []
parent_package = meta.get('parent_package', 'spacy')
requirements = [parent_package + meta['spacy_version']]
if 'setup_requires' in meta:
requirements += meta['setup_requires']
if 'requirements' in meta:

View File

@ -1,21 +1,13 @@
import re
from pathlib import Path
from typing import Optional
import typer
from pathlib import Path
from wasabi import msg
import typer
import re
from ._util import app, Arg, Opt, parse_config_overrides, show_validation_error
from ._util import import_code, setup_gpu
from ..training.pretrain import pretrain
from ..util import load_config
from ._util import (
Arg,
Opt,
app,
import_code,
parse_config_overrides,
setup_gpu,
show_validation_error,
)
@app.command(
@ -31,7 +23,6 @@ def pretrain_cli(
resume_path: Optional[Path] = Opt(None, "--resume-path", "-r", help="Path to pretrained weights from which to resume pretraining"),
epoch_resume: Optional[int] = Opt(None, "--epoch-resume", "-er", help="The epoch to resume counting from when using --resume-path. Prevents unintended overwriting of existing weight files."),
use_gpu: int = Opt(-1, "--gpu-id", "-g", help="GPU ID or -1 for CPU"),
skip_last: bool = Opt(False, "--skip-last", "-L", help="Skip saving model-last.bin"),
# fmt: on
):
"""
@ -83,7 +74,6 @@ def pretrain_cli(
epoch_resume=epoch_resume,
use_gpu=use_gpu,
silent=False,
skip_last=skip_last,
)
msg.good("Successfully finished pretrain")

View File

@ -1,18 +1,17 @@
from typing import Optional, Sequence, Union, Iterator
import tqdm
from pathlib import Path
import srsly
import cProfile
import itertools
import pstats
import sys
from pathlib import Path
from typing import Iterator, Optional, Sequence, Union
import srsly
import tqdm
import itertools
from wasabi import msg, Printer
import typer
from wasabi import Printer, msg
from ._util import app, debug_cli, Arg, Opt, NAME
from ..language import Language
from ..util import load_model
from ._util import NAME, Arg, Opt, app, debug_cli
@debug_cli.command("profile")
@ -71,7 +70,7 @@ def profile(model: str, inputs: Optional[Path] = None, n_texts: int = 10000) ->
def parse_texts(nlp: Language, texts: Sequence[str]) -> None:
for doc in nlp.pipe(tqdm.tqdm(texts, disable=None), batch_size=16):
for doc in nlp.pipe(tqdm.tqdm(texts), batch_size=16):
pass

View File

@ -1 +1,202 @@
from weasel.cli.assets import *
from typing import Any, Dict, Optional
from pathlib import Path
from wasabi import msg
import os
import re
import shutil
import requests
import typer
from ...util import ensure_path, working_dir
from .._util import project_cli, Arg, Opt, PROJECT_FILE, load_project_config
from .._util import get_checksum, download_file, git_checkout, get_git_version
from .._util import SimpleFrozenDict, parse_config_overrides
# Whether assets are extra if `extra` is not set.
EXTRA_DEFAULT = False
@project_cli.command(
"assets",
context_settings={"allow_extra_args": True, "ignore_unknown_options": True},
)
def project_assets_cli(
# fmt: off
ctx: typer.Context, # This is only used to read additional arguments
project_dir: Path = Arg(Path.cwd(), help="Path to cloned project. Defaults to current working directory.", exists=True, file_okay=False),
sparse_checkout: bool = Opt(False, "--sparse", "-S", help="Use sparse checkout for assets provided via Git, to only check out and clone the files needed. Requires Git v22.2+."),
extra: bool = Opt(False, "--extra", "-e", help="Download all assets, including those marked as 'extra'.")
# fmt: on
):
"""Fetch project assets like datasets and pretrained weights. Assets are
defined in the "assets" section of the project.yml. If a checksum is
provided in the project.yml, the file is only downloaded if no local file
with the same checksum exists.
DOCS: https://spacy.io/api/cli#project-assets
"""
overrides = parse_config_overrides(ctx.args)
project_assets(
project_dir,
overrides=overrides,
sparse_checkout=sparse_checkout,
extra=extra,
)
def project_assets(
project_dir: Path,
*,
overrides: Dict[str, Any] = SimpleFrozenDict(),
sparse_checkout: bool = False,
extra: bool = False,
) -> None:
"""Fetch assets for a project using DVC if possible.
project_dir (Path): Path to project directory.
sparse_checkout (bool): Use sparse checkout for assets provided via Git, to only check out and clone the files
needed.
extra (bool): Whether to download all assets, including those marked as 'extra'.
"""
project_path = ensure_path(project_dir)
config = load_project_config(project_path, overrides=overrides)
assets = [
asset
for asset in config.get("assets", [])
if extra or not asset.get("extra", EXTRA_DEFAULT)
]
if not assets:
msg.warn(
f"No assets specified in {PROJECT_FILE} (if assets are marked as extra, download them with --extra)",
exits=0,
)
msg.info(f"Fetching {len(assets)} asset(s)")
for asset in assets:
dest = (project_dir / asset["dest"]).resolve()
checksum = asset.get("checksum")
if "git" in asset:
git_err = (
f"Cloning spaCy project templates requires Git and the 'git' command. "
f"Make sure it's installed and that the executable is available."
)
get_git_version(error=git_err)
if dest.exists():
# If there's already a file, check for checksum
if checksum and checksum == get_checksum(dest):
msg.good(
f"Skipping download with matching checksum: {asset['dest']}"
)
continue
else:
if dest.is_dir():
shutil.rmtree(dest)
else:
dest.unlink()
if "repo" not in asset["git"] or asset["git"]["repo"] is None:
msg.fail(
"A git asset must include 'repo', the repository address.", exits=1
)
if "path" not in asset["git"] or asset["git"]["path"] is None:
msg.fail(
"A git asset must include 'path' - use \"\" to get the entire repository.",
exits=1,
)
git_checkout(
asset["git"]["repo"],
asset["git"]["path"],
dest,
branch=asset["git"].get("branch"),
sparse=sparse_checkout,
)
msg.good(f"Downloaded asset {dest}")
else:
url = asset.get("url")
if not url:
# project.yml defines asset without URL that the user has to place
check_private_asset(dest, checksum)
continue
fetch_asset(project_path, url, dest, checksum)
def check_private_asset(dest: Path, checksum: Optional[str] = None) -> None:
"""Check and validate assets without a URL (private assets that the user
has to provide themselves) and give feedback about the checksum.
dest (Path): Destination path of the asset.
checksum (Optional[str]): Optional checksum of the expected file.
"""
if not Path(dest).exists():
err = f"No URL provided for asset. You need to add this file yourself: {dest}"
msg.warn(err)
else:
if not checksum:
msg.good(f"Asset already exists: {dest}")
elif checksum == get_checksum(dest):
msg.good(f"Asset exists with matching checksum: {dest}")
else:
msg.fail(f"Asset available but with incorrect checksum: {dest}")
def fetch_asset(
project_path: Path, url: str, dest: Path, checksum: Optional[str] = None
) -> None:
"""Fetch an asset from a given URL or path. If a checksum is provided and a
local file exists, it's only re-downloaded if the checksum doesn't match.
project_path (Path): Path to project directory.
url (str): URL or path to asset.
checksum (Optional[str]): Optional expected checksum of local file.
RETURNS (Optional[Path]): The path to the fetched asset or None if fetching
the asset failed.
"""
dest_path = (project_path / dest).resolve()
if dest_path.exists():
# If there's already a file, check for checksum
if checksum:
if checksum == get_checksum(dest_path):
msg.good(f"Skipping download with matching checksum: {dest}")
return
else:
# If there's not a checksum, make sure the file is a possibly valid size
if os.path.getsize(dest_path) == 0:
msg.warn(f"Asset exists but with size of 0 bytes, deleting: {dest}")
os.remove(dest_path)
# We might as well support the user here and create parent directories in
# case the asset dir isn't listed as a dir to create in the project.yml
if not dest_path.parent.exists():
dest_path.parent.mkdir(parents=True)
with working_dir(project_path):
url = convert_asset_url(url)
try:
download_file(url, dest_path)
msg.good(f"Downloaded asset {dest}")
except requests.exceptions.RequestException as e:
if Path(url).exists() and Path(url).is_file():
# If it's a local file, copy to destination
shutil.copy(url, str(dest_path))
msg.good(f"Copied local asset {dest}")
else:
msg.fail(f"Download failed: {dest}", e)
if checksum and checksum != get_checksum(dest_path):
msg.fail(f"Checksum doesn't match value defined in {PROJECT_FILE}: {dest}")
def convert_asset_url(url: str) -> str:
"""Check and convert the asset URL if needed.
url (str): The asset URL.
RETURNS (str): The converted URL.
"""
# If the asset URL is a regular GitHub URL it's likely a mistake
if re.match(r"(http(s?)):\/\/github.com", url) and "releases/download" not in url:
converted = url.replace("github.com", "raw.githubusercontent.com")
converted = re.sub(r"/(tree|blob)/", "/", converted)
msg.warn(
"Downloading from a regular GitHub URL. This will only download "
"the source of the page, not the actual file. Converting the URL "
"to a raw URL.",
converted,
)
return converted
return url

View File

@ -1 +1,115 @@
from weasel.cli.clone import *
from typing import Optional
from pathlib import Path
from wasabi import msg
import subprocess
import re
from ... import about
from ...util import ensure_path
from .._util import project_cli, Arg, Opt, COMMAND, PROJECT_FILE
from .._util import git_checkout, get_git_version, git_repo_branch_exists
DEFAULT_REPO = about.__projects__
DEFAULT_PROJECTS_BRANCH = about.__projects_branch__
DEFAULT_BRANCHES = ["main", "master"]
@project_cli.command("clone")
def project_clone_cli(
# fmt: off
name: str = Arg(..., help="The name of the template to clone"),
dest: Optional[Path] = Arg(None, help="Where to clone the project. Defaults to current working directory", exists=False),
repo: str = Opt(DEFAULT_REPO, "--repo", "-r", help="The repository to clone from"),
branch: Optional[str] = Opt(None, "--branch", "-b", help=f"The branch to clone from. If not provided, will attempt {', '.join(DEFAULT_BRANCHES)}"),
sparse_checkout: bool = Opt(False, "--sparse", "-S", help="Use sparse Git checkout to only check out and clone the files needed. Requires Git v22.2+.")
# fmt: on
):
"""Clone a project template from a repository. Calls into "git" and will
only download the files from the given subdirectory. The GitHub repo
defaults to the official spaCy template repo, but can be customized
(including using a private repo).
DOCS: https://spacy.io/api/cli#project-clone
"""
if dest is None:
dest = Path.cwd() / Path(name).parts[-1]
if repo == DEFAULT_REPO and branch is None:
branch = DEFAULT_PROJECTS_BRANCH
if branch is None:
for default_branch in DEFAULT_BRANCHES:
if git_repo_branch_exists(repo, default_branch):
branch = default_branch
break
if branch is None:
default_branches_msg = ", ".join(f"'{b}'" for b in DEFAULT_BRANCHES)
msg.fail(
"No branch provided and attempted default "
f"branches {default_branches_msg} do not exist.",
exits=1,
)
else:
if not git_repo_branch_exists(repo, branch):
msg.fail(f"repo: {repo} (branch: {branch}) does not exist.", exits=1)
assert isinstance(branch, str)
project_clone(name, dest, repo=repo, branch=branch, sparse_checkout=sparse_checkout)
def project_clone(
name: str,
dest: Path,
*,
repo: str = about.__projects__,
branch: str = about.__projects_branch__,
sparse_checkout: bool = False,
) -> None:
"""Clone a project template from a repository.
name (str): Name of subdirectory to clone.
dest (Path): Destination path of cloned project.
repo (str): URL of Git repo containing project templates.
branch (str): The branch to clone from
"""
dest = ensure_path(dest)
check_clone(name, dest, repo)
project_dir = dest.resolve()
repo_name = re.sub(r"(http(s?)):\/\/github.com/", "", repo)
try:
git_checkout(repo, name, dest, branch=branch, sparse=sparse_checkout)
except subprocess.CalledProcessError:
err = f"Could not clone '{name}' from repo '{repo_name}' (branch '{branch}')"
msg.fail(err, exits=1)
msg.good(f"Cloned '{name}' from '{repo_name}' (branch '{branch}')", project_dir)
if not (project_dir / PROJECT_FILE).exists():
msg.warn(f"No {PROJECT_FILE} found in directory")
else:
msg.good(f"Your project is now ready!")
print(f"To fetch the assets, run:\n{COMMAND} project assets {dest}")
def check_clone(name: str, dest: Path, repo: str) -> None:
"""Check and validate that the destination path can be used to clone. Will
check that Git is available and that the destination path is suitable.
name (str): Name of the directory to clone from the repo.
dest (Path): Local destination of cloned directory.
repo (str): URL of the repo to clone from.
"""
git_err = (
f"Cloning spaCy project templates requires Git and the 'git' command. "
f"To clone a project without Git, copy the files from the '{name}' "
f"directory in the {repo} to {dest} manually."
)
get_git_version(error=git_err)
if not dest:
msg.fail(f"Not a valid directory to clone project: {dest}", exits=1)
if dest.exists():
# Directory already exists (not allowed, clone needs to create it)
msg.fail(f"Can't clone project, directory already exists: {dest}", exits=1)
if not dest.parent.exists():
# We're not creating parents, parent dir should exist
msg.fail(
f"Can't clone project, parent directory doesn't exist: {dest.parent}. "
f"Create the necessary folder(s) first before continuing.",
exits=1,
)

View File

@ -1 +1,115 @@
from weasel.cli.document import *
from pathlib import Path
from wasabi import msg, MarkdownRenderer
from ...util import working_dir
from .._util import project_cli, Arg, Opt, PROJECT_FILE, load_project_config
DOCS_URL = "https://spacy.io"
INTRO_PROJECT = f"""The [`{PROJECT_FILE}`]({PROJECT_FILE}) defines the data assets required by the
project, as well as the available commands and workflows. For details, see the
[spaCy projects documentation]({DOCS_URL}/usage/projects)."""
INTRO_COMMANDS = f"""The following commands are defined by the project. They
can be executed using [`spacy project run [name]`]({DOCS_URL}/api/cli#project-run).
Commands are only re-run if their inputs have changed."""
INTRO_WORKFLOWS = f"""The following workflows are defined by the project. They
can be executed using [`spacy project run [name]`]({DOCS_URL}/api/cli#project-run)
and will run the specified commands in order. Commands are only re-run if their
inputs have changed."""
INTRO_ASSETS = f"""The following assets are defined by the project. They can
be fetched by running [`spacy project assets`]({DOCS_URL}/api/cli#project-assets)
in the project directory."""
# These markers are added to the Markdown and can be used to update the file in
# place if it already exists. Only the auto-generated part will be replaced.
MARKER_START = "<!-- SPACY PROJECT: AUTO-GENERATED DOCS START (do not remove) -->"
MARKER_END = "<!-- SPACY PROJECT: AUTO-GENERATED DOCS END (do not remove) -->"
# If this marker is used in an existing README, it's ignored and not replaced
MARKER_IGNORE = "<!-- SPACY PROJECT: IGNORE -->"
@project_cli.command("document")
def project_document_cli(
# fmt: off
project_dir: Path = Arg(Path.cwd(), help="Path to cloned project. Defaults to current working directory.", exists=True, file_okay=False),
output_file: Path = Opt("-", "--output", "-o", help="Path to output Markdown file for output. Defaults to - for standard output"),
no_emoji: bool = Opt(False, "--no-emoji", "-NE", help="Don't use emoji")
# fmt: on
):
"""
Auto-generate a README.md for a project. If the content is saved to a file,
hidden markers are added so you can add custom content before or after the
auto-generated section and only the auto-generated docs will be replaced
when you re-run the command.
DOCS: https://spacy.io/api/cli#project-document
"""
project_document(project_dir, output_file, no_emoji=no_emoji)
def project_document(
project_dir: Path, output_file: Path, *, no_emoji: bool = False
) -> None:
is_stdout = str(output_file) == "-"
config = load_project_config(project_dir)
md = MarkdownRenderer(no_emoji=no_emoji)
md.add(MARKER_START)
title = config.get("title")
description = config.get("description")
md.add(md.title(1, f"spaCy Project{f': {title}' if title else ''}", "🪐"))
if description:
md.add(description)
md.add(md.title(2, PROJECT_FILE, "📋"))
md.add(INTRO_PROJECT)
# Commands
cmds = config.get("commands", [])
data = [(md.code(cmd["name"]), cmd.get("help", "")) for cmd in cmds]
if data:
md.add(md.title(3, "Commands", ""))
md.add(INTRO_COMMANDS)
md.add(md.table(data, ["Command", "Description"]))
# Workflows
wfs = config.get("workflows", {}).items()
data = [(md.code(n), " &rarr; ".join(md.code(w) for w in stp)) for n, stp in wfs]
if data:
md.add(md.title(3, "Workflows", ""))
md.add(INTRO_WORKFLOWS)
md.add(md.table(data, ["Workflow", "Steps"]))
# Assets
assets = config.get("assets", [])
data = []
for a in assets:
source = "Git" if a.get("git") else "URL" if a.get("url") else "Local"
dest_path = a["dest"]
dest = md.code(dest_path)
if source == "Local":
# Only link assets if they're in the repo
with working_dir(project_dir) as p:
if (p / dest_path).exists():
dest = md.link(dest, dest_path)
data.append((dest, source, a.get("description", "")))
if data:
md.add(md.title(3, "Assets", "🗂"))
md.add(INTRO_ASSETS)
md.add(md.table(data, ["File", "Source", "Description"]))
md.add(MARKER_END)
# Output result
if is_stdout:
print(md.text)
else:
content = md.text
if output_file.exists():
with output_file.open("r", encoding="utf8") as f:
existing = f.read()
if MARKER_IGNORE in existing:
msg.warn("Found ignore marker in existing file: skipping", output_file)
return
if MARKER_START in existing and MARKER_END in existing:
msg.info("Found existing file: only replacing auto-generated docs")
before = existing.split(MARKER_START)[0]
after = existing.split(MARKER_END)[1]
content = f"{before}{content}{after}"
else:
msg.warn("Replacing existing file")
with output_file.open("w", encoding="utf8") as f:
f.write(content)
msg.good("Saved project documentation", output_file)

View File

@ -1 +1,207 @@
from weasel.cli.dvc import *
"""This module contains helpers and subcommands for integrating spaCy projects
with Data Version Controk (DVC). https://dvc.org"""
from typing import Dict, Any, List, Optional, Iterable
import subprocess
from pathlib import Path
from wasabi import msg
from .._util import PROJECT_FILE, load_project_config, get_hash, project_cli
from .._util import Arg, Opt, NAME, COMMAND
from ...util import working_dir, split_command, join_command, run_command
from ...util import SimpleFrozenList
DVC_CONFIG = "dvc.yaml"
DVC_DIR = ".dvc"
UPDATE_COMMAND = "dvc"
DVC_CONFIG_COMMENT = f"""# This file is auto-generated by spaCy based on your {PROJECT_FILE}. If you've
# edited your {PROJECT_FILE}, you can regenerate this file by running:
# {COMMAND} project {UPDATE_COMMAND}"""
@project_cli.command(UPDATE_COMMAND)
def project_update_dvc_cli(
# fmt: off
project_dir: Path = Arg(Path.cwd(), help="Location of project directory. Defaults to current working directory.", exists=True, file_okay=False),
workflow: Optional[str] = Arg(None, help=f"Name of workflow defined in {PROJECT_FILE}. Defaults to first workflow if not set."),
verbose: bool = Opt(False, "--verbose", "-V", help="Print more info"),
quiet: bool = Opt(False, "--quiet", "-q", help="Print less info"),
force: bool = Opt(False, "--force", "-F", help="Force update DVC config"),
# fmt: on
):
"""Auto-generate Data Version Control (DVC) config. A DVC
project can only define one pipeline, so you need to specify one workflow
defined in the project.yml. If no workflow is specified, the first defined
workflow is used. The DVC config will only be updated if the project.yml
changed.
DOCS: https://spacy.io/api/cli#project-dvc
"""
project_update_dvc(project_dir, workflow, verbose=verbose, quiet=quiet, force=force)
def project_update_dvc(
project_dir: Path,
workflow: Optional[str] = None,
*,
verbose: bool = False,
quiet: bool = False,
force: bool = False,
) -> None:
"""Update the auto-generated Data Version Control (DVC) config file. A DVC
project can only define one pipeline, so you need to specify one workflow
defined in the project.yml. Will only update the file if the checksum changed.
project_dir (Path): The project directory.
workflow (Optional[str]): Optional name of workflow defined in project.yml.
If not set, the first workflow will be used.
verbose (bool): Print more info.
quiet (bool): Print less info.
force (bool): Force update DVC config.
"""
config = load_project_config(project_dir)
updated = update_dvc_config(
project_dir, config, workflow, verbose=verbose, quiet=quiet, force=force
)
help_msg = "To execute the workflow with DVC, run: dvc repro"
if updated:
msg.good(f"Updated DVC config from {PROJECT_FILE}", help_msg)
else:
msg.info(f"No changes found in {PROJECT_FILE}, no update needed", help_msg)
def update_dvc_config(
path: Path,
config: Dict[str, Any],
workflow: Optional[str] = None,
verbose: bool = False,
quiet: bool = False,
force: bool = False,
) -> bool:
"""Re-run the DVC commands in dry mode and update dvc.yaml file in the
project directory. The file is auto-generated based on the config. The
first line of the auto-generated file specifies the hash of the config
dict, so if any of the config values change, the DVC config is regenerated.
path (Path): The path to the project directory.
config (Dict[str, Any]): The loaded project.yml.
verbose (bool): Whether to print additional info (via DVC).
quiet (bool): Don't output anything (via DVC).
force (bool): Force update, even if hashes match.
RETURNS (bool): Whether the DVC config file was updated.
"""
ensure_dvc(path)
workflows = config.get("workflows", {})
workflow_names = list(workflows.keys())
check_workflows(workflow_names, workflow)
if not workflow:
workflow = workflow_names[0]
config_hash = get_hash(config)
path = path.resolve()
dvc_config_path = path / DVC_CONFIG
if dvc_config_path.exists():
# Check if the file was generated using the current config, if not, redo
with dvc_config_path.open("r", encoding="utf8") as f:
ref_hash = f.readline().strip().replace("# ", "")
if ref_hash == config_hash and not force:
return False # Nothing has changed in project.yml, don't need to update
dvc_config_path.unlink()
dvc_commands = []
config_commands = {cmd["name"]: cmd for cmd in config.get("commands", [])}
# some flags that apply to every command
flags = []
if verbose:
flags.append("--verbose")
if quiet:
flags.append("--quiet")
for name in workflows[workflow]:
command = config_commands[name]
deps = command.get("deps", [])
outputs = command.get("outputs", [])
outputs_no_cache = command.get("outputs_no_cache", [])
if not deps and not outputs and not outputs_no_cache:
continue
# Default to the working dir as the project path since dvc.yaml is auto-generated
# and we don't want arbitrary paths in there
project_cmd = ["python", "-m", NAME, "project", "run", name]
deps_cmd = [c for cl in [["-d", p] for p in deps] for c in cl]
outputs_cmd = [c for cl in [["-o", p] for p in outputs] for c in cl]
outputs_nc_cmd = [c for cl in [["-O", p] for p in outputs_no_cache] for c in cl]
dvc_cmd = ["run", *flags, "-n", name, "-w", str(path), "--no-exec"]
if command.get("no_skip"):
dvc_cmd.append("--always-changed")
full_cmd = [*dvc_cmd, *deps_cmd, *outputs_cmd, *outputs_nc_cmd, *project_cmd]
dvc_commands.append(join_command(full_cmd))
if not dvc_commands:
# If we don't check for this, then there will be an error when reading the
# config, since DVC wouldn't create it.
msg.fail(
"No usable commands for DVC found. This can happen if none of your "
"commands have dependencies or outputs.",
exits=1,
)
with working_dir(path):
for c in dvc_commands:
dvc_command = "dvc " + c
run_command(dvc_command)
with dvc_config_path.open("r+", encoding="utf8") as f:
content = f.read()
f.seek(0, 0)
f.write(f"# {config_hash}\n{DVC_CONFIG_COMMENT}\n{content}")
return True
def check_workflows(workflows: List[str], workflow: Optional[str] = None) -> None:
"""Validate workflows provided in project.yml and check that a given
workflow can be used to generate a DVC config.
workflows (List[str]): Names of the available workflows.
workflow (Optional[str]): The name of the workflow to convert.
"""
if not workflows:
msg.fail(
f"No workflows defined in {PROJECT_FILE}. To generate a DVC config, "
f"define at least one list of commands.",
exits=1,
)
if workflow is not None and workflow not in workflows:
msg.fail(
f"Workflow '{workflow}' not defined in {PROJECT_FILE}. "
f"Available workflows: {', '.join(workflows)}",
exits=1,
)
if not workflow:
msg.warn(
f"No workflow specified for DVC pipeline. Using the first workflow "
f"defined in {PROJECT_FILE}: '{workflows[0]}'"
)
def ensure_dvc(project_dir: Path) -> None:
"""Ensure that the "dvc" command is available and that the current project
directory is an initialized DVC project.
"""
try:
subprocess.run(["dvc", "--version"], stdout=subprocess.DEVNULL)
except Exception:
msg.fail(
"To use spaCy projects with DVC (Data Version Control), DVC needs "
"to be installed and the 'dvc' command needs to be available",
"You can install the Python package from pip (pip install dvc) or "
"conda (conda install -c conda-forge dvc). For more details, see the "
"documentation: https://dvc.org/doc/install",
exits=1,
)
if not (project_dir / ".dvc").exists():
msg.fail(
"Project not initialized as a DVC project",
"To initialize a DVC project, you can run 'dvc init' in the project "
"directory. For more details, see the documentation: "
"https://dvc.org/doc/command-reference/init",
exits=1,
)

View File

@ -1 +1,64 @@
from weasel.cli.pull import *
from pathlib import Path
from wasabi import msg
from .remote_storage import RemoteStorage
from .remote_storage import get_command_hash
from .._util import project_cli, Arg, logger
from .._util import load_project_config
from .run import update_lockfile
@project_cli.command("pull")
def project_pull_cli(
# fmt: off
remote: str = Arg("default", help="Name or path of remote storage"),
project_dir: Path = Arg(Path.cwd(), help="Location of project directory. Defaults to current working directory.", exists=True, file_okay=False),
# fmt: on
):
"""Retrieve available precomputed outputs from a remote storage.
You can alias remotes in your project.yml by mapping them to storage paths.
A storage can be anything that the smart-open library can upload to, e.g.
AWS, Google Cloud Storage, SSH, local directories etc.
DOCS: https://spacy.io/api/cli#project-pull
"""
for url, output_path in project_pull(project_dir, remote):
if url is not None:
msg.good(f"Pulled {output_path} from {url}")
def project_pull(project_dir: Path, remote: str, *, verbose: bool = False):
# TODO: We don't have tests for this :(. It would take a bit of mockery to
# set up. I guess see if it breaks first?
config = load_project_config(project_dir)
if remote in config.get("remotes", {}):
remote = config["remotes"][remote]
storage = RemoteStorage(project_dir, remote)
commands = list(config.get("commands", []))
# We use a while loop here because we don't know how the commands
# will be ordered. A command might need dependencies from one that's later
# in the list.
while commands:
for i, cmd in enumerate(list(commands)):
logger.debug(f"CMD: {cmd['name']}.")
deps = [project_dir / dep for dep in cmd.get("deps", [])]
if all(dep.exists() for dep in deps):
cmd_hash = get_command_hash("", "", deps, cmd["script"])
for output_path in cmd.get("outputs", []):
url = storage.pull(output_path, command_hash=cmd_hash)
logger.debug(
f"URL: {url} for {output_path} with command hash {cmd_hash}"
)
yield url, output_path
out_locs = [project_dir / out for out in cmd.get("outputs", [])]
if all(loc.exists() for loc in out_locs):
update_lockfile(project_dir, cmd)
# We remove the command from the list here, and break, so that
# we iterate over the loop again.
commands.pop(i)
break
else:
logger.debug(f"Dependency missing. Skipping {cmd['name']} outputs.")
else:
# If we didn't break the for loop, break the while loop.
break

View File

@ -1 +1,69 @@
from weasel.cli.push import *
from pathlib import Path
from wasabi import msg
from .remote_storage import RemoteStorage
from .remote_storage import get_content_hash, get_command_hash
from .._util import load_project_config
from .._util import project_cli, Arg, logger
@project_cli.command("push")
def project_push_cli(
# fmt: off
remote: str = Arg("default", help="Name or path of remote storage"),
project_dir: Path = Arg(Path.cwd(), help="Location of project directory. Defaults to current working directory.", exists=True, file_okay=False),
# fmt: on
):
"""Persist outputs to a remote storage. You can alias remotes in your
project.yml by mapping them to storage paths. A storage can be anything that
the smart-open library can upload to, e.g. AWS, Google Cloud Storage, SSH,
local directories etc.
DOCS: https://spacy.io/api/cli#project-push
"""
for output_path, url in project_push(project_dir, remote):
if url is None:
msg.info(f"Skipping {output_path}")
else:
msg.good(f"Pushed {output_path} to {url}")
def project_push(project_dir: Path, remote: str):
"""Persist outputs to a remote storage. You can alias remotes in your project.yml
by mapping them to storage paths. A storage can be anything that the smart-open
library can upload to, e.g. gcs, aws, ssh, local directories etc
"""
config = load_project_config(project_dir)
if remote in config.get("remotes", {}):
remote = config["remotes"][remote]
storage = RemoteStorage(project_dir, remote)
for cmd in config.get("commands", []):
logger.debug(f"CMD: cmd['name']")
deps = [project_dir / dep for dep in cmd.get("deps", [])]
if any(not dep.exists() for dep in deps):
logger.debug(f"Dependency missing. Skipping {cmd['name']} outputs")
continue
cmd_hash = get_command_hash(
"", "", [project_dir / dep for dep in cmd.get("deps", [])], cmd["script"]
)
logger.debug(f"CMD_HASH: {cmd_hash}")
for output_path in cmd.get("outputs", []):
output_loc = project_dir / output_path
if output_loc.exists() and _is_not_empty_dir(output_loc):
url = storage.push(
output_path,
command_hash=cmd_hash,
content_hash=get_content_hash(output_loc),
)
logger.debug(
f"URL: {url} for output {output_path} with cmd_hash {cmd_hash}"
)
yield output_path, url
def _is_not_empty_dir(loc: Path):
if not loc.is_dir():
return True
elif any(_is_not_empty_dir(child) for child in loc.iterdir()):
return True
else:
return False

View File

@ -1 +1,176 @@
from weasel.cli.remote_storage import *
from typing import Optional, List, Dict, TYPE_CHECKING
import os
import site
import hashlib
import urllib.parse
import tarfile
from pathlib import Path
from .._util import get_hash, get_checksum, download_file, ensure_pathy
from ...util import make_tempdir, get_minor_version, ENV_VARS, check_bool_env_var
from ...git_info import GIT_VERSION
from ... import about
if TYPE_CHECKING:
from pathy import Pathy # noqa: F401
class RemoteStorage:
"""Push and pull outputs to and from a remote file storage.
Remotes can be anything that `smart-open` can support: AWS, GCS, file system,
ssh, etc.
"""
def __init__(self, project_root: Path, url: str, *, compression="gz"):
self.root = project_root
self.url = ensure_pathy(url)
self.compression = compression
def push(self, path: Path, command_hash: str, content_hash: str) -> "Pathy":
"""Compress a file or directory within a project and upload it to a remote
storage. If an object exists at the full URL, nothing is done.
Within the remote storage, files are addressed by their project path
(url encoded) and two user-supplied hashes, representing their creation
context and their file contents. If the URL already exists, the data is
not uploaded. Paths are archived and compressed prior to upload.
"""
loc = self.root / path
if not loc.exists():
raise IOError(f"Cannot push {loc}: does not exist.")
url = self.make_url(path, command_hash, content_hash)
if url.exists():
return url
tmp: Path
with make_tempdir() as tmp:
tar_loc = tmp / self.encode_name(str(path))
mode_string = f"w:{self.compression}" if self.compression else "w"
with tarfile.open(tar_loc, mode=mode_string) as tar_file:
tar_file.add(str(loc), arcname=str(path))
with tar_loc.open(mode="rb") as input_file:
with url.open(mode="wb") as output_file:
output_file.write(input_file.read())
return url
def pull(
self,
path: Path,
*,
command_hash: Optional[str] = None,
content_hash: Optional[str] = None,
) -> Optional["Pathy"]:
"""Retrieve a file from the remote cache. If the file already exists,
nothing is done.
If the command_hash and/or content_hash are specified, only matching
results are returned. If no results are available, an error is raised.
"""
dest = self.root / path
if dest.exists():
return None
url = self.find(path, command_hash=command_hash, content_hash=content_hash)
if url is None:
return url
else:
# Make sure the destination exists
if not dest.parent.exists():
dest.parent.mkdir(parents=True)
tmp: Path
with make_tempdir() as tmp:
tar_loc = tmp / url.parts[-1]
download_file(url, tar_loc)
mode_string = f"r:{self.compression}" if self.compression else "r"
with tarfile.open(tar_loc, mode=mode_string) as tar_file:
# This requires that the path is added correctly, relative
# to root. This is how we set things up in push()
tar_file.extractall(self.root)
return url
def find(
self,
path: Path,
*,
command_hash: Optional[str] = None,
content_hash: Optional[str] = None,
) -> Optional["Pathy"]:
"""Find the best matching version of a file within the storage,
or `None` if no match can be found. If both the creation and content hash
are specified, only exact matches will be returned. Otherwise, the most
recent matching file is preferred.
"""
name = self.encode_name(str(path))
if command_hash is not None and content_hash is not None:
url = self.make_url(path, command_hash, content_hash)
urls = [url] if url.exists() else []
elif command_hash is not None:
urls = list((self.url / name / command_hash).iterdir())
else:
urls = list((self.url / name).iterdir())
if content_hash is not None:
urls = [url for url in urls if url.parts[-1] == content_hash]
return urls[-1] if urls else None
def make_url(self, path: Path, command_hash: str, content_hash: str) -> "Pathy":
"""Construct a URL from a subpath, a creation hash and a content hash."""
return self.url / self.encode_name(str(path)) / command_hash / content_hash
def encode_name(self, name: str) -> str:
"""Encode a subpath into a URL-safe name."""
return urllib.parse.quote_plus(name)
def get_content_hash(loc: Path) -> str:
return get_checksum(loc)
def get_command_hash(
site_hash: str, env_hash: str, deps: List[Path], cmd: List[str]
) -> str:
"""Create a hash representing the execution of a command. This includes the
currently installed packages, whatever environment variables have been marked
as relevant, and the command.
"""
if check_bool_env_var(ENV_VARS.PROJECT_USE_GIT_VERSION):
spacy_v = GIT_VERSION
else:
spacy_v = str(get_minor_version(about.__version__) or "")
dep_checksums = [get_checksum(dep) for dep in sorted(deps)]
hashes = [spacy_v, site_hash, env_hash] + dep_checksums
hashes.extend(cmd)
creation_bytes = "".join(hashes).encode("utf8")
return hashlib.md5(creation_bytes).hexdigest()
def get_site_hash():
"""Hash the current Python environment's site-packages contents, including
the name and version of the libraries. The list we're hashing is what
`pip freeze` would output.
"""
site_dirs = site.getsitepackages()
if site.ENABLE_USER_SITE:
site_dirs.extend(site.getusersitepackages())
packages = set()
for site_dir in site_dirs:
site_dir = Path(site_dir)
for subpath in site_dir.iterdir():
if subpath.parts[-1].endswith("dist-info"):
packages.add(subpath.parts[-1].replace(".dist-info", ""))
package_bytes = "".join(sorted(packages)).encode("utf8")
return hashlib.md5sum(package_bytes).hexdigest()
def get_env_hash(env: Dict[str, str]) -> str:
"""Construct a hash of the environment variables that will be passed into
the commands.
Values in the env dict may be references to the current os.environ, using
the syntax $ENV_VAR to mean os.environ[ENV_VAR]
"""
env_vars = {}
for key, value in env.items():
if value.startswith("$"):
env_vars[key] = os.environ.get(value[1:], "")
else:
env_vars[key] = value
return get_hash(env_vars)

View File

@ -1 +1,358 @@
from weasel.cli.run import *
from typing import Optional, List, Dict, Sequence, Any, Iterable, Tuple
import os.path
from pathlib import Path
import pkg_resources
from wasabi import msg
from wasabi.util import locale_escape
import sys
import srsly
import typer
from ... import about
from ...git_info import GIT_VERSION
from ...util import working_dir, run_command, split_command, is_cwd, join_command
from ...util import SimpleFrozenList, is_minor_version_match, ENV_VARS
from ...util import check_bool_env_var, SimpleFrozenDict
from .._util import PROJECT_FILE, PROJECT_LOCK, load_project_config, get_hash
from .._util import get_checksum, project_cli, Arg, Opt, COMMAND, parse_config_overrides
@project_cli.command(
"run", context_settings={"allow_extra_args": True, "ignore_unknown_options": True}
)
def project_run_cli(
# fmt: off
ctx: typer.Context, # This is only used to read additional arguments
subcommand: str = Arg(None, help=f"Name of command defined in the {PROJECT_FILE}"),
project_dir: Path = Arg(Path.cwd(), help="Location of project directory. Defaults to current working directory.", exists=True, file_okay=False),
force: bool = Opt(False, "--force", "-F", help="Force re-running steps, even if nothing changed"),
dry: bool = Opt(False, "--dry", "-D", help="Perform a dry run and don't execute scripts"),
show_help: bool = Opt(False, "--help", help="Show help message and available subcommands")
# fmt: on
):
"""Run a named command or workflow defined in the project.yml. If a workflow
name is specified, all commands in the workflow are run, in order. If
commands define dependencies and/or outputs, they will only be re-run if
state has changed.
DOCS: https://spacy.io/api/cli#project-run
"""
if show_help or not subcommand:
print_run_help(project_dir, subcommand)
else:
overrides = parse_config_overrides(ctx.args)
project_run(project_dir, subcommand, overrides=overrides, force=force, dry=dry)
def project_run(
project_dir: Path,
subcommand: str,
*,
overrides: Dict[str, Any] = SimpleFrozenDict(),
force: bool = False,
dry: bool = False,
capture: bool = False,
skip_requirements_check: bool = False,
) -> None:
"""Run a named script defined in the project.yml. If the script is part
of the default pipeline (defined in the "run" section), DVC is used to
execute the command, so it can determine whether to rerun it. It then
calls into "exec" to execute it.
project_dir (Path): Path to project directory.
subcommand (str): Name of command to run.
overrides (Dict[str, Any]): Optional config overrides.
force (bool): Force re-running, even if nothing changed.
dry (bool): Perform a dry run and don't execute commands.
capture (bool): Whether to capture the output and errors of individual commands.
If False, the stdout and stderr will not be redirected, and if there's an error,
sys.exit will be called with the return code. You should use capture=False
when you want to turn over execution to the command, and capture=True
when you want to run the command more like a function.
skip_requirements_check (bool): Whether to skip the requirements check.
"""
config = load_project_config(project_dir, overrides=overrides)
commands = {cmd["name"]: cmd for cmd in config.get("commands", [])}
workflows = config.get("workflows", {})
validate_subcommand(list(commands.keys()), list(workflows.keys()), subcommand)
req_path = project_dir / "requirements.txt"
if not skip_requirements_check:
if config.get("check_requirements", True) and os.path.exists(req_path):
with req_path.open() as requirements_file:
_check_requirements([req.strip() for req in requirements_file])
if subcommand in workflows:
msg.info(f"Running workflow '{subcommand}'")
for cmd in workflows[subcommand]:
project_run(
project_dir,
cmd,
overrides=overrides,
force=force,
dry=dry,
capture=capture,
skip_requirements_check=True,
)
else:
cmd = commands[subcommand]
for dep in cmd.get("deps", []):
if not (project_dir / dep).exists():
err = f"Missing dependency specified by command '{subcommand}': {dep}"
err_help = "Maybe you forgot to run the 'project assets' command or a previous step?"
err_kwargs = {"exits": 1} if not dry else {}
msg.fail(err, err_help, **err_kwargs)
check_spacy_commit = check_bool_env_var(ENV_VARS.PROJECT_USE_GIT_VERSION)
with working_dir(project_dir) as current_dir:
msg.divider(subcommand)
rerun = check_rerun(current_dir, cmd, check_spacy_commit=check_spacy_commit)
if not rerun and not force:
msg.info(f"Skipping '{cmd['name']}': nothing changed")
else:
run_commands(cmd["script"], dry=dry, capture=capture)
if not dry:
update_lockfile(current_dir, cmd)
def print_run_help(project_dir: Path, subcommand: Optional[str] = None) -> None:
"""Simulate a CLI help prompt using the info available in the project.yml.
project_dir (Path): The project directory.
subcommand (Optional[str]): The subcommand or None. If a subcommand is
provided, the subcommand help is shown. Otherwise, the top-level help
and a list of available commands is printed.
"""
config = load_project_config(project_dir)
config_commands = config.get("commands", [])
commands = {cmd["name"]: cmd for cmd in config_commands}
workflows = config.get("workflows", {})
project_loc = "" if is_cwd(project_dir) else project_dir
if subcommand:
validate_subcommand(list(commands.keys()), list(workflows.keys()), subcommand)
print(f"Usage: {COMMAND} project run {subcommand} {project_loc}")
if subcommand in commands:
help_text = commands[subcommand].get("help")
if help_text:
print(f"\n{help_text}\n")
elif subcommand in workflows:
steps = workflows[subcommand]
print(f"\nWorkflow consisting of {len(steps)} commands:")
steps_data = [
(f"{i + 1}. {step}", commands[step].get("help", ""))
for i, step in enumerate(steps)
]
msg.table(steps_data)
help_cmd = f"{COMMAND} project run [COMMAND] {project_loc} --help"
print(f"For command details, run: {help_cmd}")
else:
print("")
title = config.get("title")
if title:
print(f"{locale_escape(title)}\n")
if config_commands:
print(f"Available commands in {PROJECT_FILE}")
print(f"Usage: {COMMAND} project run [COMMAND] {project_loc}")
msg.table([(cmd["name"], cmd.get("help", "")) for cmd in config_commands])
if workflows:
print(f"Available workflows in {PROJECT_FILE}")
print(f"Usage: {COMMAND} project run [WORKFLOW] {project_loc}")
msg.table([(name, " -> ".join(steps)) for name, steps in workflows.items()])
def run_commands(
commands: Iterable[str] = SimpleFrozenList(),
silent: bool = False,
dry: bool = False,
capture: bool = False,
) -> None:
"""Run a sequence of commands in a subprocess, in order.
commands (List[str]): The string commands.
silent (bool): Don't print the commands.
dry (bool): Perform a dry run and don't execut anything.
capture (bool): Whether to capture the output and errors of individual commands.
If False, the stdout and stderr will not be redirected, and if there's an error,
sys.exit will be called with the return code. You should use capture=False
when you want to turn over execution to the command, and capture=True
when you want to run the command more like a function.
"""
for c in commands:
command = split_command(c)
# Not sure if this is needed or a good idea. Motivation: users may often
# use commands in their config that reference "python" and we want to
# make sure that it's always executing the same Python that spaCy is
# executed with and the pip in the same env, not some other Python/pip.
# Also ensures cross-compatibility if user 1 writes "python3" (because
# that's how it's set up on their system), and user 2 without the
# shortcut tries to re-run the command.
if len(command) and command[0] in ("python", "python3"):
command[0] = sys.executable
elif len(command) and command[0] in ("pip", "pip3"):
command = [sys.executable, "-m", "pip", *command[1:]]
if not silent:
print(f"Running command: {join_command(command)}")
if not dry:
run_command(command, capture=capture)
def validate_subcommand(
commands: Sequence[str], workflows: Sequence[str], subcommand: str
) -> None:
"""Check that a subcommand is valid and defined. Raises an error otherwise.
commands (Sequence[str]): The available commands.
subcommand (str): The subcommand.
"""
if not commands and not workflows:
msg.fail(f"No commands or workflows defined in {PROJECT_FILE}", exits=1)
if subcommand not in commands and subcommand not in workflows:
help_msg = []
if subcommand in ["assets", "asset"]:
help_msg.append("Did you mean to run: python -m spacy project assets?")
if commands:
help_msg.append(f"Available commands: {', '.join(commands)}")
if workflows:
help_msg.append(f"Available workflows: {', '.join(workflows)}")
msg.fail(
f"Can't find command or workflow '{subcommand}' in {PROJECT_FILE}",
". ".join(help_msg),
exits=1,
)
def check_rerun(
project_dir: Path,
command: Dict[str, Any],
*,
check_spacy_version: bool = True,
check_spacy_commit: bool = False,
) -> bool:
"""Check if a command should be rerun because its settings or inputs/outputs
changed.
project_dir (Path): The current project directory.
command (Dict[str, Any]): The command, as defined in the project.yml.
strict_version (bool):
RETURNS (bool): Whether to re-run the command.
"""
# Always rerun if no-skip is set
if command.get("no_skip", False):
return True
lock_path = project_dir / PROJECT_LOCK
if not lock_path.exists(): # We don't have a lockfile, run command
return True
data = srsly.read_yaml(lock_path)
if command["name"] not in data: # We don't have info about this command
return True
entry = data[command["name"]]
# Always run commands with no outputs (otherwise they'd always be skipped)
if not entry.get("outs", []):
return True
# Always rerun if spaCy version or commit hash changed
spacy_v = entry.get("spacy_version")
commit = entry.get("spacy_git_version")
if check_spacy_version and not is_minor_version_match(spacy_v, about.__version__):
info = f"({spacy_v} in {PROJECT_LOCK}, {about.__version__} current)"
msg.info(f"Re-running '{command['name']}': spaCy minor version changed {info}")
return True
if check_spacy_commit and commit != GIT_VERSION:
info = f"({commit} in {PROJECT_LOCK}, {GIT_VERSION} current)"
msg.info(f"Re-running '{command['name']}': spaCy commit changed {info}")
return True
# If the entry in the lockfile matches the lockfile entry that would be
# generated from the current command, we don't rerun because it means that
# all inputs/outputs, hashes and scripts are the same and nothing changed
lock_entry = get_lock_entry(project_dir, command)
exclude = ["spacy_version", "spacy_git_version"]
return get_hash(lock_entry, exclude=exclude) != get_hash(entry, exclude=exclude)
def update_lockfile(project_dir: Path, command: Dict[str, Any]) -> None:
"""Update the lockfile after running a command. Will create a lockfile if
it doesn't yet exist and will add an entry for the current command, its
script and dependencies/outputs.
project_dir (Path): The current project directory.
command (Dict[str, Any]): The command, as defined in the project.yml.
"""
lock_path = project_dir / PROJECT_LOCK
if not lock_path.exists():
srsly.write_yaml(lock_path, {})
data = {}
else:
data = srsly.read_yaml(lock_path)
data[command["name"]] = get_lock_entry(project_dir, command)
srsly.write_yaml(lock_path, data)
def get_lock_entry(project_dir: Path, command: Dict[str, Any]) -> Dict[str, Any]:
"""Get a lockfile entry for a given command. An entry includes the command,
the script (command steps) and a list of dependencies and outputs with
their paths and file hashes, if available. The format is based on the
dvc.lock files, to keep things consistent.
project_dir (Path): The current project directory.
command (Dict[str, Any]): The command, as defined in the project.yml.
RETURNS (Dict[str, Any]): The lockfile entry.
"""
deps = get_fileinfo(project_dir, command.get("deps", []))
outs = get_fileinfo(project_dir, command.get("outputs", []))
outs_nc = get_fileinfo(project_dir, command.get("outputs_no_cache", []))
return {
"cmd": f"{COMMAND} run {command['name']}",
"script": command["script"],
"deps": deps,
"outs": [*outs, *outs_nc],
"spacy_version": about.__version__,
"spacy_git_version": GIT_VERSION,
}
def get_fileinfo(project_dir: Path, paths: List[str]) -> List[Dict[str, Optional[str]]]:
"""Generate the file information for a list of paths (dependencies, outputs).
Includes the file path and the file's checksum.
project_dir (Path): The current project directory.
paths (List[str]): The file paths.
RETURNS (List[Dict[str, str]]): The lockfile entry for a file.
"""
data = []
for path in paths:
file_path = project_dir / path
md5 = get_checksum(file_path) if file_path.exists() else None
data.append({"path": path, "md5": md5})
return data
def _check_requirements(requirements: List[str]) -> Tuple[bool, bool]:
"""Checks whether requirements are installed and free of version conflicts.
requirements (List[str]): List of requirements.
RETURNS (Tuple[bool, bool]): Whether (1) any packages couldn't be imported, (2) any packages with version conflicts
exist.
"""
failed_pkgs_msgs: List[str] = []
conflicting_pkgs_msgs: List[str] = []
for req in requirements:
try:
pkg_resources.require(req)
except pkg_resources.DistributionNotFound as dnf:
failed_pkgs_msgs.append(dnf.report())
except pkg_resources.VersionConflict as vc:
conflicting_pkgs_msgs.append(vc.report())
except Exception:
msg.warn(f"Unable to check requirement: {req} "
"Checks are currently limited to requirement specifiers "
"(PEP 508)")
if len(failed_pkgs_msgs) or len(conflicting_pkgs_msgs):
msg.warn(
title="Missing requirements or requirement conflicts detected. Make sure your Python environment is set up "
"correctly and you installed all requirements specified in your project's requirements.txt: "
)
for pgk_msg in failed_pkgs_msgs + conflicting_pkgs_msgs:
msg.text(pgk_msg)
return len(failed_pkgs_msgs) > 0, len(conflicting_pkgs_msgs) > 0

View File

@ -3,7 +3,7 @@ the docs and the init config command. It encodes various best practices and
can help generate the best possible configuration, given a user's requirements. #}
{%- set use_transformer = hardware != "cpu" and transformer_data -%}
{%- set transformer = transformer_data[optimize] if use_transformer else {} -%}
{%- set listener_components = ["tagger", "morphologizer", "parser", "ner", "textcat", "textcat_multilabel", "entity_linker", "span_finder", "spancat", "spancat_singlelabel", "trainable_lemmatizer"] -%}
{%- set listener_components = ["tagger", "morphologizer", "parser", "ner", "textcat", "textcat_multilabel", "entity_linker", "spancat", "trainable_lemmatizer"] -%}
[paths]
train = null
dev = null
@ -24,11 +24,8 @@ gpu_allocator = null
lang = "{{ lang }}"
{%- set has_textcat = ("textcat" in components or "textcat_multilabel" in components) -%}
{%- set with_accuracy = optimize == "accuracy" -%}
{# The BOW textcat doesn't need a source of features, so it can omit the
tok2vec/transformer. #}
{%- set with_accuracy_or_transformer = (use_transformer or with_accuracy) -%}
{%- set textcat_needs_features = has_textcat and with_accuracy_or_transformer -%}
{%- if ("tagger" in components or "morphologizer" in components or "parser" in components or "ner" in components or "span_finder" in components or "spancat" in components or "spancat_singlelabel" in components or "trainable_lemmatizer" in components or "entity_linker" in components or textcat_needs_features) -%}
{%- set has_accurate_textcat = has_textcat and with_accuracy -%}
{%- if ("tagger" in components or "morphologizer" in components or "parser" in components or "ner" in components or "spancat" in components or "trainable_lemmatizer" in components or "entity_linker" in components or has_accurate_textcat) -%}
{%- set full_pipeline = ["transformer" if use_transformer else "tok2vec"] + components -%}
{%- else -%}
{%- set full_pipeline = components -%}
@ -127,30 +124,6 @@ grad_factor = 1.0
@layers = "reduce_mean.v1"
{% endif -%}
{% if "span_finder" in components -%}
[components.span_finder]
factory = "span_finder"
max_length = 25
min_length = null
scorer = {"@scorers":"spacy.span_finder_scorer.v1"}
spans_key = "sc"
threshold = 0.5
[components.span_finder.model]
@architectures = "spacy.SpanFinder.v1"
[components.span_finder.model.scorer]
@layers = "spacy.LinearLogistic.v1"
nO = 2
[components.span_finder.model.tok2vec]
@architectures = "spacy-transformers.TransformerListener.v1"
grad_factor = 1.0
[components.span_finder.model.tok2vec.pooling]
@layers = "reduce_mean.v1"
{% endif -%}
{% if "spancat" in components -%}
[components.spancat]
factory = "spancat"
@ -183,36 +156,6 @@ grad_factor = 1.0
sizes = [1,2,3]
{% endif -%}
{% if "spancat_singlelabel" in components %}
[components.spancat_singlelabel]
factory = "spancat_singlelabel"
negative_weight = 1.0
allow_overlap = true
scorer = {"@scorers":"spacy.spancat_scorer.v1"}
spans_key = "sc"
[components.spancat_singlelabel.model]
@architectures = "spacy.SpanCategorizer.v1"
[components.spancat_singlelabel.model.reducer]
@layers = "spacy.mean_max_reducer.v1"
hidden_size = 128
[components.spancat_singlelabel.model.scorer]
@layers = "Softmax.v2"
[components.spancat_singlelabel.model.tok2vec]
@architectures = "spacy-transformers.TransformerListener.v1"
grad_factor = 1.0
[components.spancat_singlelabel.model.tok2vec.pooling]
@layers = "reduce_mean.v1"
[components.spancat_singlelabel.suggester]
@misc = "spacy.ngram_suggester.v1"
sizes = [1,2,3]
{% endif %}
{% if "trainable_lemmatizer" in components -%}
[components.trainable_lemmatizer]
factory = "trainable_lemmatizer"
@ -271,24 +214,17 @@ grad_factor = 1.0
@layers = "reduce_mean.v1"
[components.textcat.model.linear_model]
@architectures = "spacy.TextCatBOW.v3"
@architectures = "spacy.TextCatBOW.v2"
exclusive_classes = true
length = 262144
ngram_size = 1
no_output_layer = false
{% else -%}
[components.textcat.model]
@architectures = "spacy.TextCatCNN.v2"
@architectures = "spacy.TextCatBOW.v2"
exclusive_classes = true
nO = null
[components.textcat.model.tok2vec]
@architectures = "spacy-transformers.TransformerListener.v1"
grad_factor = 1.0
[components.textcat.model.tok2vec.pooling]
@layers = "reduce_mean.v1"
ngram_size = 1
no_output_layer = false
{%- endif %}
{%- endif %}
@ -309,24 +245,17 @@ grad_factor = 1.0
@layers = "reduce_mean.v1"
[components.textcat_multilabel.model.linear_model]
@architectures = "spacy.TextCatBOW.v3"
@architectures = "spacy.TextCatBOW.v2"
exclusive_classes = false
length = 262144
ngram_size = 1
no_output_layer = false
{% else -%}
[components.textcat_multilabel.model]
@architectures = "spacy.TextCatCNN.v2"
@architectures = "spacy.TextCatBOW.v2"
exclusive_classes = false
nO = null
[components.textcat_multilabel.model.tok2vec]
@architectures = "spacy-transformers.TransformerListener.v1"
grad_factor = 1.0
[components.textcat_multilabel.model.tok2vec.pooling]
@layers = "reduce_mean.v1"
ngram_size = 1
no_output_layer = false
{%- endif %}
{%- endif %}
@ -357,7 +286,6 @@ maxout_pieces = 3
{% if "morphologizer" in components %}
[components.morphologizer]
factory = "morphologizer"
label_smoothing = 0.05
[components.morphologizer.model]
@architectures = "spacy.Tagger.v2"
@ -371,7 +299,6 @@ width = ${components.tok2vec.model.encode.width}
{% if "tagger" in components %}
[components.tagger]
factory = "tagger"
label_smoothing = 0.05
[components.tagger.model]
@architectures = "spacy.Tagger.v2"
@ -418,27 +345,6 @@ nO = null
width = ${components.tok2vec.model.encode.width}
{% endif %}
{% if "span_finder" in components %}
[components.span_finder]
factory = "span_finder"
max_length = 25
min_length = null
scorer = {"@scorers":"spacy.span_finder_scorer.v1"}
spans_key = "sc"
threshold = 0.5
[components.span_finder.model]
@architectures = "spacy.SpanFinder.v1"
[components.span_finder.model.scorer]
@layers = "spacy.LinearLogistic.v1"
nO = 2
[components.span_finder.model.tok2vec]
@architectures = "spacy.Tok2VecListener.v1"
width = ${components.tok2vec.model.encode.width}
{% endif %}
{% if "spancat" in components %}
[components.spancat]
factory = "spancat"
@ -468,33 +374,6 @@ width = ${components.tok2vec.model.encode.width}
sizes = [1,2,3]
{% endif %}
{% if "spancat_singlelabel" in components %}
[components.spancat_singlelabel]
factory = "spancat_singlelabel"
negative_weight = 1.0
allow_overlap = true
scorer = {"@scorers":"spacy.spancat_scorer.v1"}
spans_key = "sc"
[components.spancat_singlelabel.model]
@architectures = "spacy.SpanCategorizer.v1"
[components.spancat_singlelabel.model.reducer]
@layers = "spacy.mean_max_reducer.v1"
hidden_size = 128
[components.spancat_singlelabel.model.scorer]
@layers = "Softmax.v2"
[components.spancat_singlelabel.model.tok2vec]
@architectures = "spacy.Tok2VecListener.v1"
width = ${components.tok2vec.model.encode.width}
[components.spancat_singlelabel.suggester]
@misc = "spacy.ngram_suggester.v1"
sizes = [1,2,3]
{% endif %}
{% if "trainable_lemmatizer" in components -%}
[components.trainable_lemmatizer]
factory = "trainable_lemmatizer"
@ -544,15 +423,14 @@ nO = null
width = ${components.tok2vec.model.encode.width}
[components.textcat.model.linear_model]
@architectures = "spacy.TextCatBOW.v3"
@architectures = "spacy.TextCatBOW.v2"
exclusive_classes = true
length = 262144
ngram_size = 1
no_output_layer = false
{% else -%}
[components.textcat.model]
@architectures = "spacy.TextCatBOW.v3"
@architectures = "spacy.TextCatBOW.v2"
exclusive_classes = true
ngram_size = 1
no_output_layer = false
@ -573,17 +451,15 @@ nO = null
width = ${components.tok2vec.model.encode.width}
[components.textcat_multilabel.model.linear_model]
@architectures = "spacy.TextCatBOW.v3"
@architectures = "spacy.TextCatBOW.v2"
exclusive_classes = false
length = 262144
ngram_size = 1
no_output_layer = false
{% else -%}
[components.textcat_multilabel.model]
@architectures = "spacy.TextCatBOW.v3"
@architectures = "spacy.TextCatBOW.v2"
exclusive_classes = false
length = 262144
ngram_size = 1
no_output_layer = false
{%- endif %}

View File

@ -37,15 +37,6 @@ bn:
accuracy:
name: sagorsarker/bangla-bert-base
size_factor: 3
ca:
word_vectors: null
transformer:
efficiency:
name: projecte-aina/roberta-base-ca-v2
size_factor: 3
accuracy:
name: projecte-aina/roberta-base-ca-v2
size_factor: 3
da:
word_vectors: da_core_news_lg
transformer:

View File

@ -1,23 +1,15 @@
from typing import Optional, Dict, Any, Union
from pathlib import Path
from wasabi import msg
import typer
import logging
import sys
from pathlib import Path
from typing import Any, Dict, Optional, Union
import typer
from wasabi import msg
from .. import util
from ..training.initialize import init_nlp
from ._util import app, Arg, Opt, parse_config_overrides, show_validation_error
from ._util import import_code, setup_gpu
from ..training.loop import train as train_nlp
from ._util import (
Arg,
Opt,
app,
import_code,
parse_config_overrides,
setup_gpu,
show_validation_error,
)
from ..training.initialize import init_nlp
from .. import util
@app.command(
@ -47,8 +39,7 @@ def train_cli(
DOCS: https://spacy.io/api/cli#train
"""
if verbose:
util.logger.setLevel(logging.DEBUG)
util.logger.setLevel(logging.DEBUG if verbose else logging.INFO)
overrides = parse_config_overrides(ctx.args)
import_code(code_path)
train(config_path, output_path, use_gpu=use_gpu, overrides=overrides)

View File

@ -1,21 +1,14 @@
import sys
import warnings
from pathlib import Path
from typing import Tuple
from pathlib import Path
import sys
import requests
from wasabi import Printer, msg
from wasabi import msg, Printer
import warnings
from .. import about
from ..util import (
get_installed_models,
get_minor_version,
get_model_meta,
get_package_path,
get_package_version,
is_compatible_version,
)
from ._util import app
from .. import about
from ..util import get_package_version, get_installed_models, get_minor_version
from ..util import get_package_path, get_model_meta, is_compatible_version
@app.command("validate")

View File

@ -1,6 +1,5 @@
"""Helpers for Python and platform compatibility."""
import sys
from thinc.util import copy_array
try:

View File

@ -26,9 +26,6 @@ batch_size = 1000
[nlp.tokenizer]
@tokenizers = "spacy.Tokenizer.v1"
[nlp.vectors]
@vectors = "spacy.Vectors.v1"
# The pipeline components and their models
[components]
@ -93,8 +90,6 @@ dev_corpus = "corpora.dev"
train_corpus = "corpora.train"
# Optional callback before nlp object is saved to disk after training
before_to_disk = null
# Optional callback that is invoked at the start of each training step
before_update = null
[training.logger]
@loggers = "spacy.ConsoleLogger.v1"

View File

@ -4,13 +4,14 @@ spaCy's built in visualization suite for dependencies and named entities.
DOCS: https://spacy.io/api/top-level#displacy
USAGE: https://spacy.io/usage/visualizers
"""
from typing import Union, Iterable, Optional, Dict, Any, Callable
import warnings
from typing import Any, Callable, Dict, Iterable, Optional, Union
from ..errors import Errors, Warnings
from ..tokens import Doc, Span
from ..util import find_available_port, is_in_jupyter
from .render import DependencyRenderer, EntityRenderer, SpanRenderer
from ..tokens import Doc, Span
from ..errors import Errors, Warnings
from ..util import is_in_jupyter
_html = {}
RENDER_WRAPPER = None
@ -35,7 +36,7 @@ def render(
jupyter (bool): Override Jupyter auto-detection.
options (dict): Visualiser-specific options, e.g. colors.
manual (bool): Don't parse `Doc` and instead expect a dict/list of dicts.
RETURNS (str): Rendered SVG or HTML markup.
RETURNS (str): Rendered HTML markup.
DOCS: https://spacy.io/api/top-level#displacy.render
USAGE: https://spacy.io/usage/visualizers
@ -66,7 +67,7 @@ def render(
if jupyter or (jupyter is None and is_in_jupyter()):
# return HTML rendered by IPython display()
# See #4840 for details on span wrapper to disable mathjax
from IPython.core.display import HTML, display
from IPython.core.display import display, HTML
return display(HTML('<span class="tex2jax_ignore">{}</span>'.format(html)))
return html
@ -81,7 +82,6 @@ def serve(
manual: bool = False,
port: int = 5000,
host: str = "0.0.0.0",
auto_select_port: bool = False,
) -> None:
"""Serve displaCy visualisation.
@ -93,15 +93,12 @@ def serve(
manual (bool): Don't parse `Doc` and instead expect a dict/list of dicts.
port (int): Port to serve visualisation.
host (str): Host to serve visualisation.
auto_select_port (bool): Automatically select a port if the specified port is in use.
DOCS: https://spacy.io/api/top-level#displacy.serve
USAGE: https://spacy.io/usage/visualizers
"""
from wsgiref import simple_server
port = find_available_port(port, host, auto_select_port)
if is_in_jupyter():
warnings.warn(Warnings.W011)
render(docs, style=style, page=page, minify=minify, options=options, manual=manual)
@ -123,17 +120,13 @@ def app(environ, start_response):
return [res]
def parse_deps(
orig_doc: Union[Doc, Span], options: Dict[str, Any] = {}
) -> Dict[str, Any]:
def parse_deps(orig_doc: Doc, options: Dict[str, Any] = {}) -> Dict[str, Any]:
"""Generate dependency parse in {'words': [], 'arcs': []} format.
orig_doc (Union[Doc, Span]): Document to parse.
orig_doc (Doc): Document to parse.
options (Dict[str, Any]): Dependency parse specific visualisation options.
RETURNS (dict): Generated dependency parse keyed by words and arcs.
"""
if isinstance(orig_doc, Span):
orig_doc = orig_doc.as_doc()
doc = Doc(orig_doc.vocab).from_bytes(
orig_doc.to_bytes(exclude=["user_data", "user_hooks"])
)

View File

@ -1,28 +1,15 @@
import uuid
from typing import Any, Dict, List, Optional, Tuple, Union
import uuid
import itertools
from ..errors import Errors
from ..util import escape_html, minify_html, registry
from .templates import (
TPL_DEP_ARCS,
TPL_DEP_SVG,
TPL_DEP_WORDS,
TPL_DEP_WORDS_LEMMA,
TPL_ENT,
TPL_ENT_RTL,
TPL_ENTS,
TPL_FIGURE,
TPL_KB_LINK,
TPL_PAGE,
TPL_SPAN,
TPL_SPAN_RTL,
TPL_SPAN_SLICE,
TPL_SPAN_SLICE_RTL,
TPL_SPAN_START,
TPL_SPAN_START_RTL,
TPL_SPANS,
TPL_TITLE,
)
from .templates import TPL_DEP_ARCS, TPL_DEP_SVG, TPL_DEP_WORDS
from .templates import TPL_DEP_WORDS_LEMMA, TPL_ENT, TPL_ENT_RTL, TPL_ENTS
from .templates import TPL_FIGURE, TPL_KB_LINK, TPL_PAGE, TPL_SPAN
from .templates import TPL_SPAN_RTL, TPL_SPAN_SLICE, TPL_SPAN_SLICE_RTL
from .templates import TPL_SPAN_START, TPL_SPAN_START_RTL, TPL_SPANS
from .templates import TPL_TITLE
DEFAULT_LANG = "en"
DEFAULT_DIR = "ltr"
@ -107,7 +94,7 @@ class SpanRenderer:
parsed (list): Dependency parses to render.
page (bool): Render parses wrapped as full HTML page.
minify (bool): Minify HTML markup.
RETURNS (str): Rendered SVG or HTML markup.
RETURNS (str): Rendered HTML markup.
"""
rendered = []
for i, p in enumerate(parsed):
@ -142,25 +129,7 @@ class SpanRenderer:
spans (list): Individual entity spans and their start, end, label, kb_id and kb_url.
title (str / None): Document title set in Doc.user_data['title'].
"""
per_token_info = self._assemble_per_token_info(tokens, spans)
markup = self._render_markup(per_token_info)
markup = TPL_SPANS.format(content=markup, dir=self.direction)
if title:
markup = TPL_TITLE.format(title=title) + markup
return markup
@staticmethod
def _assemble_per_token_info(
tokens: List[str], spans: List[Dict[str, Any]]
) -> List[Dict[str, List[Dict[str, Any]]]]:
"""Assembles token info used to generate markup in render_spans().
tokens (List[str]): Tokens in text.
spans (List[Dict[str, Any]]): Spans in text.
RETURNS (List[Dict[str, List[Dict, str, Any]]]): Per token info needed to render HTML markup for given tokens
and spans.
"""
per_token_info: List[Dict[str, List[Dict[str, Any]]]] = []
per_token_info = []
# we must sort so that we can correctly describe when spans need to "stack"
# which is determined by their start token, then span length (longer spans on top),
# then break any remaining ties with the span label
@ -172,22 +141,21 @@ class SpanRenderer:
s["label"],
),
)
for s in spans:
# this is the vertical 'slot' that the span will be rendered in
# vertical_position = span_label_offset + (offset_step * (slot - 1))
s["render_slot"] = 0
for idx, token in enumerate(tokens):
# Identify if a token belongs to a Span (and which) and if it's a
# start token of said Span. We'll use this for the final HTML render
token_markup: Dict[str, Any] = {}
token_markup["text"] = token
intersecting_spans: List[Dict[str, Any]] = []
concurrent_spans = 0
entities = []
for span in spans:
ent = {}
if span["start_token"] <= idx < span["end_token"]:
concurrent_spans += 1
span_start = idx == span["start_token"]
ent["label"] = span["label"]
ent["is_start"] = span_start
@ -195,12 +163,7 @@ class SpanRenderer:
# When the span starts, we need to know how many other
# spans are on the 'span stack' and will be rendered.
# This value becomes the vertical render slot for this entire span
span["render_slot"] = (
intersecting_spans[-1]["render_slot"]
if len(intersecting_spans)
else 0
) + 1
intersecting_spans.append(span)
span["render_slot"] = concurrent_spans
ent["render_slot"] = span["render_slot"]
kb_id = span.get("kb_id", "")
kb_url = span.get("kb_url", "#")
@ -217,8 +180,11 @@ class SpanRenderer:
span["render_slot"] = 0
token_markup["entities"] = entities
per_token_info.append(token_markup)
return per_token_info
markup = self._render_markup(per_token_info)
markup = TPL_SPANS.format(content=markup, dir=self.direction)
if title:
markup = TPL_TITLE.format(title=title) + markup
return markup
def _render_markup(self, per_token_info: List[Dict[str, Any]]) -> str:
"""Render the markup from per-token information"""
@ -238,7 +204,7 @@ class SpanRenderer:
+ (self.offset_step * (len(entities) - 1))
)
markup += self.span_template.format(
text=escape_html(token["text"]),
text=token["text"],
span_slices=slices,
span_starts=starts,
total_height=total_height,
@ -334,8 +300,6 @@ class DependencyRenderer:
self.lang = settings.get("lang", DEFAULT_LANG)
render_id = f"{id_prefix}-{i}"
svg = self.render_svg(render_id, p["words"], p["arcs"])
if p.get("title"):
svg = TPL_TITLE.format(title=p.get("title")) + svg
rendered.append(svg)
if page:
content = "".join([TPL_FIGURE.format(content=svg) for svg in rendered])
@ -546,7 +510,7 @@ class EntityRenderer:
parsed (list): Dependency parses to render.
page (bool): Render parses wrapped as full HTML page.
minify (bool): Minify HTML markup.
RETURNS (str): Rendered SVG or HTML markup.
RETURNS (str): Rendered HTML markup.
"""
rendered = []
for i, p in enumerate(parsed):
@ -588,7 +552,7 @@ class EntityRenderer:
for i, fragment in enumerate(fragments):
markup += escape_html(fragment)
if len(fragments) > 1 and i != len(fragments) - 1:
markup += "<br>"
markup += "</br>"
if self.ents is None or label.upper() in self.ents:
color = self.colors.get(label.upper(), self.default_color)
ent_settings = {
@ -606,7 +570,7 @@ class EntityRenderer:
for i, fragment in enumerate(fragments):
markup += escape_html(fragment)
if len(fragments) > 1 and i != len(fragments) - 1:
markup += "<br>"
markup += "</br>"
markup = TPL_ENTS.format(content=markup, dir=self.direction)
if title:
markup = TPL_TITLE.format(title=title) + markup

View File

@ -1,5 +1,4 @@
import warnings
from .compat import Literal
@ -215,12 +214,6 @@ class Warnings(metaclass=ErrorsWithCodes):
"is a Cython extension type.")
W123 = ("Argument `enable` with value {enable} does not contain all values specified in the config option "
"`enabled` ({enabled}). Be aware that this might affect other components in your pipeline.")
W124 = ("{host}:{port} is already in use, using the nearest available port {serve_port} as an alternative.")
W125 = ("The StaticVectors key_attr is no longer used. To set a custom "
"key attribute for vectors, configure it through Vectors(attr=) or "
"'spacy init vectors --attr'")
W126 = ("These keys are unsupported: {unsupported}")
W127 = ("Not all `Language.pipe` worker processes completed successfully")
class Errors(metaclass=ErrorsWithCodes):
@ -228,6 +221,7 @@ class Errors(metaclass=ErrorsWithCodes):
E002 = ("Can't find factory for '{name}' for language {lang} ({lang_code}). "
"This usually happens when spaCy calls `nlp.{method}` with a custom "
"component name that's not registered on the current language class. "
"If you're using a Transformer, make sure to install 'spacy-transformers'. "
"If you're using a custom component, make sure you've added the "
"decorator `@Language.component` (for function components) or "
"`@Language.factory` (for class components).\n\nAvailable "
@ -449,7 +443,8 @@ class Errors(metaclass=ErrorsWithCodes):
E133 = ("The sum of prior probabilities for alias '{alias}' should not "
"exceed 1, but found {sum}.")
E134 = ("Entity '{entity}' is not defined in the Knowledge Base.")
E139 = ("Knowledge base for component '{name}' is empty.")
E139 = ("Knowledge base for component '{name}' is empty. Use the methods "
"`kb.add_entity` and `kb.add_alias` to add entries.")
E140 = ("The list of entities, prior probabilities and entity vectors "
"should be of equal length.")
E141 = ("Entity vectors should be of length {required} instead of the "
@ -550,16 +545,8 @@ class Errors(metaclass=ErrorsWithCodes):
E199 = ("Unable to merge 0-length span at `doc[{start}:{end}]`.")
E200 = ("Can't set {attr} from Span.")
E202 = ("Unsupported {name} mode '{mode}'. Supported modes: {modes}.")
E203 = ("If the {name} embedding layer is not updated "
"during training, make sure to include it in 'annotating components'")
# New errors added in v3.x
E849 = ("The vocab only supports {method} for vectors of type "
"spacy.vectors.Vectors, not {vectors_type}.")
E850 = ("The PretrainVectors objective currently only supports default or "
"floret vectors, not {mode} vectors.")
E851 = ("The 'textcat' component labels should only have values of 0 or 1, "
"but found value of '{val}'.")
E853 = ("Unsupported component factory name '{name}'. The character '.' is "
"not permitted in factory names.")
E854 = ("Unable to set doc.ents. Check that the 'ents_filter' does not "
@ -729,9 +716,9 @@ class Errors(metaclass=ErrorsWithCodes):
"`nlp.enable_pipe` instead.")
E927 = ("Can't write to frozen list. Maybe you're trying to modify a computed "
"property or default function argument?")
E928 = ("An InMemoryLookupKB can only be serialized to/from from a directory, "
E928 = ("A KnowledgeBase can only be serialized to/from from a directory, "
"but the provided argument {loc} points to a file.")
E929 = ("Couldn't read InMemoryLookupKB from {loc}. The path does not seem to exist.")
E929 = ("Couldn't read KnowledgeBase from {loc}. The path does not seem to exist.")
E930 = ("Received invalid get_examples callback in `{method}`. "
"Expected function that returns an iterable of Example objects but "
"got: {obj}")
@ -743,8 +730,8 @@ class Errors(metaclass=ErrorsWithCodes):
"model from a shortcut, which is obsolete as of spaCy v3.0. To "
"load the model, use its full name instead:\n\n"
"nlp = spacy.load(\"{full}\")\n\nFor more details on the available "
"models, see the models directory: https://spacy.io/models and if "
"you want to create a blank model, use spacy.blank: "
"models, see the models directory: https://spacy.io/models. If you "
"want to create a blank model, use spacy.blank: "
"nlp = spacy.blank(\"{name}\")")
E942 = ("Executing `after_{name}` callback failed. Expected the function to "
"return an initialized nlp object but got: {value}. Maybe "
@ -962,32 +949,6 @@ class Errors(metaclass=ErrorsWithCodes):
"case pass an empty list for the previously not specified argument to avoid this error.")
E1043 = ("Expected None or a value in range [{range_start}, {range_end}] for entity linker threshold, but got "
"{value}.")
E1044 = ("Expected `candidates_batch_size` to be >= 1, but got: {value}")
E1045 = ("Encountered {parent} subclass without `{parent}.{method}` "
"method in '{name}'. If you want to use this method, make "
"sure it's overwritten on the subclass.")
E1046 = ("{cls_name} is an abstract class and cannot be instantiated. If you are looking for spaCy's default "
"knowledge base, use `InMemoryLookupKB`.")
E1047 = ("`find_threshold()` only supports components with a `scorer` attribute.")
E1048 = ("Got '{unexpected}' as console progress bar type, but expected one of the following: {expected}")
E1049 = ("No available port found for displaCy on host {host}. Please specify an available port "
"with `displacy.serve(doc, port=port)`")
E1050 = ("Port {port} is already in use. Please specify an available port with `displacy.serve(doc, port=port)` "
"or use `auto_select_port=True` to pick an available port automatically.")
E1051 = ("'allow_overlap' can only be False when max_positive is 1, but found 'max_positive': {max_positive}.")
E1052 = ("Unable to copy spans: the character offsets for the span at "
"index {i} in the span group do not align with the tokenization "
"in the target doc.")
E1053 = ("Both 'min_length' and 'max_length' should be larger than 0, but found"
" 'min_length': {min_length}, 'max_length': {max_length}")
E1054 = ("The text, including whitespace, must match between reference and "
"predicted docs when training {component}.")
E1055 = ("The 'replace_listener' callback expects {num_params} parameters, "
"but only callbacks with one or three parameters are supported")
E1056 = ("The `TextCatBOW` architecture expects a length of at least 1, was {length}.")
E1057 = ("The `TextCatReduce` architecture must be used with at least one "
"reduction. Please enable one of `use_reduce_first`, "
"`use_reduce_last`, `use_reduce_max` or `use_reduce_mean`.")
# Deprecated model shortcuts, only used in errors and warnings

View File

@ -1,5 +1,4 @@
import warnings
from .errors import Warnings

View File

@ -1,12 +1,14 @@
"""Knowledge-base for entity or concept linking."""
from cymem.cymem cimport Pool
from preshed.maps cimport PreshMap
from libcpp.vector cimport vector
from libc.stdint cimport int32_t, int64_t
from libc.stdio cimport FILE
from libcpp.vector cimport vector
from preshed.maps cimport PreshMap
from ..structs cimport AliasC, KBEntryC
from ..typedefs cimport hash_t
from .kb cimport KnowledgeBase
from .vocab cimport Vocab
from .typedefs cimport hash_t
from .structs cimport KBEntryC, AliasC
ctypedef vector[KBEntryC] entry_vec
ctypedef vector[AliasC] alias_vec
@ -14,7 +16,21 @@ ctypedef vector[float] float_vec
ctypedef vector[float_vec] float_matrix
cdef class InMemoryLookupKB(KnowledgeBase):
# Object used by the Entity Linker that summarizes one entity-alias candidate combination.
cdef class Candidate:
cdef readonly KnowledgeBase kb
cdef hash_t entity_hash
cdef float entity_freq
cdef vector[float] entity_vector
cdef hash_t alias_hash
cdef float prior_prob
cdef class KnowledgeBase:
cdef Pool mem
cdef readonly Vocab vocab
cdef int64_t entity_vector_length
# This maps 64bit keys (hash of unique entity string)
# to 64bit values (position of the _KBEntryC struct in the _entries vector).
# The PreshMap is pretty space efficient, as it uses open addressing. So
@ -55,28 +71,23 @@ cdef class InMemoryLookupKB(KnowledgeBase):
# optional data, we can let users configure a DB as the backend for this.
cdef object _features_table
cdef inline int64_t c_add_vector(self, vector[float] entity_vector) nogil:
"""Add an entity vector to the vectors table."""
cdef int64_t new_index = self._vectors_table.size()
self._vectors_table.push_back(entity_vector)
return new_index
cdef inline int64_t c_add_entity(
self,
hash_t entity_hash,
float freq,
int32_t vector_index,
int feats_row
) nogil:
cdef inline int64_t c_add_entity(self, hash_t entity_hash, float freq,
int32_t vector_index, int feats_row) nogil:
"""Add an entry to the vector of entries.
After calling this method, make sure to update also the _entry_index
using the return value"""
After calling this method, make sure to update also the _entry_index using the return value"""
# This is what we'll map the entity hash key to. It's where the entry will sit
# in the vector of entries, so we can get it later.
cdef int64_t new_index = self._entries.size()
# Avoid struct initializer to enable nogil, cf.
# https://github.com/cython/cython/issues/1642
# Avoid struct initializer to enable nogil, cf https://github.com/cython/cython/issues/1642
cdef KBEntryC entry
entry.entity_hash = entity_hash
entry.vector_index = vector_index
@ -86,17 +97,11 @@ cdef class InMemoryLookupKB(KnowledgeBase):
self._entries.push_back(entry)
return new_index
cdef inline int64_t c_add_aliases(
self,
hash_t alias_hash,
vector[int64_t] entry_indices,
vector[float] probs
) nogil:
"""Connect a mention to a list of potential entities with their prior
probabilities. After calling this method, make sure to update also the
_alias_index using the return value"""
# This is what we'll map the alias hash key to. It's where the alias will be
# defined in the vector of aliases.
cdef inline int64_t c_add_aliases(self, hash_t alias_hash, vector[int64_t] entry_indices, vector[float] probs) nogil:
"""Connect a mention to a list of potential entities with their prior probabilities .
After calling this method, make sure to update also the _alias_index using the return value"""
# This is what we'll map the alias hash key to. It's where the alias will be defined
# in the vector of aliases.
cdef int64_t new_index = self._aliases_table.size()
# Avoid struct initializer to enable nogil
@ -109,9 +114,8 @@ cdef class InMemoryLookupKB(KnowledgeBase):
cdef inline void _create_empty_vectors(self, hash_t dummy_hash) nogil:
"""
Initializing the vectors and making sure the first element of each vector is a
dummy, because the PreshMap maps pointing to indices in these vectors can not
contain 0 as value.
Initializing the vectors and making sure the first element of each vector is a dummy,
because the PreshMap maps pointing to indices in these vectors can not contain 0 as value
cf. https://github.com/explosion/preshed/issues/17
"""
cdef int32_t dummy_value = 0
@ -142,18 +146,12 @@ cdef class InMemoryLookupKB(KnowledgeBase):
cdef class Writer:
cdef FILE* _fp
cdef int write_header(
self, int64_t nr_entries, int64_t entity_vector_length
) except -1
cdef int write_header(self, int64_t nr_entries, int64_t entity_vector_length) except -1
cdef int write_vector_element(self, float element) except -1
cdef int write_entry(
self, hash_t entry_hash, float entry_freq, int32_t vector_index
) except -1
cdef int write_entry(self, hash_t entry_hash, float entry_freq, int32_t vector_index) except -1
cdef int write_alias_length(self, int64_t alias_length) except -1
cdef int write_alias_header(
self, hash_t alias_hash, int64_t candidate_length
) except -1
cdef int write_alias_header(self, hash_t alias_hash, int64_t candidate_length) except -1
cdef int write_alias(self, int64_t entry_index, float prob) except -1
cdef int _write(self, void* value, size_t size) except -1
@ -161,18 +159,12 @@ cdef class Writer:
cdef class Reader:
cdef FILE* _fp
cdef int read_header(
self, int64_t* nr_entries, int64_t* entity_vector_length
) except -1
cdef int read_header(self, int64_t* nr_entries, int64_t* entity_vector_length) except -1
cdef int read_vector_element(self, float* element) except -1
cdef int read_entry(
self, hash_t* entity_hash, float* freq, int32_t* vector_index
) except -1
cdef int read_entry(self, hash_t* entity_hash, float* freq, int32_t* vector_index) except -1
cdef int read_alias_length(self, int64_t* alias_length) except -1
cdef int read_alias_header(
self, hash_t* alias_hash, int64_t* candidate_length
) except -1
cdef int read_alias_header(self, hash_t* alias_hash, int64_t* candidate_length) except -1
cdef int read_alias(self, int64_t* entry_index, float* prob) except -1
cdef int _read(self, void* value, size_t size) except -1

View File

@ -1,44 +1,96 @@
# cython: infer_types=True
from typing import Any, Callable, Dict, Iterable
# cython: infer_types=True, profile=True
from typing import Iterator, Iterable, Callable, Dict, Any
import srsly
from cpython.exc cimport PyErr_SetFromErrno
from libc.stdint cimport int32_t, int64_t
from libc.stdio cimport fclose, feof, fopen, fread, fseek, fwrite
from libcpp.vector cimport vector
from cymem.cymem cimport Pool
from preshed.maps cimport PreshMap
from cpython.exc cimport PyErr_SetFromErrno
from libc.stdio cimport fopen, fclose, fread, fwrite, feof, fseek
from libc.stdint cimport int32_t, int64_t
from libcpp.vector cimport vector
import warnings
from pathlib import Path
import warnings
from ..tokens import Span
from .typedefs cimport hash_t
from .errors import Errors, Warnings
from . import util
from .util import SimpleFrozenList, ensure_path
from ..typedefs cimport hash_t
cdef class Candidate:
"""A `Candidate` object refers to a textual mention (`alias`) that may or may not be resolved
to a specific `entity` from a Knowledge Base. This will be used as input for the entity linking
algorithm which will disambiguate the various candidates to the correct one.
Each candidate (alias, entity) pair is assigned to a certain prior probability.
from .. import util
from ..errors import Errors, Warnings
from ..util import SimpleFrozenList, ensure_path
DOCS: https://spacy.io/api/kb/#candidate_init
"""
from ..vocab cimport Vocab
from .kb cimport KnowledgeBase
def __init__(self, KnowledgeBase kb, entity_hash, entity_freq, entity_vector, alias_hash, prior_prob):
self.kb = kb
self.entity_hash = entity_hash
self.entity_freq = entity_freq
self.entity_vector = entity_vector
self.alias_hash = alias_hash
self.prior_prob = prior_prob
from .candidate import Candidate as Candidate
@property
def entity(self):
"""RETURNS (uint64): hash of the entity's KB ID/name"""
return self.entity_hash
@property
def entity_(self):
"""RETURNS (str): ID/name of this entity in the KB"""
return self.kb.vocab.strings[self.entity_hash]
@property
def alias(self):
"""RETURNS (uint64): hash of the alias"""
return self.alias_hash
@property
def alias_(self):
"""RETURNS (str): ID of the original alias"""
return self.kb.vocab.strings[self.alias_hash]
@property
def entity_freq(self):
return self.entity_freq
@property
def entity_vector(self):
return self.entity_vector
@property
def prior_prob(self):
return self.prior_prob
cdef class InMemoryLookupKB(KnowledgeBase):
"""An `InMemoryLookupKB` instance stores unique identifiers for entities
and their textual aliases, to support entity linking of named entities to
real-world concepts.
def get_candidates(KnowledgeBase kb, span) -> Iterator[Candidate]:
"""
Return candidate entities for a given span by using the text of the span as the alias
and fetching appropriate entries from the index.
This particular function is optimized to work with the built-in KB functionality,
but any other custom candidate generation method can be used in combination with the KB as well.
"""
return kb.get_alias_candidates(span.text)
DOCS: https://spacy.io/api/inmemorylookupkb
cdef class KnowledgeBase:
"""A `KnowledgeBase` instance stores unique identifiers for entities and their textual aliases,
to support entity linking of named entities to real-world concepts.
DOCS: https://spacy.io/api/kb
"""
def __init__(self, Vocab vocab, entity_vector_length):
"""Create an InMemoryLookupKB."""
super().__init__(vocab, entity_vector_length)
"""Create a KnowledgeBase."""
self.mem = Pool()
self.entity_vector_length = entity_vector_length
self._entry_index = PreshMap()
self._alias_index = PreshMap()
self.vocab = vocab
self._create_empty_vectors(dummy_hash=self.vocab.strings[""])
def _initialize_entities(self, int64_t nr_entities):
@ -52,8 +104,10 @@ cdef class InMemoryLookupKB(KnowledgeBase):
self._alias_index = PreshMap(nr_aliases + 1)
self._aliases_table = alias_vec(nr_aliases + 1)
def is_empty(self):
return len(self) == 0
@property
def entity_vector_length(self):
"""RETURNS (uint64): length of the entity vectors"""
return self.entity_vector_length
def __len__(self):
return self.get_size_entities()
@ -72,8 +126,7 @@ cdef class InMemoryLookupKB(KnowledgeBase):
def add_entity(self, str entity, float freq, vector[float] entity_vector):
"""
Add an entity to the KB, optionally specifying its log probability
based on corpus frequency.
Add an entity to the KB, optionally specifying its log probability based on corpus frequency
Return the hash of the entity ID/name at the end.
"""
cdef hash_t entity_hash = self.vocab.strings.add(entity)
@ -85,20 +138,14 @@ cdef class InMemoryLookupKB(KnowledgeBase):
# Raise an error if the provided entity vector is not of the correct length
if len(entity_vector) != self.entity_vector_length:
raise ValueError(
Errors.E141.format(
found=len(entity_vector), required=self.entity_vector_length
)
)
raise ValueError(Errors.E141.format(found=len(entity_vector), required=self.entity_vector_length))
vector_index = self.c_add_vector(entity_vector=entity_vector)
new_index = self.c_add_entity(
entity_hash=entity_hash,
freq=freq,
vector_index=vector_index,
feats_row=-1
) # Features table currently not implemented
new_index = self.c_add_entity(entity_hash=entity_hash,
freq=freq,
vector_index=vector_index,
feats_row=-1) # Features table currently not implemented
self._entry_index[entity_hash] = new_index
return entity_hash
@ -123,12 +170,7 @@ cdef class InMemoryLookupKB(KnowledgeBase):
else:
entity_vector = vector_list[i]
if len(entity_vector) != self.entity_vector_length:
raise ValueError(
Errors.E141.format(
found=len(entity_vector),
required=self.entity_vector_length
)
)
raise ValueError(Errors.E141.format(found=len(entity_vector), required=self.entity_vector_length))
entry.entity_hash = entity_hash
entry.freq = freq_list[i]
@ -162,15 +204,11 @@ cdef class InMemoryLookupKB(KnowledgeBase):
previous_alias_nr = self.get_size_aliases()
# Throw an error if the length of entities and probabilities are not the same
if not len(entities) == len(probabilities):
raise ValueError(
Errors.E132.format(
alias=alias,
entities_length=len(entities),
probabilities_length=len(probabilities))
)
raise ValueError(Errors.E132.format(alias=alias,
entities_length=len(entities),
probabilities_length=len(probabilities)))
# Throw an error if the probabilities sum up to more than 1 (allow for
# some rounding errors)
# Throw an error if the probabilities sum up to more than 1 (allow for some rounding errors)
prob_sum = sum(probabilities)
if prob_sum > 1.00001:
raise ValueError(Errors.E133.format(alias=alias, sum=prob_sum))
@ -187,47 +225,40 @@ cdef class InMemoryLookupKB(KnowledgeBase):
for entity, prob in zip(entities, probabilities):
entity_hash = self.vocab.strings[entity]
if entity_hash not in self._entry_index:
if not entity_hash in self._entry_index:
raise ValueError(Errors.E134.format(entity=entity))
entry_index = <int64_t>self._entry_index.get(entity_hash)
entry_indices.push_back(int(entry_index))
probs.push_back(float(prob))
new_index = self.c_add_aliases(
alias_hash=alias_hash, entry_indices=entry_indices, probs=probs
)
new_index = self.c_add_aliases(alias_hash=alias_hash, entry_indices=entry_indices, probs=probs)
self._alias_index[alias_hash] = new_index
if previous_alias_nr + 1 != self.get_size_aliases():
raise RuntimeError(Errors.E891.format(alias=alias))
return alias_hash
def append_alias(
self, str alias, str entity, float prior_prob, ignore_warnings=False
):
def append_alias(self, str alias, str entity, float prior_prob, ignore_warnings=False):
"""
For an alias already existing in the KB, extend its potential entities
with one more.
For an alias already existing in the KB, extend its potential entities with one more.
Throw a warning if either the alias or the entity is unknown,
or when the combination is already previously recorded.
Throw an error if this entity+prior prob would exceed the sum of 1.
For efficiency, it's best to use the method `add_alias` as much as
possible instead of this one.
For efficiency, it's best to use the method `add_alias` as much as possible instead of this one.
"""
# Check if the alias exists in the KB
cdef hash_t alias_hash = self.vocab.strings[alias]
if alias_hash not in self._alias_index:
if not alias_hash in self._alias_index:
raise ValueError(Errors.E176.format(alias=alias))
# Check if the entity exists in the KB
cdef hash_t entity_hash = self.vocab.strings[entity]
if entity_hash not in self._entry_index:
if not entity_hash in self._entry_index:
raise ValueError(Errors.E134.format(entity=entity))
entry_index = <int64_t>self._entry_index.get(entity_hash)
# Throw an error if the prior probabilities (including the new one)
# sum up to more than 1
# Throw an error if the prior probabilities (including the new one) sum up to more than 1
alias_index = <int64_t>self._alias_index.get(alias_hash)
alias_entry = self._aliases_table[alias_index]
current_sum = sum([p for p in alias_entry.probs])
@ -255,18 +286,14 @@ cdef class InMemoryLookupKB(KnowledgeBase):
alias_entry.probs = probs
self._aliases_table[alias_index] = alias_entry
def get_candidates(self, mention: Span) -> Iterable[Candidate]:
return self.get_alias_candidates(mention.text) # type: ignore
def get_alias_candidates(self, str alias) -> Iterable[Candidate]:
def get_alias_candidates(self, str alias) -> Iterator[Candidate]:
"""
Return candidate entities for an alias. Each candidate defines the
entity, the original alias, and the prior probability of that alias
resolving to that entity.
Return candidate entities for an alias. Each candidate defines the entity, the original alias,
and the prior probability of that alias resolving to that entity.
If the alias is not known in the KB, and empty list is returned.
"""
cdef hash_t alias_hash = self.vocab.strings[alias]
if alias_hash not in self._alias_index:
if not alias_hash in self._alias_index:
return []
alias_index = <int64_t>self._alias_index.get(alias_hash)
alias_entry = self._aliases_table[alias_index]
@ -274,14 +301,10 @@ cdef class InMemoryLookupKB(KnowledgeBase):
return [Candidate(kb=self,
entity_hash=self._entries[entry_index].entity_hash,
entity_freq=self._entries[entry_index].freq,
entity_vector=self._vectors_table[
self._entries[entry_index].vector_index
],
entity_vector=self._vectors_table[self._entries[entry_index].vector_index],
alias_hash=alias_hash,
prior_prob=prior_prob)
for (entry_index, prior_prob) in zip(
alias_entry.entry_indices, alias_entry.probs
)
for (entry_index, prior_prob) in zip(alias_entry.entry_indices, alias_entry.probs)
if entry_index != 0]
def get_vector(self, str entity):
@ -295,9 +318,8 @@ cdef class InMemoryLookupKB(KnowledgeBase):
return self._vectors_table[self._entries[entry_index].vector_index]
def get_prior_prob(self, str entity, str alias):
""" Return the prior probability of a given alias being linked to a
given entity, or return 0.0 when this combination is not known in the
knowledge base."""
""" Return the prior probability of a given alias being linked to a given entity,
or return 0.0 when this combination is not known in the knowledge base"""
cdef hash_t alias_hash = self.vocab.strings[alias]
cdef hash_t entity_hash = self.vocab.strings[entity]
@ -308,9 +330,7 @@ cdef class InMemoryLookupKB(KnowledgeBase):
entry_index = self._entry_index[entity_hash]
alias_entry = self._aliases_table[alias_index]
for (entry_index, prior_prob) in zip(
alias_entry.entry_indices, alias_entry.probs
):
for (entry_index, prior_prob) in zip(alias_entry.entry_indices, alias_entry.probs):
if self._entries[entry_index].entity_hash == entity_hash:
return prior_prob
@ -320,19 +340,13 @@ cdef class InMemoryLookupKB(KnowledgeBase):
"""Serialize the current state to a binary string.
"""
def serialize_header():
header = (
self.get_size_entities(),
self.get_size_aliases(),
self.entity_vector_length
)
header = (self.get_size_entities(), self.get_size_aliases(), self.entity_vector_length)
return srsly.json_dumps(header)
def serialize_entries():
i = 1
tuples = []
for entry_hash, entry_index in sorted(
self._entry_index.items(), key=lambda x: x[1]
):
for entry_hash, entry_index in sorted(self._entry_index.items(), key=lambda x: x[1]):
entry = self._entries[entry_index]
assert entry.entity_hash == entry_hash
assert entry_index == i
@ -345,9 +359,7 @@ cdef class InMemoryLookupKB(KnowledgeBase):
headers = []
indices_lists = []
probs_lists = []
for alias_hash, alias_index in sorted(
self._alias_index.items(), key=lambda x: x[1]
):
for alias_hash, alias_index in sorted(self._alias_index.items(), key=lambda x: x[1]):
alias = self._aliases_table[alias_index]
assert alias_index == i
candidate_length = len(alias.entry_indices)
@ -405,7 +417,7 @@ cdef class InMemoryLookupKB(KnowledgeBase):
indices = srsly.json_loads(all_data[1])
probs = srsly.json_loads(all_data[2])
for header, indices, probs in zip(headers, indices, probs):
alias_hash, _candidate_length = header
alias_hash, candidate_length = header
alias.entry_indices = indices
alias.probs = probs
self._aliases_table[i] = alias
@ -454,14 +466,10 @@ cdef class InMemoryLookupKB(KnowledgeBase):
writer.write_vector_element(element)
i = i+1
# dumping the entry records in the order in which they are in the
# _entries vector.
# index 0 is a dummy object not stored in the _entry_index and can
# be ignored.
# dumping the entry records in the order in which they are in the _entries vector.
# index 0 is a dummy object not stored in the _entry_index and can be ignored.
i = 1
for entry_hash, entry_index in sorted(
self._entry_index.items(), key=lambda x: x[1]
):
for entry_hash, entry_index in sorted(self._entry_index.items(), key=lambda x: x[1]):
entry = self._entries[entry_index]
assert entry.entity_hash == entry_hash
assert entry_index == i
@ -473,9 +481,7 @@ cdef class InMemoryLookupKB(KnowledgeBase):
# dumping the aliases in the order in which they are in the _alias_index vector.
# index 0 is a dummy object not stored in the _aliases_table and can be ignored.
i = 1
for alias_hash, alias_index in sorted(
self._alias_index.items(), key=lambda x: x[1]
):
for alias_hash, alias_index in sorted(self._alias_index.items(), key=lambda x: x[1]):
alias = self._aliases_table[alias_index]
assert alias_index == i
@ -581,8 +587,7 @@ cdef class Writer:
def __init__(self, path):
assert isinstance(path, Path)
content = bytes(path)
cdef bytes bytes_loc = content.encode('utf8') \
if type(content) == str else content
cdef bytes bytes_loc = content.encode('utf8') if type(content) == str else content
self._fp = fopen(<char*>bytes_loc, 'wb')
if not self._fp:
raise IOError(Errors.E146.format(path=path))
@ -592,18 +597,14 @@ cdef class Writer:
cdef size_t status = fclose(self._fp)
assert status == 0
cdef int write_header(
self, int64_t nr_entries, int64_t entity_vector_length
) except -1:
cdef int write_header(self, int64_t nr_entries, int64_t entity_vector_length) except -1:
self._write(&nr_entries, sizeof(nr_entries))
self._write(&entity_vector_length, sizeof(entity_vector_length))
cdef int write_vector_element(self, float element) except -1:
self._write(&element, sizeof(element))
cdef int write_entry(
self, hash_t entry_hash, float entry_freq, int32_t vector_index
) except -1:
cdef int write_entry(self, hash_t entry_hash, float entry_freq, int32_t vector_index) except -1:
self._write(&entry_hash, sizeof(entry_hash))
self._write(&entry_freq, sizeof(entry_freq))
self._write(&vector_index, sizeof(vector_index))
@ -612,9 +613,7 @@ cdef class Writer:
cdef int write_alias_length(self, int64_t alias_length) except -1:
self._write(&alias_length, sizeof(alias_length))
cdef int write_alias_header(
self, hash_t alias_hash, int64_t candidate_length
) except -1:
cdef int write_alias_header(self, hash_t alias_hash, int64_t candidate_length) except -1:
self._write(&alias_hash, sizeof(alias_hash))
self._write(&candidate_length, sizeof(candidate_length))
@ -630,19 +629,16 @@ cdef class Writer:
cdef class Reader:
def __init__(self, path):
content = bytes(path)
cdef bytes bytes_loc = content.encode('utf8') \
if type(content) == str else content
cdef bytes bytes_loc = content.encode('utf8') if type(content) == str else content
self._fp = fopen(<char*>bytes_loc, 'rb')
if not self._fp:
PyErr_SetFromErrno(IOError)
fseek(self._fp, 0, 0) # this can be 0 if there is no header
status = fseek(self._fp, 0, 0) # this can be 0 if there is no header
def __dealloc__(self):
fclose(self._fp)
cdef int read_header(
self, int64_t* nr_entries, int64_t* entity_vector_length
) except -1:
cdef int read_header(self, int64_t* nr_entries, int64_t* entity_vector_length) except -1:
status = self._read(nr_entries, sizeof(int64_t))
if status < 1:
if feof(self._fp):
@ -662,9 +658,7 @@ cdef class Reader:
return 0 # end of file
raise IOError(Errors.E145.format(param="vector element"))
cdef int read_entry(
self, hash_t* entity_hash, float* freq, int32_t* vector_index
) except -1:
cdef int read_entry(self, hash_t* entity_hash, float* freq, int32_t* vector_index) except -1:
status = self._read(entity_hash, sizeof(hash_t))
if status < 1:
if feof(self._fp):
@ -695,9 +689,7 @@ cdef class Reader:
return 0 # end of file
raise IOError(Errors.E145.format(param="alias length"))
cdef int read_alias_header(
self, hash_t* alias_hash, int64_t* candidate_length
) except -1:
cdef int read_alias_header(self, hash_t* alias_hash, int64_t* candidate_length) except -1:
status = self._read(alias_hash, sizeof(hash_t))
if status < 1:
if feof(self._fp):

View File

@ -1,11 +0,0 @@
from .candidate import Candidate, get_candidates, get_candidates_batch
from .kb import KnowledgeBase
from .kb_in_memory import InMemoryLookupKB
__all__ = [
"Candidate",
"KnowledgeBase",
"InMemoryLookupKB",
"get_candidates",
"get_candidates_batch",
]

View File

@ -1,15 +0,0 @@
from libcpp.vector cimport vector
from ..typedefs cimport hash_t
from .kb cimport KnowledgeBase
# Object used by the Entity Linker that summarizes one entity-alias candidate
# combination.
cdef class Candidate:
cdef readonly KnowledgeBase kb
cdef hash_t entity_hash
cdef float entity_freq
cdef vector[float] entity_vector
cdef hash_t alias_hash
cdef float prior_prob

View File

@ -1,90 +0,0 @@
# cython: infer_types=True
from typing import Iterable
from .kb cimport KnowledgeBase
from ..tokens import Span
cdef class Candidate:
"""A `Candidate` object refers to a textual mention (`alias`) that may or
may not be resolved to a specific `entity` from a Knowledge Base. This
will be used as input for the entity linking algorithm which will
disambiguate the various candidates to the correct one.
Each candidate (alias, entity) pair is assigned a certain prior probability.
DOCS: https://spacy.io/api/kb/#candidate-init
"""
def __init__(
self,
KnowledgeBase kb,
entity_hash,
entity_freq,
entity_vector,
alias_hash,
prior_prob
):
self.kb = kb
self.entity_hash = entity_hash
self.entity_freq = entity_freq
self.entity_vector = entity_vector
self.alias_hash = alias_hash
self.prior_prob = prior_prob
@property
def entity(self) -> int:
"""RETURNS (uint64): hash of the entity's KB ID/name"""
return self.entity_hash
@property
def entity_(self) -> str:
"""RETURNS (str): ID/name of this entity in the KB"""
return self.kb.vocab.strings[self.entity_hash]
@property
def alias(self) -> int:
"""RETURNS (uint64): hash of the alias"""
return self.alias_hash
@property
def alias_(self) -> str:
"""RETURNS (str): ID of the original alias"""
return self.kb.vocab.strings[self.alias_hash]
@property
def entity_freq(self) -> float:
return self.entity_freq
@property
def entity_vector(self) -> Iterable[float]:
return self.entity_vector
@property
def prior_prob(self) -> float:
return self.prior_prob
def get_candidates(kb: KnowledgeBase, mention: Span) -> Iterable[Candidate]:
"""
Return candidate entities for a given mention and fetching appropriate
entries from the index.
kb (KnowledgeBase): Knowledge base to query.
mention (Span): Entity mention for which to identify candidates.
RETURNS (Iterable[Candidate]): Identified candidates.
"""
return kb.get_candidates(mention)
def get_candidates_batch(
kb: KnowledgeBase, mentions: Iterable[Span]
) -> Iterable[Iterable[Candidate]]:
"""
Return candidate entities for the given mentions and fetching appropriate entries
from the index.
kb (KnowledgeBase): Knowledge base to query.
mention (Iterable[Span]): Entity mentions for which to identify candidates.
RETURNS (Iterable[Iterable[Candidate]]): Identified candidates.
"""
return kb.get_candidates_batch(mentions)

View File

@ -1,12 +0,0 @@
"""Knowledge-base for entity or concept linking."""
from cymem.cymem cimport Pool
from libc.stdint cimport int64_t
from ..vocab cimport Vocab
cdef class KnowledgeBase:
cdef Pool mem
cdef readonly Vocab vocab
cdef readonly int64_t entity_vector_length

View File

@ -1,130 +0,0 @@
# cython: infer_types=True
from pathlib import Path
from typing import Iterable, Tuple, Union
from cymem.cymem cimport Pool
from ..errors import Errors
from ..tokens import Span
from ..util import SimpleFrozenList
from .candidate import Candidate
cdef class KnowledgeBase:
"""A `KnowledgeBase` instance stores unique identifiers for entities and
their textual aliases, to support entity linking of named entities to
real-world concepts.
This is an abstract class and requires its operations to be implemented.
DOCS: https://spacy.io/api/kb
"""
def __init__(self, vocab: Vocab, entity_vector_length: int):
"""Create a KnowledgeBase."""
# Make sure abstract KB is not instantiated.
if self.__class__ == KnowledgeBase:
raise TypeError(
Errors.E1046.format(cls_name=self.__class__.__name__)
)
self.vocab = vocab
self.entity_vector_length = entity_vector_length
self.mem = Pool()
def get_candidates_batch(
self, mentions: Iterable[Span]
) -> Iterable[Iterable[Candidate]]:
"""
Return candidate entities for specified texts. Each candidate defines
the entity, the original alias, and the prior probability of that
alias resolving to that entity.
If no candidate is found for a given text, an empty list is returned.
mentions (Iterable[Span]): Mentions for which to get candidates.
RETURNS (Iterable[Iterable[Candidate]]): Identified candidates.
"""
return [self.get_candidates(span) for span in mentions]
def get_candidates(self, mention: Span) -> Iterable[Candidate]:
"""
Return candidate entities for specified text. Each candidate defines
the entity, the original alias,
and the prior probability of that alias resolving to that entity.
If the no candidate is found for a given text, an empty list is returned.
mention (Span): Mention for which to get candidates.
RETURNS (Iterable[Candidate]): Identified candidates.
"""
raise NotImplementedError(
Errors.E1045.format(
parent="KnowledgeBase", method="get_candidates", name=self.__name__
)
)
def get_vectors(self, entities: Iterable[str]) -> Iterable[Iterable[float]]:
"""
Return vectors for entities.
entity (str): Entity name/ID.
RETURNS (Iterable[Iterable[float]]): Vectors for specified entities.
"""
return [self.get_vector(entity) for entity in entities]
def get_vector(self, str entity) -> Iterable[float]:
"""
Return vector for entity.
entity (str): Entity name/ID.
RETURNS (Iterable[float]): Vector for specified entity.
"""
raise NotImplementedError(
Errors.E1045.format(
parent="KnowledgeBase", method="get_vector", name=self.__name__
)
)
def to_bytes(self, **kwargs) -> bytes:
"""Serialize the current state to a binary string.
RETURNS (bytes): Current state as binary string.
"""
raise NotImplementedError(
Errors.E1045.format(
parent="KnowledgeBase", method="to_bytes", name=self.__name__
)
)
def from_bytes(self, bytes_data: bytes, *, exclude: Tuple[str] = tuple()):
"""Load state from a binary string.
bytes_data (bytes): KB state.
exclude (Tuple[str]): Properties to exclude when restoring KB.
"""
raise NotImplementedError(
Errors.E1045.format(
parent="KnowledgeBase", method="from_bytes", name=self.__name__
)
)
def to_disk(
self, path: Union[str, Path], exclude: Iterable[str] = SimpleFrozenList()
) -> None:
"""
Write KnowledgeBase content to disk.
path (Union[str, Path]): Target file path.
exclude (Iterable[str]): List of components to exclude.
"""
raise NotImplementedError(
Errors.E1045.format(
parent="KnowledgeBase", method="to_disk", name=self.__name__
)
)
def from_disk(
self, path: Union[str, Path], exclude: Iterable[str] = SimpleFrozenList()
) -> None:
"""
Load KnowledgeBase content from disk.
path (Union[str, Path]): Target file path.
exclude (Iterable[str]): List of components to exclude.
"""
raise NotImplementedError(
Errors.E1045.format(
parent="KnowledgeBase", method="from_disk", name=self.__name__
)
)

View File

@ -1,5 +1,5 @@
from ...language import BaseDefaults, Language
from .stop_words import STOP_WORDS
from ...language import Language, BaseDefaults
class AfrikaansDefaults(BaseDefaults):

View File

@ -1,11 +1,12 @@
from ...attrs import LANG
from ...language import BaseDefaults, Language
from ...util import update_exc
from ..tokenizer_exceptions import BASE_EXCEPTIONS
from .stop_words import STOP_WORDS
from .lex_attrs import LEX_ATTRS
from .punctuation import TOKENIZER_SUFFIXES
from .stop_words import STOP_WORDS
from .tokenizer_exceptions import TOKENIZER_EXCEPTIONS
from ..tokenizer_exceptions import BASE_EXCEPTIONS
from ...language import Language, BaseDefaults
from ...attrs import LANG
from ...util import update_exc
class AmharicDefaults(BaseDefaults):

View File

@ -1,11 +1,5 @@
from ..char_classes import (
ALPHA_UPPER,
CURRENCY,
LIST_ELLIPSES,
LIST_PUNCT,
LIST_QUOTES,
UNITS,
)
from ..char_classes import LIST_PUNCT, LIST_ELLIPSES, LIST_QUOTES, CURRENCY
from ..char_classes import UNITS, ALPHA_UPPER
_list_punct = LIST_PUNCT + "፡ ። ፣ ፤ ፥ ፦ ፧ ፠ ፨".strip().split()

View File

@ -1,4 +1,5 @@
from ...symbols import NORM, ORTH
from ...symbols import ORTH, NORM
_exc = {}

View File

@ -1,8 +1,8 @@
from ...language import BaseDefaults, Language
from .stop_words import STOP_WORDS
from .lex_attrs import LEX_ATTRS
from .punctuation import TOKENIZER_SUFFIXES
from .stop_words import STOP_WORDS
from .tokenizer_exceptions import TOKENIZER_EXCEPTIONS
from ...language import Language, BaseDefaults
class ArabicDefaults(BaseDefaults):

View File

@ -1,11 +1,5 @@
from ..char_classes import (
ALPHA_UPPER,
CURRENCY,
LIST_ELLIPSES,
LIST_PUNCT,
LIST_QUOTES,
UNITS,
)
from ..char_classes import LIST_PUNCT, LIST_ELLIPSES, LIST_QUOTES, CURRENCY
from ..char_classes import UNITS, ALPHA_UPPER
_suffixes = (
LIST_PUNCT

View File

@ -1,6 +1,7 @@
from ...symbols import NORM, ORTH
from ...util import update_exc
from ..tokenizer_exceptions import BASE_EXCEPTIONS
from ...symbols import ORTH, NORM
from ...util import update_exc
_exc = {}

View File

@ -1,6 +1,6 @@
from ...language import BaseDefaults, Language
from .lex_attrs import LEX_ATTRS
from .stop_words import STOP_WORDS
from .lex_attrs import LEX_ATTRS
from ...language import Language, BaseDefaults
class AzerbaijaniDefaults(BaseDefaults):

View File

@ -1,5 +1,6 @@
from ...attrs import LIKE_NUM
# Eleven, twelve etc. are written separate: on bir, on iki
_num_words = [

View File

@ -1,14 +1,12 @@
from ...attrs import LANG
from ...language import BaseDefaults, Language
from ...util import update_exc
from ..punctuation import (
COMBINING_DIACRITICS_TOKENIZER_INFIXES,
COMBINING_DIACRITICS_TOKENIZER_SUFFIXES,
)
from ..tokenizer_exceptions import BASE_EXCEPTIONS
from .lex_attrs import LEX_ATTRS
from .stop_words import STOP_WORDS
from .tokenizer_exceptions import TOKENIZER_EXCEPTIONS
from .lex_attrs import LEX_ATTRS
from ..tokenizer_exceptions import BASE_EXCEPTIONS
from ..punctuation import COMBINING_DIACRITICS_TOKENIZER_INFIXES
from ..punctuation import COMBINING_DIACRITICS_TOKENIZER_SUFFIXES
from ...language import Language, BaseDefaults
from ...attrs import LANG
from ...util import update_exc
class BulgarianDefaults(BaseDefaults):

View File

@ -1,5 +1,6 @@
from ...attrs import LIKE_NUM
_num_words = [
"нула",
"едно",

View File

@ -4,7 +4,8 @@ References:
(countries, occupations, fields of studies and more).
"""
from ...symbols import NORM, ORTH
from ...symbols import ORTH, NORM
_exc = {}

View File

@ -1,12 +1,10 @@
from typing import Callable, Optional
from typing import Optional, Callable
from thinc.api import Model
from ...language import BaseDefaults, Language
from ...pipeline import Lemmatizer
from .punctuation import TOKENIZER_INFIXES, TOKENIZER_PREFIXES, TOKENIZER_SUFFIXES
from .stop_words import STOP_WORDS
from .tokenizer_exceptions import TOKENIZER_EXCEPTIONS
from .punctuation import TOKENIZER_PREFIXES, TOKENIZER_SUFFIXES, TOKENIZER_INFIXES
from .stop_words import STOP_WORDS
from ...language import Language, BaseDefaults
from ...pipeline import Lemmatizer
class BengaliDefaults(BaseDefaults):

View File

@ -1,14 +1,6 @@
from ..char_classes import (
ALPHA,
ALPHA_LOWER,
CONCAT_QUOTES,
HYPHENS,
LIST_ELLIPSES,
LIST_ICONS,
LIST_PUNCT,
LIST_QUOTES,
UNITS,
)
from ..char_classes import LIST_PUNCT, LIST_ELLIPSES, LIST_QUOTES, LIST_ICONS
from ..char_classes import ALPHA_LOWER, ALPHA, HYPHENS, CONCAT_QUOTES, UNITS
_currency = r"\$¢£€¥฿৳"
_quotes = CONCAT_QUOTES.replace("'", "")

View File

@ -1,6 +1,7 @@
from ...symbols import NORM, ORTH
from ...util import update_exc
from ..tokenizer_exceptions import BASE_EXCEPTIONS
from ...symbols import ORTH, NORM
from ...util import update_exc
_exc = {}

View File

@ -1,16 +0,0 @@
from ...language import BaseDefaults, Language
from .lex_attrs import LEX_ATTRS
from .stop_words import STOP_WORDS
class TibetanDefaults(BaseDefaults):
lex_attr_getters = LEX_ATTRS
stop_words = STOP_WORDS
class Tibetan(Language):
lang = "bo"
Defaults = TibetanDefaults
__all__ = ["Tibetan"]

View File

@ -1,16 +0,0 @@
"""
Example sentences to test spaCy and its language models.
>>> from spacy.lang.bo.examples import sentences
>>> docs = nlp.pipe(sentences)
"""
sentences = [
"དོན་དུ་རྒྱ་མཚོ་བླ་མ་ཞེས་བྱ་ཞིང༌།",
"ཏཱ་ལའི་ཞེས་པ་ནི་སོག་སྐད་ཡིན་པ་དེ་བོད་སྐད་དུ་རྒྱ་མཚོའི་དོན་དུ་འཇུག",
"སོག་པོ་ཨལ་ཐན་རྒྱལ་པོས་རྒྱལ་དབང་བསོད་ནམས་རྒྱ་མཚོར་ཆེ་བསྟོད་ཀྱི་མཚན་གསོལ་བ་ཞིག་ཡིན་ཞིང༌།",
"རྗེས་སུ་རྒྱལ་བ་དགེ་འདུན་གྲུབ་དང༌། དགེ་འདུན་རྒྱ་མཚོ་སོ་སོར་ཡང་ཏཱ་ལའི་བླ་མའི་སྐུ་ཕྲེང་དང་པོ་དང༌།",
"གཉིས་པའི་མཚན་དེ་གསོལ་ཞིང༌།༸རྒྱལ་དབང་སྐུ་ཕྲེང་ལྔ་པས་དགའ་ལྡན་ཕོ་བྲང་གི་སྲིད་དབང་བཙུགས་པ་ནས་ཏཱ་ལའི་བླ་མ་ནི་བོད་ཀྱི་ཆོས་སྲིད་གཉིས་ཀྱི་དབུ་ཁྲིད་དུ་གྱུར་ཞིང་།",
"ད་ལྟའི་བར་ཏཱ་ལའི་བླ་མ་སྐུ་ཕྲེང་བཅུ་བཞི་བྱོན་ཡོད།",
]

View File

@ -1,65 +0,0 @@
from ...attrs import LIKE_NUM
# reference 1: https://en.wikipedia.org/wiki/Tibetan_numerals
_num_words = [
"ཀླད་ཀོར་",
"གཅིག་",
"གཉིས་",
"གསུམ་",
"བཞི་",
"ལྔ་",
"དྲུག་",
"བདུན་",
"བརྒྱད་",
"དགུ་",
"བཅུ་",
"བཅུ་གཅིག་",
"བཅུ་གཉིས་",
"བཅུ་གསུམ་",
"བཅུ་བཞི་",
"བཅུ་ལྔ་",
"བཅུ་དྲུག་",
"བཅུ་བདུན་",
"བཅུ་པརྒྱད",
"བཅུ་དགུ་",
"ཉི་ཤུ་",
"སུམ་ཅུ",
"བཞི་བཅུ",
"ལྔ་བཅུ",
"དྲུག་ཅུ",
"བདུན་ཅུ",
"བརྒྱད་ཅུ",
"དགུ་བཅུ",
"བརྒྱ་",
"སྟོང་",
"ཁྲི་",
"ས་ཡ་",
" བྱེ་བ་",
"དུང་ཕྱུར་",
"ཐེར་འབུམ་",
"ཐེར་འབུམ་ཆེན་པོ་",
"ཁྲག་ཁྲིག་",
"ཁྲག་ཁྲིག་ཆེན་པོ་",
]
def like_num(text):
"""
Check if text resembles a number
"""
if text.startswith(("+", "-", "±", "~")):
text = text[1:]
text = text.replace(",", "").replace(".", "")
if text.isdigit():
return True
if text.count("/") == 1:
num, denom = text.split("/")
if num.isdigit() and denom.isdigit():
return True
if text in _num_words:
return True
return False
LEX_ATTRS = {LIKE_NUM: like_num}

View File

@ -1,198 +0,0 @@
# Source: https://zenodo.org/records/10148636
STOP_WORDS = set(
"""
གས
མས
འད
པས
གཞན
དང
གས
བཅས
ངས
ལས
ཙམ
ཡང
མཐའདག
འད
རང
ངམ
དག
འང
ལགས
ཚང
ཐམསཅད
དམ
འམ
བས
ལགས
གས
མས
བམ
ནམ
ནམ
ངམ
འགའ
ཤས
གམ
ལགས
ཅང
འགའ
སམ
འང
ལས
འཕ
བར
དང
འག
སམ
ཟད
འམ
མམ
དམ
དག
ལམ
ནང
ཙམ
རམ
ཨང
གས
ལགས
པས
རབ
རམ
བས
གཞན
འབའ
གམ
བམ
ཙམ
མམ
ཏམ
ཏམ
ཤས
""".split()
)

View File

@ -1,14 +1,14 @@
from typing import Callable, Optional
from typing import Optional, Callable
from thinc.api import Model
from ...language import BaseDefaults, Language
from .lemmatizer import CatalanLemmatizer
from .lex_attrs import LEX_ATTRS
from .punctuation import TOKENIZER_INFIXES, TOKENIZER_PREFIXES, TOKENIZER_SUFFIXES
from .stop_words import STOP_WORDS
from .syntax_iterators import SYNTAX_ITERATORS
from .tokenizer_exceptions import TOKENIZER_EXCEPTIONS
from .punctuation import TOKENIZER_INFIXES, TOKENIZER_SUFFIXES, TOKENIZER_PREFIXES
from .stop_words import STOP_WORDS
from .lex_attrs import LEX_ATTRS
from .syntax_iterators import SYNTAX_ITERATORS
from ...language import Language, BaseDefaults
from .lemmatizer import CatalanLemmatizer
class CatalanDefaults(BaseDefaults):

View File

@ -72,10 +72,10 @@ class CatalanLemmatizer(Lemmatizer):
oov_forms.append(form)
if not forms:
forms.extend(oov_forms)
# use lookups, and fall back to the token itself
if not forms and string in lookup_table.keys():
forms.append(self.lookup_lemmatize(token)[0])
if not forms:
forms.append(lookup_table.get(string, [string])[0])
forms.append(string)
forms = list(dict.fromkeys(forms))
self.cache[cache_key] = forms
return forms

View File

@ -1,5 +1,6 @@
from ...attrs import LIKE_NUM
_num_words = [
"zero",
"un",

Some files were not shown because too many files have changed in this diff Show More