Compare commits

...

101 Commits

Author SHA1 Message Date
Jeff Adolphe
41e07772dc
Added Haitian Creole (ht) Language Support to spaCy (#13807)
This PR adds official support for Haitian Creole (ht) to spaCy's spacy/lang module.
It includes:

    Added all core language data files for spacy/lang/ht:
        tokenizer_exceptions.py
        punctuation.py
        lex_attrs.py
        syntax_iterators.py
        lemmatizer.py
        stop_words.py
        tag_map.py

    Unit tests for tokenizer and noun chunking (test_tokenizer.py, test_noun_chunking.py, etc.). Passed all 58 pytest spacy/tests/lang/ht tests that I've created.

    Basic tokenizer rules adapted for Haitian Creole orthography and informal contractions.

    Custom like_num atrribute supporting Haitian number formats (e.g., "3yèm").

    Support for common informal apostrophe usage (e.g., "m'ap", "n'ap", "di'm").

    Ensured no breakages in other language modules.

    Followed spaCy coding style (PEP8, Black).

This provides a foundation for Haitian Creole NLP development using spaCy.
2025-05-28 17:23:38 +02:00
Martin Schorfmann
e8f40e2169
Correct API docs for Span.lemma_, Vocab.to_bytes and Vectors.__init__ (#13436)
* Correct code example for Span.lemma_ in API Docs (#13405)

* Correct documented return type of Vocab.to_bytes in API docs

* Correct wording for Vectors.__init__ in API docs
2025-05-28 17:22:50 +02:00
BLKSerene
7b1d6e58ff
Remove dependency on langcodes (#13760)
This PR removes the dependency on langcodes introduced in #9342.

While the introduction of langcodes allows a significantly wider range of language codes, there are some unexpected side effects:

    zh-Hant (Traditional Chinese) should be mapped to zh intead of None, as spaCy's Chinese model is based on pkuseg which supports tokenization of both Simplified and Traditional Chinese.
    Since it is possible that spaCy may have a model for Norwegian Nynorsk in the future, mapping no (macrolanguage Norwegian) to nb (Norwegian Bokmål) might be misleading. In that case, the user should be asked to specify nb or nn (Norwegian Nynorsk) specifically or consult the doc.
    Same as above for regional variants of languages such as en_gb and en_us.

Overall, IMHO, introducing an extra dependency just for the conversion of language codes is an overkill. It is possible that most user just need the conversion between 2/3-letter ISO codes and a simple dictionary lookup should suffice.

With this PR, ISO 639-1 and ISO 639-3 codes are supported. ISO 639-2/B (bibliographic codes which are not favored and used in ISO 639-3) and deprecated ISO 639-1/2 codes are also supported to maximize backward compatibility.
2025-05-28 17:21:46 +02:00
Matthew Honnibal
864c2f3b51 Format 2025-05-28 17:06:11 +02:00
Matthew Honnibal
75a9d9b9ad Test and fix issue13769 2025-05-28 17:04:23 +02:00
Ilie
bec546cec0
Add TeNs plugin (#13800)
Co-authored-by: Ilie Cristian Dorobat <idorobat@cisco.com>
2025-05-27 01:21:07 +02:00
d0ngw
46613e27cf
fix: match hyphenated words to lemmas in index_table (e.g. "co-authored" -> "co-author") (#13816) 2025-05-27 01:20:26 +02:00
omahs
b205ff65e6
fix typos (#13813) 2025-05-26 16:05:29 +02:00
BLKSerene
92f1b8cdb4
Switch to typer-slim (#13759) 2025-05-26 16:03:49 +02:00
Matthew Honnibal
4b65aa79ee Add release script 2025-05-22 14:00:48 +02:00
Matthew Honnibal
d08f4e3b10 Increment version 2025-05-22 13:58:00 +02:00
Matthew Honnibal
6036f344d3 Remove print statements 2025-05-22 13:56:31 +02:00
Matthew Honnibal
5bebbf7550
Python 3.13 support (#13823)
In order to support Python 3.13, we had to migrate to Cython 3.0. This caused some tricky interaction with our Pydantic usage, because Cython 3 uses the from __future__ import annotations semantics, which causes type annotations to be saved as strings.

The end result is that we can't have Language.factory decorated functions in Cython modules anymore, as the Language.factory decorator expects to inspect the signature of the functions and build a Pydantic model. If the function is implemented in Cython, an error is raised because the type is not resolved.

To address this I've moved the factory functions into a new module, spacy.pipeline.factories. I've added __getattr__ importlib hooks to the previous locations, in case anyone was importing these functions directly. The change should have no backwards compatibility implications.

Along the way I've also refactored the registration of functions for the config. Previously these ran as import-time side-effects, using the registry decorator. I've created instead a new module spacy.registrations. When the registry is accessed it calls a function ensure_populated(), which cases the registrations to occur.

I've made a similar change to the Language.factory registrations in the new spacy.pipeline.factories module.

I want to remove these import-time side-effects so that we can speed up the loading time of the library, which can be especially painful on the CLI. I also find that I'm often working to track down the implementations of functions referenced by strings in the config. Having the registrations all happen in one place will make this easier.

With these changes I've fortunately avoided the need to migrate to Pydantic v2 properly --- we're still using the v1 compatibility shim. We might not be able to hold out forever though: Pydantic (reasonably) aren't actively supporting the v1 shims. I put a lot of work into v2 migration when investigating the 3.13 support, and it's definitely challenging. In any case, it's a relief that we don't have to do the v2 migration at the same time as the Cython 3.0/Python 3.13 support.
2025-05-22 13:47:21 +02:00
Matthew Honnibal
911539e9a4 Update version 2025-05-18 12:18:38 +02:00
Matthew Honnibal
22c1bc785b Replace lte with lt for clarity 2025-05-18 12:18:17 +02:00
Matthew Honnibal
cb5e760e91 Fix python version supported 2025-05-18 12:17:23 +02:00
Gunther Cox
87ec2b72a5
Update spaCy Universe entry for ChatterBot to use correct name casing (#13784) 2025-05-12 07:47:50 +02:00
翟持江
aa8de0ed37
Update embeddings-transformers.mdx, update trf_data examples info in <Runtime usage> (#13811) 2025-05-12 07:47:12 +02:00
Adrien Carpentier
98a19df91a
docs: fix README.md for compatible Python versions (#13749) 2025-04-11 20:56:52 +02:00
Matthew Honnibal
92bd042502 Allow Python 3.13 2025-04-03 23:15:12 +02:00
Matthew Honnibal
d0c705cbc9 Increment version 2025-04-01 09:40:59 +02:00
Matthew Honnibal
b3c46c315e Add support for linux-arm 2025-02-03 18:32:23 +01:00
Ines Montani
d194f06437 Add live stream to site [ci skip] 2025-02-03 09:42:52 +01:00
Ines Montani
055e07d9cc Update README.md [ci skip] 2025-02-03 09:38:32 +01:00
Ines Montani
8e1c14e977 Add live stream to README [ci skip] 2025-02-03 09:37:48 +01:00
Christine P. Chai
4278182dd0
Change Twitter to X (#13740) [ci skip]
Co-authored-by: Ines Montani <ines@ines.io>
2025-02-03 09:30:21 +01:00
Matthew Honnibal
85cc763006 Fix python version requirement 2025-01-13 18:17:36 +01:00
Matthew Honnibal
ba7468e32e
Update requirements, fixing windows crashes (#13727)
* Re-enable pretraining test

* Require thinc 8.3.4

* Reformat

* Re-enable test
2025-01-13 16:39:46 +01:00
Matthew Honnibal
311f7cc9fb Set version to v3.8.4 2024-12-11 14:14:08 +01:00
Matthew Honnibal
682140496a Align requirements better 2024-12-11 14:13:51 +01:00
Matthew Honnibal
343f4f21d7 Enable Python 3.13 2024-12-11 14:13:28 +01:00
Matthew Honnibal
be0fa812c2 Update cibuildwheel 2024-12-11 13:08:40 +01:00
Matthew Honnibal
a6317b3836
Fix allocation of non-transient strings in StringStore (#13713)
* Fix bug in memory-zone code when adding non-transient strings. The error could result in segmentation faults or other memory errors during memory zones if new labels were added to the model.
* Fix handling of new morphological labels within memory zones. Addresses second issue reported in Memory leak of MorphAnalysis object. #13684
2024-12-11 13:06:53 +01:00
Ines Montani
3e30b5bef6 Add spacy-layout [ci skip] 2024-11-19 10:43:40 +01:00
Matthew Honnibal
3ecec1324c
Usage page on memory management, explaining memory zones and doc_cleaner (#13643) [ci skip]
Co-authored-by: Ines Montani <ines@ines.io>
2024-10-23 12:42:54 +02:00
Ikko Eltociear Ashimine
15fbf5ef36
docs: update rule-based-matching.mdx (#13665) [ci skip] 2024-10-23 12:07:01 +02:00
Sergei Pashakhin
1ee9a19059
Fix typo (#13657) [ci skip] 2024-10-23 12:06:36 +02:00
thjbdvlt
0d7e57fc3e
universe-pipeline-solipCysme-french (#13627) [ci skip] 2024-10-11 11:26:15 +02:00
Ines Montani
ae5c3e078d Fix universe.json [ci skip] 2024-10-11 11:24:42 +02:00
Andrei (Andrey) Khropov
8d2902b0e7
Fix misspelling (#13631) [ci skip] 2024-10-11 11:23:12 +02:00
aravind-mc
44d1906453
Update universe.json to add my spaCy online course (#13632) [ci skip] 2024-10-11 11:21:57 +02:00
sam rxh
52a4cb0d14
Fix 'issue template' link in CONTRIBUTING.md (#13587) [ci skip] 2024-10-11 11:20:34 +02:00
Ines Montani
10a6f508ab Fix landing banner links [ci skip] 2024-10-11 11:19:10 +02:00
Matthew Honnibal
bda4bb0184
Try disabling pretraining tests to probe windows ci failure (#13646) 2024-10-02 01:01:40 +02:00
Matthew Honnibal
628c973db5 Note minimum python requirement in setup.cfg 2024-10-02 00:49:09 +02:00
Matthew Honnibal
e0782c5e4c Merge branch 'master' into v3.8.x 2024-10-01 23:57:48 +02:00
Matthew Honnibal
5230754986 Fix thinc dependncy 2024-10-01 23:49:17 +02:00
Matthew Honnibal
411b70f5f3 Upd requirements 2024-10-01 23:46:54 +02:00
Matthew Honnibal
08705f5a8c Upd tests 2024-10-01 22:57:25 +02:00
Matthew Honnibal
77177d0216 Upd tests workflow 2024-10-01 22:54:12 +02:00
Matthew Honnibal
5196366af5 Upd tests workflow 2024-10-01 22:53:11 +02:00
Matthew Honnibal
29232ad3b5 Upd tests workflow 2024-10-01 22:51:09 +02:00
Matthew Honnibal
dd47fbb45f Remove 'apple' extra 2024-10-01 22:24:25 +02:00
Matthew Honnibal
63f1b53c1a Check test failure 2024-10-01 16:49:49 +02:00
Matthew Honnibal
0cdcfe56cb Set version to v3.8.2 2024-10-01 16:47:24 +02:00
Matthew Honnibal
924cbc9703 Fix environment variable for test 2024-10-01 16:08:06 +02:00
Matthew Honnibal
e1d050517d Fix requirements.txt 2024-10-01 15:56:18 +02:00
Matthew Honnibal
6c038aaae0 Don't disable tests on workflow changes 2024-10-01 15:32:01 +02:00
Matthew Honnibal
f0084b9143 Fix matrix in tests 2024-10-01 15:28:22 +02:00
Matthew Honnibal
ff81bfb8db Update tests 2024-10-01 13:21:10 +02:00
Matthew Honnibal
9c5b61bdff isort 2024-10-01 12:38:51 +02:00
Matthew Honnibal
725ccbac39 Format 2024-10-01 12:38:02 +02:00
Matthew Honnibal
a8837beab7 Set version to v3.8.1 2024-10-01 12:37:11 +02:00
Matthew Honnibal
3a0aadcf86 Update spacy[apple] thinc-apple-ops pin for numpy v2 compatibility 2024-10-01 10:16:35 +02:00
DomHudson
a61a1d43cf
[Documentation] Replace broken URL in _serialization.mdx (#13641) 2024-09-30 17:45:50 +02:00
Matthew Honnibal
114b4894fb Fix --require-parent default 2024-09-29 15:50:31 +02:00
Matthew Honnibal
dec13b4258 Fix inverted cli arg 2024-09-29 15:50:05 +02:00
Matthew Honnibal
c03f060527 Allow positive option --require-parent 2024-09-29 14:30:14 +02:00
Matthew Honnibal
6255cb985f Include version constraint in parent package requirement 2024-09-29 14:22:21 +02:00
Matthew Honnibal
3b165a8716 Simplify setting to require parent package 2024-09-29 14:19:10 +02:00
Matthew Honnibal
969832f5d6 Fix package 2024-09-29 14:00:11 +02:00
Matthew Honnibal
8ce53a6bbe Syntax 2024-09-29 13:51:44 +02:00
Matthew Honnibal
6fa0d709d5 Support option to not depend on parent package in spacy package 2024-09-29 13:51:04 +02:00
Matthew Honnibal
5010fcbd3a Fix numpy constant 2024-09-14 13:13:11 +02:00
Matthew Honnibal
de4f19f3a3 Fix version 2024-09-14 13:12:44 +02:00
Matthew Honnibal
3d03565498 Replace numpy floats in evaluate and update 2024-09-14 12:55:53 +02:00
Matthew Honnibal
0576a1ff56 Fix numpy floats in meta.json 2024-09-14 12:54:08 +02:00
Matthew Honnibal
2f1e7ed09a Lint 2024-09-14 11:36:27 +02:00
Matthew Honnibal
e2dc9b79e1 Format 2024-09-14 11:29:40 +02:00
Matthew Honnibal
3c3d75015b Set version to v3.7.7 2024-09-14 11:27:32 +02:00
Matthew Honnibal
50aa3b5cbe Merge branch 'master' of https://github.com/explosion/spaCy 2024-09-14 11:09:44 +02:00
Matthew Honnibal
8266031454 Merge numpy version update 2024-09-14 11:08:35 +02:00
Matthew Honnibal
8dcc4b8daf Skip running tests on PRs 2024-09-14 11:07:23 +02:00
William Mattingly
30f1f33e78
Added Date spaCy to universe (#13415) [ci skip]
Co-authored-by: Ines Montani <ines@ines.io>
2024-09-10 14:29:03 +02:00
William Mattingly
f1a5ff9dba
added spacy whisper to universe (#13418) [ci skip]
Co-authored-by: Ines Montani <ines@ines.io>
2024-09-10 14:28:00 +02:00
William Mattingly
c80dacd046
added spacy annoy to universe (#13416) [ci skip]
Co-authored-by: Ines Montani <ines@ines.io>
2024-09-10 14:26:21 +02:00
William Mattingly
7fbbb2002a
updated universe for number spacy (#13424) [ci skip]
Co-authored-by: Ines Montani <ines@ines.io>
2024-09-10 14:25:23 +02:00
William Mattingly
89c1774d43
added bagpipes-spacy to universe (#13425) [ci skip]
Co-authored-by: Ines Montani <ines@ines.io>
2024-09-10 14:24:06 +02:00
thjbdvlt
081e4e385d
universe-project-presque (#13515) [ci skip]
Co-authored-by: Ines Montani <ines@ines.io>
2024-09-10 14:21:41 +02:00
thjbdvlt
0190e669c5
universe-package-quelquhui (#13514) [ci skip]
Co-authored-by: Ines Montani <ines@ines.io>
2024-09-10 14:17:33 +02:00
Oren Halvani
54dc4ee8fb
Added: Constituent-Treelib to: universe.json (#13432) [ci skip]
Co-authored-by: Halvani <>
2024-09-10 14:13:36 +02:00
William Mattingly
5a7ad5572c
added gliner-spacy to universe (#13417) [ci skip]
Co-authored-by: Sofie Van Landeghem <svlandeg@users.noreply.github.com>
Co-authored-by: Ines Montani <ines@ines.io>
2024-09-10 14:12:52 +02:00
marinelay
b18cc94451
Delete unnecessary method (#13441)
Co-authored-by: marinelay <marinelay@gmail.com>
2024-09-09 20:57:13 +02:00
Matthew Honnibal
4cc3ebe74e Format 2024-09-09 20:56:01 +02:00
Matthew Honnibal
a019315534 Fix memory zones 2024-09-09 13:49:41 +02:00
Matthew Honnibal
59ac7e6bdb Format 2024-09-09 11:22:52 +02:00
Matthew Honnibal
b65491b641 Set version to v3.8.0.dev0 2024-09-09 11:20:23 +02:00
Matthew Honnibal
1b8d560d0e
Support 'memory zones' for user memory management (#13621)
Add a context manage nlp.memory_zone(), which will begin
memory_zone() blocks on the vocab, string store, and potentially
other components.

Example usage:

```
with nlp.memory_zone():
    for text in nlp.pipe(texts):
        do_something(doc)
# do_something(doc) <-- Invalid
```

Once the memory_zone() block expires, spaCy will free any shared
resources that were allocated for the text-processing that occurred
within the memory_zone. If you create Doc objects within a memory
zone, it's invalid to access them once the memory zone is expired.

The purpose of this is that spaCy creates and stores Lexeme objects
in the Vocab that can be shared between multiple Doc objects. It also
interns strings. Normally, spaCy can't know when all Doc objects using
a Lexeme are out-of-scope, so new Lexemes accumulate in the vocab,
causing memory pressure.

Memory zones solve this problem by telling spaCy "okay none of the
documents allocated within this block will be accessed again". This
lets spaCy free all new Lexeme objects and other data that were
created during the block.

The mechanism is general, so memory_zone() context managers can be
added to other components that could benefit from them, e.g. pipeline
components.

I experimented with adding memory zone support to the tokenizer as well,
for its cache. However, this seems unnecessarily complicated. It makes
more sense to just stick a limit on the cache size. This lets spaCy
benefit from the efficiency advantage of the cache better, because
we can maintain a (bounded) cache even if only small batches of
documents are being processed.
2024-09-09 11:19:39 +02:00
ykyogoku
608f65ce40
add Tibetan (#13510) 2024-09-09 11:18:03 +02:00
Muzaffer Cikay
acbf2a428f
Add Kurdish Kurmanji language (#13561)
* Add Kurdish Kurmanji language

* Add lex_attrs
2024-09-09 11:15:40 +02:00
Mark Liberko
55db9c2e87
Added gd language folder (#13570)
Implemented a foundational Scottish Gaelic (gd) language option with tokenizer_exceptions and stop_words files.
2024-09-09 11:14:09 +02:00
162 changed files with 8484 additions and 1858 deletions

View File

@ -14,7 +14,7 @@ jobs:
strategy:
matrix:
# macos-13 is an intel runner, macos-14 is apple silicon
os: [ubuntu-latest, windows-latest, macos-13, macos-14]
os: [ubuntu-latest, windows-latest, macos-13, macos-14, ubuntu-24.04-arm]
steps:
- uses: actions/checkout@v4
@ -26,7 +26,7 @@ jobs:
# with:
# platforms: all
- name: Build wheels
uses: pypa/cibuildwheel@v2.19.1
uses: pypa/cibuildwheel@v2.21.3
env:
CIBW_ARCHS_LINUX: auto
with:

View File

@ -2,6 +2,8 @@ name: tests
on:
push:
tags-ignore:
- '**'
branches-ignore:
- "spacy.io"
- "nightly.spacy.io"
@ -10,7 +12,6 @@ on:
- "*.md"
- "*.mdx"
- "website/**"
- ".github/workflows/**"
pull_request:
types: [opened, synchronize, reopened, edited]
paths-ignore:
@ -30,7 +31,7 @@ jobs:
- name: Configure Python version
uses: actions/setup-python@v4
with:
python-version: "3.7"
python-version: "3.10"
- name: black
run: |
@ -44,11 +45,12 @@ jobs:
run: |
python -m pip install flake8==5.0.4
python -m flake8 spacy --count --select=E901,E999,F821,F822,F823,W605 --show-source --statistics
- name: cython-lint
run: |
python -m pip install cython-lint -c requirements.txt
# E501: line too log, W291: trailing whitespace, E266: too many leading '#' for block comment
cython-lint spacy --ignore E501,W291,E266
# Unfortunately cython-lint isn't working after the shift to Cython 3.
#- name: cython-lint
# run: |
# python -m pip install cython-lint -c requirements.txt
# # E501: line too log, W291: trailing whitespace, E266: too many leading '#' for block comment
# cython-lint spacy --ignore E501,W291,E266
tests:
name: Test
@ -57,18 +59,7 @@ jobs:
fail-fast: true
matrix:
os: [ubuntu-latest, windows-latest, macos-latest]
python_version: ["3.12"]
include:
- os: windows-latest
python_version: "3.7"
- os: macos-latest
python_version: "3.8"
- os: ubuntu-latest
python_version: "3.9"
- os: windows-latest
python_version: "3.10"
- os: macos-latest
python_version: "3.11"
python_version: ["3.9", "3.12", "3.13"]
runs-on: ${{ matrix.os }}
@ -157,7 +148,9 @@ jobs:
- name: "Test assemble CLI"
run: |
python -c "import spacy; config = spacy.util.load_config('ner.cfg'); config['components']['ner'] = {'source': 'ca_core_news_sm'}; config.to_disk('ner_source_sm.cfg')"
PYTHONWARNINGS="error,ignore::DeprecationWarning" python -m spacy assemble ner_source_sm.cfg output_dir
python -m spacy assemble ner_source_sm.cfg output_dir
env:
PYTHONWARNINGS: "error,ignore::DeprecationWarning"
if: matrix.python_version == '3.9'
- name: "Test assemble CLI vectors warning"

View File

@ -35,7 +35,7 @@ so that more people can benefit from it.
When opening an issue, use a **descriptive title** and include your
**environment** (operating system, Python version, spaCy version). Our
[issue template](https://github.com/explosion/spaCy/issues/new) helps you
[issue templates](https://github.com/explosion/spaCy/issues/new/choose) help you
remember the most important details to include. If you've discovered a bug, you
can also submit a [regression test](#fixing-bugs) straight away. When you're
opening an issue to report the bug, simply refer to your pull request in the
@ -449,8 +449,8 @@ and plugins in spaCy v3.0, and we can't wait to see what you build with it!
[`spacy`](https://github.com/topics/spacy?o=desc&s=stars) and
[`spacy-extensions`](https://github.com/topics/spacy-extension?o=desc&s=stars)
to make it easier to find. Those are also the topics we're linking to from the
spaCy website. If you're sharing your project on Twitter, feel free to tag
[@spacy_io](https://twitter.com/spacy_io) so we can check it out.
spaCy website. If you're sharing your project on X, feel free to tag
[@spacy_io](https://x.com/spacy_io) so we can check it out.
- Once your extension is published, you can open a
[PR](https://github.com/explosion/spaCy/pulls) to suggest it for the

View File

@ -4,5 +4,6 @@ include README.md
include pyproject.toml
include spacy/py.typed
recursive-include spacy/cli *.yml
recursive-include spacy/tests *.json
recursive-include licenses *
recursive-exclude spacy *.cpp

View File

@ -16,7 +16,7 @@ model packaging, deployment and workflow management. spaCy is commercial
open-source software, released under the
[MIT license](https://github.com/explosion/spaCy/blob/master/LICENSE).
💫 **Version 3.7 out now!**
💫 **Version 3.8 out now!**
[Check out the release notes here.](https://github.com/explosion/spaCy/releases)
[![tests](https://github.com/explosion/spaCy/actions/workflows/tests.yml/badge.svg)](https://github.com/explosion/spaCy/actions/workflows/tests.yml)
@ -28,7 +28,6 @@ open-source software, released under the
<br />
[![PyPi downloads](https://static.pepy.tech/personalized-badge/spacy?period=total&units=international_system&left_color=grey&right_color=orange&left_text=pip%20downloads)](https://pypi.org/project/spacy/)
[![Conda downloads](https://img.shields.io/conda/dn/conda-forge/spacy?label=conda%20downloads)](https://anaconda.org/conda-forge/spacy)
[![spaCy on Twitter](https://img.shields.io/twitter/follow/spacy_io.svg?style=social&label=Follow)](https://twitter.com/spacy_io)
## 📖 Documentation
@ -47,6 +46,7 @@ open-source software, released under the
| 👩‍🏫 **[Online Course]** | Learn spaCy in this free and interactive online course. |
| 📰 **[Blog]** | Read about current spaCy and Prodigy development, releases, talks and more from Explosion. |
| 📺 **[Videos]** | Our YouTube channel with video tutorials, talks and more. |
| 🔴 **[Live Stream]** | Join Matt as he works on spaCy and chat about NLP, live every week. |
| 🛠 **[Changelog]** | Changes and version history. |
| 💝 **[Contribute]** | How to contribute to the spaCy project and code base. |
| 👕 **[Swag]** | Support us and our work with unique, custom-designed swag! |
@ -62,6 +62,7 @@ open-source software, released under the
[universe]: https://spacy.io/universe
[spacy vs code extension]: https://github.com/explosion/spacy-vscode
[videos]: https://www.youtube.com/c/ExplosionAI
[live stream]: https://www.youtube.com/playlist?list=PLBmcuObd5An5_iAxNYLJa_xWmNzsYce8c
[online course]: https://course.spacy.io
[blog]: https://explosion.ai
[project templates]: https://github.com/explosion/projects
@ -79,13 +80,14 @@ more people can benefit from it.
| Type | Platforms |
| ------------------------------- | --------------------------------------- |
| 🚨 **Bug Reports** | [GitHub Issue Tracker] |
| 🎁 **Feature Requests & Ideas** | [GitHub Discussions] |
| 🎁 **Feature Requests & Ideas** | [GitHub Discussions] · [Live Stream] |
| 👩‍💻 **Usage Questions** | [GitHub Discussions] · [Stack Overflow] |
| 🗯 **General Discussion** | [GitHub Discussions] |
| 🗯 **General Discussion** | [GitHub Discussions] · [Live Stream] |
[github issue tracker]: https://github.com/explosion/spaCy/issues
[github discussions]: https://github.com/explosion/spaCy/discussions
[stack overflow]: https://stackoverflow.com/questions/tagged/spacy
[live stream]: https://www.youtube.com/playlist?list=PLBmcuObd5An5_iAxNYLJa_xWmNzsYce8c
## Features
@ -115,7 +117,7 @@ For detailed installation instructions, see the
- **Operating system**: macOS / OS X · Linux · Windows (Cygwin, MinGW, Visual
Studio)
- **Python version**: Python 3.7+ (only 64 bit)
- **Python version**: Python >=3.7, <3.13 (only 64 bit)
- **Package managers**: [pip] · [conda] (via `conda-forge`)
[pip]: https://pypi.org/project/spacy/

20
bin/release.sh Executable file
View File

@ -0,0 +1,20 @@
#!/usr/bin/env bash
set -e
# Insist repository is clean
git diff-index --quiet HEAD
version=$(grep "__version__ = " spacy/about.py)
version=${version/__version__ = }
version=${version/\'/}
version=${version/\'/}
version=${version/\"/}
version=${version/\"/}
echo "Pushing release-v"$version
git tag -d release-v$version || true
git push origin :release-v$version || true
git tag release-v$version
git push origin release-v$version

View File

@ -1,6 +1,2 @@
# build version constraints for use with wheelwright
numpy==1.15.0; python_version=='3.7' and platform_machine!='aarch64'
numpy==1.19.2; python_version=='3.7' and platform_machine=='aarch64'
numpy==1.17.3; python_version=='3.8' and platform_machine!='aarch64'
numpy==1.19.2; python_version=='3.8' and platform_machine=='aarch64'
numpy>=1.25.0; python_version>='3.9'
numpy>=2.0.0,<3.0.0

View File

@ -1,13 +1,12 @@
[build-system]
requires = [
"setuptools",
"cython>=0.25,<3.0",
"cython>=3.0,<4.0",
"cymem>=2.0.2,<2.1.0",
"preshed>=3.0.2,<3.1.0",
"murmurhash>=0.28.0,<1.1.0",
"thinc>=8.3.0,<8.4.0",
"numpy>=2.0.0,<2.1.0; python_version < '3.9'",
"numpy>=2.0.0,<2.1.0; python_version >= '3.9'",
"thinc>=8.3.4,<8.4.0",
"numpy>=2.0.0,<3.0.0"
]
build-backend = "setuptools.build_meta"

View File

@ -3,28 +3,26 @@ spacy-legacy>=3.0.11,<3.1.0
spacy-loggers>=1.0.0,<2.0.0
cymem>=2.0.2,<2.1.0
preshed>=3.0.2,<3.1.0
thinc>=8.2.2,<8.3.0
thinc>=8.3.4,<8.4.0
ml_datasets>=0.2.0,<0.3.0
murmurhash>=0.28.0,<1.1.0
wasabi>=0.9.1,<1.2.0
srsly>=2.4.3,<3.0.0
catalogue>=2.0.6,<2.1.0
typer>=0.3.0,<1.0.0
typer-slim>=0.3.0,<1.0.0
weasel>=0.1.0,<0.5.0
# Third party dependencies
numpy>=2.0.0; python_version < "3.9"
numpy>=2.0.0; python_version >= "3.9"
numpy>=2.0.0,<3.0.0
requests>=2.13.0,<3.0.0
tqdm>=4.38.0,<5.0.0
pydantic>=1.7.4,!=1.8,!=1.8.1,<3.0.0
jinja2
langcodes>=3.2.0,<4.0.0
# Official Python utilities
setuptools
packaging>=20.0
# Development dependencies
pre-commit>=2.13.0
cython>=0.25,<3.0
cython>=3.0,<4.0
pytest>=5.2.0,!=7.1.0
pytest-timeout>=1.3.0,<2.0.0
mock>=2.0.0,<3.0.0

View File

@ -17,12 +17,11 @@ classifiers =
Operating System :: Microsoft :: Windows
Programming Language :: Cython
Programming Language :: Python :: 3
Programming Language :: Python :: 3.7
Programming Language :: Python :: 3.8
Programming Language :: Python :: 3.9
Programming Language :: Python :: 3.10
Programming Language :: Python :: 3.11
Programming Language :: Python :: 3.12
Programming Language :: Python :: 3.13
Topic :: Scientific/Engineering
project_urls =
Release notes = https://github.com/explosion/spaCy/releases
@ -31,18 +30,18 @@ project_urls =
[options]
zip_safe = false
include_package_data = true
python_requires = >=3.7
python_requires = >=3.9,<3.14
# NOTE: This section is superseded by pyproject.toml and will be removed in
# spaCy v4
setup_requires =
cython>=0.25,<3.0
numpy>=2.0.0,<2.1.0; python_version < "3.9"
numpy>=2.0.0,<2.1.0; python_version >= "3.9"
cython>=3.0,<4.0
numpy>=2.0.0,<3.0.0; python_version < "3.9"
numpy>=2.0.0,<3.0.0; python_version >= "3.9"
# We also need our Cython packages here to compile against
cymem>=2.0.2,<2.1.0
preshed>=3.0.2,<3.1.0
murmurhash>=0.28.0,<1.1.0
thinc>=8.3.0,<8.4.0
thinc>=8.3.4,<8.4.0
install_requires =
# Our libraries
spacy-legacy>=3.0.11,<3.1.0
@ -50,13 +49,13 @@ install_requires =
murmurhash>=0.28.0,<1.1.0
cymem>=2.0.2,<2.1.0
preshed>=3.0.2,<3.1.0
thinc>=8.3.0,<8.4.0
thinc>=8.3.4,<8.4.0
wasabi>=0.9.1,<1.2.0
srsly>=2.4.3,<3.0.0
catalogue>=2.0.6,<2.1.0
weasel>=0.1.0,<0.5.0
# Third-party dependencies
typer>=0.3.0,<1.0.0
typer-slim>=0.3.0,<1.0.0
tqdm>=4.38.0,<5.0.0
numpy>=1.15.0; python_version < "3.9"
numpy>=1.19.0; python_version >= "3.9"
@ -66,7 +65,6 @@ install_requires =
# Official Python utilities
setuptools
packaging>=20.0
langcodes>=3.2.0,<4.0.0
[options.entry_points]
console_scripts =
@ -116,7 +114,7 @@ cuda12x =
cuda-autodetect =
cupy-wheel>=11.0.0,<13.0.0
apple =
thinc-apple-ops>=0.1.0.dev0,<1.0.0
thinc-apple-ops>=1.0.0,<2.0.0
# Language tokenizers with external dependencies
ja =
sudachipy>=0.5.2,!=0.6.1

View File

@ -17,6 +17,7 @@ from .cli.info import info # noqa: F401
from .errors import Errors
from .glossary import explain # noqa: F401
from .language import Language
from .registrations import REGISTRY_POPULATED, populate_registry
from .util import logger, registry # noqa: F401
from .vocab import Vocab

View File

@ -1,5 +1,5 @@
# fmt: off
__title__ = "spacy"
__version__ = "3.8.1"
__version__ = "3.8.7"
__download_url__ = "https://github.com/explosion/spacy-models/releases/download"
__compatibility__ = "https://raw.githubusercontent.com/explosion/spacy-models/master/compatibility.json"

View File

@ -170,7 +170,7 @@ def debug_model(
msg.divider(f"STEP 3 - prediction")
msg.info(str(prediction))
msg.good(f"Succesfully ended analysis - model looks good.")
msg.good(f"Successfully ended analysis - model looks good.")
def _sentences():

View File

@ -30,6 +30,7 @@ def package_cli(
version: Optional[str] = Opt(None, "--version", "-v", help="Package version to override meta"),
build: str = Opt("sdist", "--build", "-b", help="Comma-separated formats to build: sdist and/or wheel, or none."),
force: bool = Opt(False, "--force", "-f", "-F", help="Force overwriting existing data in output directory"),
require_parent: bool = Opt(True, "--require-parent/--no-require-parent", "-R", "-R", help="Include the parent package (e.g. spacy) in the requirements"),
# fmt: on
):
"""
@ -60,6 +61,7 @@ def package_cli(
create_sdist=create_sdist,
create_wheel=create_wheel,
force=force,
require_parent=require_parent,
silent=False,
)
@ -74,6 +76,7 @@ def package(
create_meta: bool = False,
create_sdist: bool = True,
create_wheel: bool = False,
require_parent: bool = False,
force: bool = False,
silent: bool = True,
) -> None:
@ -113,7 +116,7 @@ def package(
if not meta_path.exists() or not meta_path.is_file():
msg.fail("Can't load pipeline meta.json", meta_path, exits=1)
meta = srsly.read_json(meta_path)
meta = get_meta(input_dir, meta)
meta = get_meta(input_dir, meta, require_parent=require_parent)
if meta["requirements"]:
msg.good(
f"Including {len(meta['requirements'])} package requirement(s) from "
@ -186,6 +189,7 @@ def package(
imports.append(code_path.stem)
shutil.copy(str(code_path), str(package_path))
create_file(main_path / "meta.json", srsly.json_dumps(meta, indent=2))
create_file(main_path / "setup.py", TEMPLATE_SETUP)
create_file(main_path / "MANIFEST.in", TEMPLATE_MANIFEST)
init_py = TEMPLATE_INIT.format(
@ -302,6 +306,8 @@ def get_third_party_dependencies(
modules.add(func_info["module"].split(".")[0]) # type: ignore[union-attr]
dependencies = []
for module_name in modules:
if module_name == about.__title__:
continue
if module_name in distributions:
dist = distributions.get(module_name)
if dist:
@ -332,7 +338,9 @@ def create_file(file_path: Path, contents: str) -> None:
def get_meta(
model_path: Union[str, Path], existing_meta: Dict[str, Any]
model_path: Union[str, Path],
existing_meta: Dict[str, Any],
require_parent: bool = False,
) -> Dict[str, Any]:
meta: Dict[str, Any] = {
"lang": "en",
@ -361,6 +369,8 @@ def get_meta(
existing_reqs = [util.split_requirement(req)[0] for req in meta["requirements"]]
reqs = get_third_party_dependencies(nlp.config, exclude=existing_reqs)
meta["requirements"].extend(reqs)
if require_parent and about.__title__ not in meta["requirements"]:
meta["requirements"].append(about.__title__ + meta["spacy_version"])
return meta
@ -535,8 +545,11 @@ def list_files(data_dir):
def list_requirements(meta):
parent_package = meta.get('parent_package', 'spacy')
requirements = [parent_package + meta['spacy_version']]
# Up to version 3.7, we included the parent package
# in requirements by default. This behaviour is removed
# in 3.8, with a setting to include the parent package in
# the requirements list in the meta if desired.
requirements = []
if 'setup_requires' in meta:
requirements += meta['setup_requires']
if 'requirements' in meta:

16
spacy/lang/bo/__init__.py Normal file
View File

@ -0,0 +1,16 @@
from ...language import BaseDefaults, Language
from .lex_attrs import LEX_ATTRS
from .stop_words import STOP_WORDS
class TibetanDefaults(BaseDefaults):
lex_attr_getters = LEX_ATTRS
stop_words = STOP_WORDS
class Tibetan(Language):
lang = "bo"
Defaults = TibetanDefaults
__all__ = ["Tibetan"]

16
spacy/lang/bo/examples.py Normal file
View File

@ -0,0 +1,16 @@
"""
Example sentences to test spaCy and its language models.
>>> from spacy.lang.bo.examples import sentences
>>> docs = nlp.pipe(sentences)
"""
sentences = [
"དོན་དུ་རྒྱ་མཚོ་བླ་མ་ཞེས་བྱ་ཞིང༌།",
"ཏཱ་ལའི་ཞེས་པ་ནི་སོག་སྐད་ཡིན་པ་དེ་བོད་སྐད་དུ་རྒྱ་མཚོའི་དོན་དུ་འཇུག",
"སོག་པོ་ཨལ་ཐན་རྒྱལ་པོས་རྒྱལ་དབང་བསོད་ནམས་རྒྱ་མཚོར་ཆེ་བསྟོད་ཀྱི་མཚན་གསོལ་བ་ཞིག་ཡིན་ཞིང༌།",
"རྗེས་སུ་རྒྱལ་བ་དགེ་འདུན་གྲུབ་དང༌། དགེ་འདུན་རྒྱ་མཚོ་སོ་སོར་ཡང་ཏཱ་ལའི་བླ་མའི་སྐུ་ཕྲེང་དང་པོ་དང༌།",
"གཉིས་པའི་མཚན་དེ་གསོལ་ཞིང༌།༸རྒྱལ་དབང་སྐུ་ཕྲེང་ལྔ་པས་དགའ་ལྡན་ཕོ་བྲང་གི་སྲིད་དབང་བཙུགས་པ་ནས་ཏཱ་ལའི་བླ་མ་ནི་བོད་ཀྱི་ཆོས་སྲིད་གཉིས་ཀྱི་དབུ་ཁྲིད་དུ་གྱུར་ཞིང་།",
"ད་ལྟའི་བར་ཏཱ་ལའི་བླ་མ་སྐུ་ཕྲེང་བཅུ་བཞི་བྱོན་ཡོད།",
]

View File

@ -0,0 +1,65 @@
from ...attrs import LIKE_NUM
# reference 1: https://en.wikipedia.org/wiki/Tibetan_numerals
_num_words = [
"ཀླད་ཀོར་",
"གཅིག་",
"གཉིས་",
"གསུམ་",
"བཞི་",
"ལྔ་",
"དྲུག་",
"བདུན་",
"བརྒྱད་",
"དགུ་",
"བཅུ་",
"བཅུ་གཅིག་",
"བཅུ་གཉིས་",
"བཅུ་གསུམ་",
"བཅུ་བཞི་",
"བཅུ་ལྔ་",
"བཅུ་དྲུག་",
"བཅུ་བདུན་",
"བཅུ་པརྒྱད",
"བཅུ་དགུ་",
"ཉི་ཤུ་",
"སུམ་ཅུ",
"བཞི་བཅུ",
"ལྔ་བཅུ",
"དྲུག་ཅུ",
"བདུན་ཅུ",
"བརྒྱད་ཅུ",
"དགུ་བཅུ",
"བརྒྱ་",
"སྟོང་",
"ཁྲི་",
"ས་ཡ་",
" བྱེ་བ་",
"དུང་ཕྱུར་",
"ཐེར་འབུམ་",
"ཐེར་འབུམ་ཆེན་པོ་",
"ཁྲག་ཁྲིག་",
"ཁྲག་ཁྲིག་ཆེན་པོ་",
]
def like_num(text):
"""
Check if text resembles a number
"""
if text.startswith(("+", "-", "±", "~")):
text = text[1:]
text = text.replace(",", "").replace(".", "")
if text.isdigit():
return True
if text.count("/") == 1:
num, denom = text.split("/")
if num.isdigit() and denom.isdigit():
return True
if text in _num_words:
return True
return False
LEX_ATTRS = {LIKE_NUM: like_num}

198
spacy/lang/bo/stop_words.py Normal file
View File

@ -0,0 +1,198 @@
# Source: https://zenodo.org/records/10148636
STOP_WORDS = set(
"""
གས
མས
འད
པས
གཞན
དང
གས
བཅས
ངས
ལས
ཙམ
ཡང
མཐའདག
འད
རང
ངམ
དག
འང
ལགས
ཚང
ཐམསཅད
དམ
འམ
བས
ལགས
གས
མས
བམ
ནམ
ནམ
ངམ
འགའ
ཤས
གམ
ལགས
ཅང
འགའ
སམ
འང
ལས
འཕ
བར
དང
འག
སམ
ཟད
འམ
མམ
དམ
དག
ལམ
ནང
ཙམ
རམ
ཨང
གས
ལགས
པས
རབ
རམ
བས
གཞན
འབའ
གམ
བམ
ཙམ
མམ
ཏམ
ཏམ
ཤས
""".split()
)

18
spacy/lang/gd/__init__.py Normal file
View File

@ -0,0 +1,18 @@
from typing import Optional
from ...language import BaseDefaults, Language
from .stop_words import STOP_WORDS
from .tokenizer_exceptions import TOKENIZER_EXCEPTIONS
class ScottishDefaults(BaseDefaults):
tokenizer_exceptions = TOKENIZER_EXCEPTIONS
stop_words = STOP_WORDS
class Scottish(Language):
lang = "gd"
Defaults = ScottishDefaults
__all__ = ["Scottish"]

388
spacy/lang/gd/stop_words.py Normal file
View File

@ -0,0 +1,388 @@
STOP_WORDS = set(
"""
'ad
'ar
'd # iad
'g # ag
'ga
'gam
'gan
'gar
'gur
'm # am
'n # an
'n seo
'na
'nad
'nam
'nan
'nar
'nuair
'nur
's
'sa
'san
'sann
'se
'sna
a
a'
a'd # agad
a'm # agam
a-chèile
a-seo
a-sin
a-siud
a chionn
a chionn 's
a chèile
a chéile
a dh'
a h-uile
a seo
ac' # aca
aca
aca-san
acasan
ach
ag
agad
agad-sa
agads'
agadsa
agaibh
agaibhse
againn
againne
agam
agam-sa
agams'
agamsa
agus
aice
aice-se
aicese
aig
aig' # aige
aige
aige-san
aigesan
air
air-san
air neo
airsan
am
an
an seo
an sin
an siud
an uair
ann
ann a
ann a'
ann a shin
ann am
ann an
annad
annam
annam-s'
annamsa
anns
anns an
annta
aon
ar
as
asad
asda
asta
b'
bho
bhon
bhuaidhe # bhuaithe
bhuainn
bhuaipe
bhuaithe
bhuapa
bhur
brì
bu
c'à
car son
carson
cha
chan
chionn
choir
chon
chun
chèile
chéile
chòir
cia mheud
ciamar
co-dhiubh
cuide
cuin
cuin'
cuine
'
càil
càit
càit'
càite
mheud
d'
da
de
dh'
dha
dhaibh
dhaibh-san
dhaibhsan
dhan
dhasan
dhe
dhen
dheth
dhi
dhiom
dhiot
dhith
dhiubh
dhomh
dhomh-s'
dhomhsa
dhu'sa # dhut-sa
dhuibh
dhuibhse
dhuinn
dhuinne
dhuit
dhut
dhutsa
dhut-sa
dhà
dhà-san
dhàsan
dhòmhsa
diubh
do
docha
don
mar
mar
dòch'
dòcha
e
eadar
eatarra
eatorra
eile
esan
fa
far
feud
fhad
fheudar
fhearr
fhein
fheudar
fheàrr
fhèin
fhéin
fhìn
fo
fodha
fodhainn
foipe
fon
fèin
ga
gach
gam
gan
ge brith
ged
gu
gu
gu ruige
gun
gur
gus
i
iad
iadsan
innte
is
ise
le
leam
leam-sa
leamsa
leat
leat-sa
leatha
leatsa
leibh
leis
leis-san
leoth'
leotha
leotha-san
linn
m'
m'a
ma
mac
man
mar
mas
mathaid
mi
mis'
mise
mo
mu
mu 'n
mun
mur
mura
mus
na
na b'
na bu
na iad
nach
nad
nam
nan
nar
nas
neo
no
nuair
o
o'n
oir
oirbh
oirbh-se
oirnn
oirnne
oirre
on
orm
orm-sa
ormsa
orra
orra-san
orrasan
ort
os
r'
ri
ribh
rinn
ris
rithe
rithe-se
rium
rium-sa
riums'
riumsa
riut
riuth'
riutha
riuthasan
ro
ro'n
roimh
roimhe
romhainn
romham
romhpa
ron
ruibh
ruinn
ruinne
sa
san
sann
se
seach
seo
seothach
shin
sibh
sibh-se
sibhse
sin
sineach
sinn
sinne
siod
siodach
siud
siudach
sna # ann an
t'
tarsaing
tarsainn
tarsuinn
thar
thoigh
thro
thu
thuc'
thuca
thugad
thugaibh
thugainn
thugam
thugamsa
thuice
thuige
thus'
thusa
timcheall
toigh
toil
tro
tro' # troimh
troimh
troimhe
tron
tu
tusa
uair
ud
ugaibh
ugam-s'
ugam-sa
uice
uige
uige-san
umad
unnta # ann an
ur
urrainn
à
às
àsan
á
ás
è
ì
ò
ó
""".split(
"\n"
)
)

File diff suppressed because it is too large Load Diff

View File

@ -1,5 +1,5 @@
The list of Croatian lemmas was extracted from the reldi-tagger repository (https://github.com/clarinsi/reldi-tagger).
Reldi-tagger is licesned under the Apache 2.0 licence.
Reldi-tagger is licensed under the Apache 2.0 licence.
@InProceedings{ljubesic16-new,
author = {Nikola Ljubešić and Filip Klubička and Željko Agić and Ivo-Pavao Jazbec},
@ -12,4 +12,4 @@ Reldi-tagger is licesned under the Apache 2.0 licence.
publisher = {European Language Resources Association (ELRA)},
address = {Paris, France},
isbn = {978-2-9517408-9-1}
}
}

52
spacy/lang/ht/__init__.py Normal file
View File

@ -0,0 +1,52 @@
from typing import Callable, Optional
from thinc.api import Model
from ...language import BaseDefaults, Language
from .lemmatizer import HaitianCreoleLemmatizer
from .lex_attrs import LEX_ATTRS
from .punctuation import TOKENIZER_PREFIXES, TOKENIZER_INFIXES, TOKENIZER_SUFFIXES
from .stop_words import STOP_WORDS
from .syntax_iterators import SYNTAX_ITERATORS
from .tokenizer_exceptions import TOKENIZER_EXCEPTIONS
from .tag_map import TAG_MAP
class HaitianCreoleDefaults(BaseDefaults):
tokenizer_exceptions = TOKENIZER_EXCEPTIONS
prefixes = TOKENIZER_PREFIXES
infixes = TOKENIZER_INFIXES
suffixes = TOKENIZER_SUFFIXES
lex_attr_getters = LEX_ATTRS
syntax_iterators = SYNTAX_ITERATORS
stop_words = STOP_WORDS
tag_map = TAG_MAP
class HaitianCreole(Language):
lang = "ht"
Defaults = HaitianCreoleDefaults
@HaitianCreole.factory(
"lemmatizer",
assigns=["token.lemma"],
default_config={
"model": None,
"mode": "rule",
"overwrite": False,
"scorer": {"@scorers": "spacy.lemmatizer_scorer.v1"},
},
default_score_weights={"lemma_acc": 1.0},
)
def make_lemmatizer(
nlp: Language,
model: Optional[Model],
name: str,
mode: str,
overwrite: bool,
scorer: Optional[Callable],
):
return HaitianCreoleLemmatizer(
nlp.vocab, model, name, mode=mode, overwrite=overwrite, scorer=scorer
)
__all__ = ["HaitianCreole"]

18
spacy/lang/ht/examples.py Normal file
View File

@ -0,0 +1,18 @@
"""
Example sentences to test spaCy and its language models.
>>> from spacy.lang.ht.examples import sentences
>>> docs = nlp.pipe(sentences)
"""
sentences = [
"Apple ap panse achte yon demaraj nan Wayòm Ini pou $1 milya dola",
"Machin otonòm fè responsablite asirans lan ale sou men fabrikan yo",
"San Francisco ap konsidere entèdi robo ki livre sou twotwa yo",
"Lond se yon gwo vil nan Wayòm Ini",
"Kote ou ye?",
"Kilès ki prezidan Lafrans?",
"Ki kapital Etazini?",
"Kile Barack Obama te fèt?",
]

View File

@ -0,0 +1,51 @@
from typing import List, Tuple
from ...pipeline import Lemmatizer
from ...tokens import Token
from ...lookups import Lookups
class HaitianCreoleLemmatizer(Lemmatizer):
"""
Minimal Haitian Creole lemmatizer.
Returns a word's base form based on rules and lookup,
or defaults to the original form.
"""
def is_base_form(self, token: Token) -> bool:
morph = token.morph.to_dict()
upos = token.pos_.lower()
# Consider unmarked forms to be base
if upos in {"noun", "verb", "adj", "adv"}:
if not morph:
return True
if upos == "noun" and morph.get("Number") == "Sing":
return True
if upos == "verb" and morph.get("VerbForm") == "Inf":
return True
if upos == "adj" and morph.get("Degree") == "Pos":
return True
return False
def rule_lemmatize(self, token: Token) -> List[str]:
string = token.text.lower()
pos = token.pos_.lower()
cache_key = (token.orth, token.pos)
if cache_key in self.cache:
return self.cache[cache_key]
forms = []
# fallback rule: just return lowercased form
forms.append(string)
self.cache[cache_key] = forms
return forms
@classmethod
def get_lookups_config(cls, mode: str) -> Tuple[List[str], List[str]]:
if mode == "rule":
required = ["lemma_lookup", "lemma_rules", "lemma_exc", "lemma_index"]
return (required, [])
return super().get_lookups_config(mode)

View File

@ -0,0 +1,78 @@
from ...attrs import LIKE_NUM, NORM
# Cardinal numbers in Creole
_num_words = set(
"""
zewo youn en de twa kat senk sis sèt uit nèf dis
onz douz trèz katoz kenz sèz disèt dizwit diznèf
vent trant karant sinkant swasant swasann-dis
san mil milyon milya
""".split()
)
# Ordinal numbers in Creole (some are French-influenced, some simplified)
_ordinal_words = set(
"""
premye dezyèm twazyèm katryèm senkyèm sizyèm sètvyèm uitvyèm nèvyèm dizyèm
onzèm douzyèm trèzyèm katozyèm kenzèm sèzyèm disetyèm dizwityèm diznèvyèm
ventyèm trantyèm karantyèm sinkantyèm swasantyèm
swasann-disyèm santyèm milyèm milyonnyèm milyadyèm
""".split()
)
NORM_MAP = {
"'m": "mwen",
"'w": "ou",
"'l": "li",
"'n": "nou",
"'y": "yo",
"m": "mwen",
"w": "ou",
"l": "li",
"n": "nou",
"y": "yo",
"m": "mwen",
"n": "nou",
"l": "li",
"y": "yo",
"w": "ou",
"t": "te",
"k": "ki",
"p": "pa",
"M": "Mwen",
"N": "Nou",
"L": "Li",
"Y": "Yo",
"W": "Ou",
"T": "Te",
"K": "Ki",
"P": "Pa",
}
def like_num(text):
text = text.strip().lower()
if text.startswith(("+", "-", "±", "~")):
text = text[1:]
text = text.replace(",", "").replace(".", "")
if text.isdigit():
return True
if text.count("/") == 1:
num, denom = text.split("/")
if num.isdigit() and denom.isdigit():
return True
if text in _num_words:
return True
if text in _ordinal_words:
return True
# Handle things like "3yèm", "10yèm", "25yèm", etc.
if text.endswith("yèm") and text[:-3].isdigit():
return True
return False
def norm_custom(text):
return NORM_MAP.get(text, text.lower())
LEX_ATTRS = {
LIKE_NUM: like_num,
NORM: norm_custom,
}

View File

@ -0,0 +1,43 @@
from ..char_classes import (
ALPHA,
ALPHA_LOWER,
ALPHA_UPPER,
CONCAT_QUOTES,
HYPHENS,
LIST_PUNCT,
LIST_QUOTES,
LIST_ELLIPSES,
LIST_ICONS,
merge_chars,
)
ELISION = "'".replace(" ", "")
_prefixes_elision = "m n l y t k w"
_prefixes_elision += " " + _prefixes_elision.upper()
TOKENIZER_PREFIXES = LIST_PUNCT + LIST_QUOTES + [
r"(?:({pe})[{el}])(?=[{a}])".format(
a=ALPHA, el=ELISION, pe=merge_chars(_prefixes_elision)
)
]
TOKENIZER_SUFFIXES = LIST_PUNCT + LIST_QUOTES + LIST_ELLIPSES + [
r"(?<=[0-9])%", # numbers like 10%
r"(?<=[0-9])(?:{h})".format(h=HYPHENS), # hyphens after numbers
r"(?<=[{a}])[']".format(a=ALPHA), # apostrophes after letters
r"(?<=[{a}])['][mwlnytk](?=\s|$)".format(a=ALPHA), # contractions
r"(?<=[{a}0-9])\)", # right parenthesis after letter/number
r"(?<=[{a}])\.(?=\s|$)".format(a=ALPHA), # period after letter if space or end of string
r"(?<=\))[\.\?!]", # punctuation immediately after right parenthesis
]
TOKENIZER_INFIXES = LIST_ELLIPSES + LIST_ICONS + [
r"(?<=[0-9])[+\-\*^](?=[0-9-])",
r"(?<=[{al}{q}])\.(?=[{au}{q}])".format(
al=ALPHA_LOWER, au=ALPHA_UPPER, q=CONCAT_QUOTES
),
r"(?<=[{a}]),(?=[{a}])".format(a=ALPHA),
r"(?<=[{a}0-9])(?:{h})(?=[{a}])".format(a=ALPHA, h=HYPHENS),
r"(?<=[{a}][{el}])(?=[{a}])".format(a=ALPHA, el=ELISION),
]

View File

@ -0,0 +1,50 @@
STOP_WORDS = set(
"""
a ak an ankò ant apre ap atò avan avanlè
byen byenke
chak
de depi deja deja
e en epi èske
fòk
gen genyen
ki kisa kilès kote koukou konsa konbyen konn konnen kounye kouman
la l laa le li lye
m m' mwen
nan nap nou n'
ou oumenm
pa paske pami pandan pito pou pral preske pwiske
se selman si sou sòt
ta tap tankou te toujou tou tan tout toutotan twòp tèl
w w' wi wè
y y' yo yon yonn
non o oh eh
sa san si swa si
men mèsi oswa osinon
"""
.split()
)
# Add common contractions, with and without apostrophe variants
contractions = ["m'", "n'", "w'", "y'", "l'", "t'", "k'"]
for apostrophe in ["'", "", ""]:
for word in contractions:
STOP_WORDS.add(word.replace("'", apostrophe))

View File

@ -0,0 +1,74 @@
from typing import Iterator, Tuple, Union
from ...errors import Errors
from ...symbols import NOUN, PRON, PROPN
from ...tokens import Doc, Span
def noun_chunks(doclike: Union[Doc, Span]) -> Iterator[Tuple[int, int, int]]:
"""
Detect base noun phrases from a dependency parse for Haitian Creole.
Works on both Doc and Span objects.
"""
# Core nominal dependencies common in Haitian Creole
labels = [
"nsubj",
"obj",
"obl",
"nmod",
"appos",
"ROOT",
]
# Modifiers to optionally include in chunk (to the right)
post_modifiers = ["compound", "flat", "flat:name", "fixed"]
doc = doclike.doc
if not doc.has_annotation("DEP"):
raise ValueError(Errors.E029)
np_deps = {doc.vocab.strings.add(label) for label in labels}
np_mods = {doc.vocab.strings.add(mod) for mod in post_modifiers}
conj_label = doc.vocab.strings.add("conj")
np_label = doc.vocab.strings.add("NP")
adp_pos = doc.vocab.strings.add("ADP")
cc_pos = doc.vocab.strings.add("CCONJ")
prev_end = -1
for i, word in enumerate(doclike):
if word.pos not in (NOUN, PROPN, PRON):
continue
if word.left_edge.i <= prev_end:
continue
if word.dep in np_deps:
right_end = word
# expand to include known modifiers to the right
for child in word.rights:
if child.dep in np_mods:
right_end = child.right_edge
elif child.pos == NOUN:
right_end = child.right_edge
left_index = word.left_edge.i
# Skip prepositions at the start
if word.left_edge.pos == adp_pos:
left_index += 1
prev_end = right_end.i
yield left_index, right_end.i + 1, np_label
elif word.dep == conj_label:
head = word.head
while head.dep == conj_label and head.head.i < head.i:
head = head.head
if head.dep in np_deps:
left_index = word.left_edge.i
if word.left_edge.pos == cc_pos:
left_index += 1
prev_end = word.i
yield left_index, word.i + 1, np_label
SYNTAX_ITERATORS = {"noun_chunks": noun_chunks}

21
spacy/lang/ht/tag_map.py Normal file
View File

@ -0,0 +1,21 @@
from spacy.symbols import NOUN, VERB, AUX, ADJ, ADV, PRON, DET, ADP, SCONJ, CCONJ, PART, INTJ, NUM, PROPN, PUNCT, SYM, X
TAG_MAP = {
"NOUN": {"pos": NOUN},
"VERB": {"pos": VERB},
"AUX": {"pos": AUX},
"ADJ": {"pos": ADJ},
"ADV": {"pos": ADV},
"PRON": {"pos": PRON},
"DET": {"pos": DET},
"ADP": {"pos": ADP},
"SCONJ": {"pos": SCONJ},
"CCONJ": {"pos": CCONJ},
"PART": {"pos": PART},
"INTJ": {"pos": INTJ},
"NUM": {"pos": NUM},
"PROPN": {"pos": PROPN},
"PUNCT": {"pos": PUNCT},
"SYM": {"pos": SYM},
"X": {"pos": X},
}

View File

@ -0,0 +1,121 @@
from spacy.symbols import ORTH, NORM
def make_variants(base, first_norm, second_orth, second_norm):
return {
base: [
{ORTH: base.split("'")[0] + "'", NORM: first_norm},
{ORTH: second_orth, NORM: second_norm},
],
base.capitalize(): [
{ORTH: base.split("'")[0].capitalize() + "'", NORM: first_norm.capitalize()},
{ORTH: second_orth, NORM: second_norm},
]
}
TOKENIZER_EXCEPTIONS = {
"Dr.": [{ORTH: "Dr."}]
}
# Apostrophe forms
TOKENIZER_EXCEPTIONS.update(make_variants("m'ap", "mwen", "ap", "ap"))
TOKENIZER_EXCEPTIONS.update(make_variants("n'ap", "nou", "ap", "ap"))
TOKENIZER_EXCEPTIONS.update(make_variants("l'ap", "li", "ap", "ap"))
TOKENIZER_EXCEPTIONS.update(make_variants("y'ap", "yo", "ap", "ap"))
TOKENIZER_EXCEPTIONS.update(make_variants("m'te", "mwen", "te", "te"))
TOKENIZER_EXCEPTIONS.update(make_variants("m'pral", "mwen", "pral", "pral"))
TOKENIZER_EXCEPTIONS.update(make_variants("w'ap", "ou", "ap", "ap"))
TOKENIZER_EXCEPTIONS.update(make_variants("k'ap", "ki", "ap", "ap"))
TOKENIZER_EXCEPTIONS.update(make_variants("p'ap", "pa", "ap", "ap"))
TOKENIZER_EXCEPTIONS.update(make_variants("t'ap", "te", "ap", "ap"))
# Non-apostrophe contractions (with capitalized variants)
TOKENIZER_EXCEPTIONS.update({
"map": [
{ORTH: "m", NORM: "mwen"},
{ORTH: "ap", NORM: "ap"},
],
"Map": [
{ORTH: "M", NORM: "Mwen"},
{ORTH: "ap", NORM: "ap"},
],
"lem": [
{ORTH: "le", NORM: "le"},
{ORTH: "m", NORM: "mwen"},
],
"Lem": [
{ORTH: "Le", NORM: "Le"},
{ORTH: "m", NORM: "mwen"},
],
"lew": [
{ORTH: "le", NORM: "le"},
{ORTH: "w", NORM: "ou"},
],
"Lew": [
{ORTH: "Le", NORM: "Le"},
{ORTH: "w", NORM: "ou"},
],
"nap": [
{ORTH: "n", NORM: "nou"},
{ORTH: "ap", NORM: "ap"},
],
"Nap": [
{ORTH: "N", NORM: "Nou"},
{ORTH: "ap", NORM: "ap"},
],
"lap": [
{ORTH: "l", NORM: "li"},
{ORTH: "ap", NORM: "ap"},
],
"Lap": [
{ORTH: "L", NORM: "Li"},
{ORTH: "ap", NORM: "ap"},
],
"yap": [
{ORTH: "y", NORM: "yo"},
{ORTH: "ap", NORM: "ap"},
],
"Yap": [
{ORTH: "Y", NORM: "Yo"},
{ORTH: "ap", NORM: "ap"},
],
"mte": [
{ORTH: "m", NORM: "mwen"},
{ORTH: "te", NORM: "te"},
],
"Mte": [
{ORTH: "M", NORM: "Mwen"},
{ORTH: "te", NORM: "te"},
],
"mpral": [
{ORTH: "m", NORM: "mwen"},
{ORTH: "pral", NORM: "pral"},
],
"Mpral": [
{ORTH: "M", NORM: "Mwen"},
{ORTH: "pral", NORM: "pral"},
],
"wap": [
{ORTH: "w", NORM: "ou"},
{ORTH: "ap", NORM: "ap"},
],
"Wap": [
{ORTH: "W", NORM: "Ou"},
{ORTH: "ap", NORM: "ap"},
],
"kap": [
{ORTH: "k", NORM: "ki"},
{ORTH: "ap", NORM: "ap"},
],
"Kap": [
{ORTH: "K", NORM: "Ki"},
{ORTH: "ap", NORM: "ap"},
],
"tap": [
{ORTH: "t", NORM: "te"},
{ORTH: "ap", NORM: "ap"},
],
"Tap": [
{ORTH: "T", NORM: "Te"},
{ORTH: "ap", NORM: "ap"},
],
})

View File

@ -32,7 +32,6 @@ split_mode = null
"""
@registry.tokenizers("spacy.ja.JapaneseTokenizer")
def create_tokenizer(split_mode: Optional[str] = None):
def japanese_tokenizer_factory(nlp):
return JapaneseTokenizer(nlp.vocab, split_mode=split_mode)

View File

@ -0,0 +1,16 @@
from ...language import BaseDefaults, Language
from .lex_attrs import LEX_ATTRS
from .stop_words import STOP_WORDS
class KurmanjiDefaults(BaseDefaults):
stop_words = STOP_WORDS
lex_attr_getters = LEX_ATTRS
class Kurmanji(Language):
lang = "kmr"
Defaults = KurmanjiDefaults
__all__ = ["Kurmanji"]

View File

@ -0,0 +1,17 @@
"""
Example sentences to test spaCy and its language models.
>>> from spacy.lang.kmr.examples import sentences
>>> docs = nlp.pipe(sentences)
"""
sentences = [
"Berê mirovan her tim li geşedana pêşerojê ye", # People's gaze is always on the development of the future
"Kawa Nemir di 14 salan de Ulysses wergerand Kurmancî.", # Kawa Nemir translated Ulysses into Kurmanji in 14 years.
"Mem Ararat hunermendekî Kurd yê bi nav û deng e.", # Mem Ararat is a famous Kurdish artist
"Firat Cewerî 40 sal e pirtûkên Kurdî dinivîsîne.", # Firat Ceweri has been writing Kurdish books for 40 years
"Rojnamegerê ciwan nûçeyeke balkêş li ser rewşa aborî nivîsand", # The young journalist wrote an interesting news article about the economic situation
"Sektora çandiniyê beşeke giring a belavkirina gaza serayê li seranserê cîhanê pêk tîne", # The agricultural sector constitutes an important part of greenhouse gas emissions worldwide
"Xwendekarên jêhatî di pêşbaziya matematîkê de serkeftî bûn", # Talented students succeeded in the mathematics competition
"Ji ber ji tunebûnê bavê min xwişkeke min nedan xwendin ew ji min re bû derd û kulek.", # Because of poverty, my father didn't send my sister to school, which became a pain and sorrow for me
]

138
spacy/lang/kmr/lex_attrs.py Normal file
View File

@ -0,0 +1,138 @@
from ...attrs import LIKE_NUM
_num_words = [
"sifir",
"yek",
"du",
"",
"çar",
"pênc",
"şeş",
"heft",
"heşt",
"neh",
"deh",
"yazde",
"dazde",
"sêzde",
"çarde",
"pazde",
"şazde",
"hevde",
"hejde",
"nozde",
"bîst",
"",
"çil",
"pêncî",
"şêst",
"heftê",
"heştê",
"nod",
"sed",
"hezar",
"milyon",
"milyar",
]
_ordinal_words = [
"yekem",
"yekemîn",
"duyem",
"duyemîn",
"sêyem",
"sêyemîn",
"çarem",
"çaremîn",
"pêncem",
"pêncemîn",
"şeşem",
"şeşemîn",
"heftem",
"heftemîn",
"heştem",
"heştemîn",
"nehem",
"nehemîn",
"dehem",
"dehemîn",
"yazdehem",
"yazdehemîn",
"dazdehem",
"dazdehemîn",
"sêzdehem",
"sêzdehemîn",
"çardehem",
"çardehemîn",
"pazdehem",
"pazdehemîn",
"şanzdehem",
"şanzdehemîn",
"hevdehem",
"hevdehemîn",
"hejdehem",
"hejdehemîn",
"nozdehem",
"nozdehemîn",
"bîstem",
"bîstemîn",
"sîyem",
"sîyemîn",
"çilem",
"çilemîn",
"pêncîyem",
"pênciyemîn",
"şêstem",
"şêstemîn",
"heftêyem",
"heftêyemîn",
"heştêyem",
"heştêyemîn",
"notem",
"notemîn",
"sedem",
"sedemîn",
"hezarem",
"hezaremîn",
"milyonem",
"milyonemîn",
"milyarem",
"milyaremîn",
]
def like_num(text):
if text.startswith(("+", "-", "±", "~")):
text = text[1:]
text = text.replace(",", "").replace(".", "")
if text.isdigit():
return True
if text.count("/") == 1:
num, denom = text.split("/")
if num.isdigit() and denom.isdigit():
return True
text_lower = text.lower()
if text_lower in _num_words:
return True
# Check ordinal number
if text_lower in _ordinal_words:
return True
if is_digit(text_lower):
return True
return False
def is_digit(text):
endings = ("em", "yem", "emîn", "yemîn")
for ending in endings:
to = len(ending)
if text.endswith(ending) and text[:-to].isdigit():
return True
return False
LEX_ATTRS = {LIKE_NUM: like_num}

View File

@ -0,0 +1,44 @@
STOP_WORDS = set(
"""
û
li
bi
di
da
de
ji
ku
ew
ez
tu
em
hûn
ew
ev
min
te
me
we
wan
va
çi
çawa
çima
kengî
li ku
çend
çiqas
her
hin
gelek
hemû
kes
tişt
""".split()
)

View File

@ -20,7 +20,6 @@ DEFAULT_CONFIG = """
"""
@registry.tokenizers("spacy.ko.KoreanTokenizer")
def create_tokenizer():
def korean_tokenizer_factory(nlp):
return KoreanTokenizer(nlp.vocab)

View File

@ -24,12 +24,6 @@ class MacedonianDefaults(BaseDefaults):
tokenizer_exceptions = update_exc(BASE_EXCEPTIONS, TOKENIZER_EXCEPTIONS)
stop_words = STOP_WORDS
@classmethod
def create_lemmatizer(cls, nlp=None, lookups=None):
if lookups is None:
lookups = Lookups()
return MacedonianLemmatizer(lookups)
class Macedonian(Language):
lang = "mk"

View File

@ -13,7 +13,6 @@ DEFAULT_CONFIG = """
"""
@registry.tokenizers("spacy.th.ThaiTokenizer")
def create_thai_tokenizer():
def thai_tokenizer_factory(nlp):
return ThaiTokenizer(nlp.vocab)

View File

@ -22,7 +22,6 @@ use_pyvi = true
"""
@registry.tokenizers("spacy.vi.VietnameseTokenizer")
def create_vietnamese_tokenizer(use_pyvi: bool = True):
def vietnamese_tokenizer_factory(nlp):
return VietnameseTokenizer(nlp.vocab, use_pyvi=use_pyvi)

View File

@ -46,7 +46,6 @@ class Segmenter(str, Enum):
return list(cls.__members__.keys())
@registry.tokenizers("spacy.zh.ChineseTokenizer")
def create_chinese_tokenizer(segmenter: Segmenter = Segmenter.char):
def chinese_tokenizer_factory(nlp):
return ChineseTokenizer(nlp.vocab, segmenter=segmenter)

View File

@ -5,7 +5,7 @@ import multiprocessing as mp
import random
import traceback
import warnings
from contextlib import contextmanager
from contextlib import ExitStack, contextmanager
from copy import deepcopy
from dataclasses import dataclass
from itertools import chain, cycle
@ -30,8 +30,11 @@ from typing import (
overload,
)
import numpy
import srsly
from cymem.cymem import Pool
from thinc.api import Config, CupyOps, Optimizer, get_current_ops
from thinc.util import convert_recursive
from . import about, ty, util
from .compat import Literal
@ -101,7 +104,6 @@ class BaseDefaults:
writing_system = {"direction": "ltr", "has_case": True, "has_letters": True}
@registry.tokenizers("spacy.Tokenizer.v1")
def create_tokenizer() -> Callable[["Language"], Tokenizer]:
"""Registered function to create a tokenizer. Returns a factory that takes
the nlp object and returns a Tokenizer instance using the language detaults.
@ -127,7 +129,6 @@ def create_tokenizer() -> Callable[["Language"], Tokenizer]:
return tokenizer_factory
@registry.misc("spacy.LookupsDataLoader.v1")
def load_lookups_data(lang, tables):
util.logger.debug("Loading lookups from spacy-lookups-data: %s", tables)
lookups = load_lookups(lang=lang, tables=tables)
@ -140,7 +141,7 @@ class Language:
Defaults (class): Settings, data and factory methods for creating the `nlp`
object and processing pipeline.
lang (str): IETF language code, such as 'en'.
lang (str): Two-letter ISO 639-1 or three-letter ISO 639-3 language codes, such as 'en' and 'eng'.
DOCS: https://spacy.io/api/language
"""
@ -182,6 +183,9 @@ class Language:
DOCS: https://spacy.io/api/language#init
"""
from .pipeline.factories import register_factories
register_factories()
# We're only calling this to import all factories provided via entry
# points. The factory decorator applied to these functions takes care
# of the rest.
@ -1211,7 +1215,7 @@ class Language:
examples,
):
eg.predicted = doc
return losses
return _replace_numpy_floats(losses)
def rehearse(
self,
@ -1462,7 +1466,7 @@ class Language:
results = scorer.score(examples, per_component=per_component)
n_words = sum(len(eg.predicted) for eg in examples)
results["speed"] = n_words / (end_time - start_time)
return results
return _replace_numpy_floats(results)
def create_optimizer(self):
"""Create an optimizer, usually using the [training.optimizer] config."""
@ -2091,6 +2095,38 @@ class Language:
util.replace_model_node(pipe.model, listener, new_model) # type: ignore[attr-defined]
tok2vec.remove_listener(listener, pipe_name)
@contextmanager
def memory_zone(self, mem: Optional[Pool] = None) -> Iterator[Pool]:
"""Begin a block where all resources allocated during the block will
be freed at the end of it. If a resources was created within the
memory zone block, accessing it outside the block is invalid.
Behaviour of this invalid access is undefined. Memory zones should
not be nested.
The memory zone is helpful for services that need to process large
volumes of text with a defined memory budget.
Example
-------
>>> with nlp.memory_zone():
... for doc in nlp.pipe(texts):
... process_my_doc(doc)
>>> # use_doc(doc) <-- Invalid: doc was allocated in the memory zone
"""
if mem is None:
mem = Pool()
# The ExitStack allows programmatic nested context managers.
# We don't know how many we need, so it would be awkward to have
# them as nested blocks.
with ExitStack() as stack:
contexts = [stack.enter_context(self.vocab.memory_zone(mem))]
if hasattr(self.tokenizer, "memory_zone"):
contexts.append(stack.enter_context(self.tokenizer.memory_zone(mem)))
for _, pipe in self.pipeline:
if hasattr(pipe, "memory_zone"):
contexts.append(stack.enter_context(pipe.memory_zone(mem)))
yield mem
def to_disk(
self, path: Union[str, Path], *, exclude: Iterable[str] = SimpleFrozenList()
) -> None:
@ -2108,7 +2144,9 @@ class Language:
serializers["tokenizer"] = lambda p: self.tokenizer.to_disk( # type: ignore[union-attr]
p, exclude=["vocab"]
)
serializers["meta.json"] = lambda p: srsly.write_json(p, self.meta)
serializers["meta.json"] = lambda p: srsly.write_json(
p, _replace_numpy_floats(self.meta)
)
serializers["config.cfg"] = lambda p: self.config.to_disk(p)
for name, proc in self._components:
if name in exclude:
@ -2222,7 +2260,9 @@ class Language:
serializers: Dict[str, Callable[[], bytes]] = {}
serializers["vocab"] = lambda: self.vocab.to_bytes(exclude=exclude)
serializers["tokenizer"] = lambda: self.tokenizer.to_bytes(exclude=["vocab"]) # type: ignore[union-attr]
serializers["meta.json"] = lambda: srsly.json_dumps(self.meta)
serializers["meta.json"] = lambda: srsly.json_dumps(
_replace_numpy_floats(self.meta)
)
serializers["config.cfg"] = lambda: self.config.to_bytes()
for name, proc in self._components:
if name in exclude:
@ -2273,6 +2313,12 @@ class Language:
return self
def _replace_numpy_floats(meta_dict: dict) -> dict:
return convert_recursive(
lambda v: isinstance(v, numpy.floating), lambda v: float(v), dict(meta_dict)
)
@dataclass
class FactoryMeta:
"""Dataclass containing information about a component and its defaults

View File

@ -35,7 +35,7 @@ cdef class Lexeme:
return self
@staticmethod
cdef inline void set_struct_attr(LexemeC* lex, attr_id_t name, attr_t value) nogil:
cdef inline void set_struct_attr(LexemeC* lex, attr_id_t name, attr_t value) noexcept nogil:
if name < (sizeof(flags_t) * 8):
Lexeme.c_set_flag(lex, name, value)
elif name == ID:
@ -54,7 +54,7 @@ cdef class Lexeme:
lex.lang = value
@staticmethod
cdef inline attr_t get_struct_attr(const LexemeC* lex, attr_id_t feat_name) nogil:
cdef inline attr_t get_struct_attr(const LexemeC* lex, attr_id_t feat_name) noexcept nogil:
if feat_name < (sizeof(flags_t) * 8):
if Lexeme.c_check_flag(lex, feat_name):
return 1
@ -82,7 +82,7 @@ cdef class Lexeme:
return 0
@staticmethod
cdef inline bint c_check_flag(const LexemeC* lexeme, attr_id_t flag_id) nogil:
cdef inline bint c_check_flag(const LexemeC* lexeme, attr_id_t flag_id) noexcept nogil:
cdef flags_t one = 1
if lexeme.flags & (one << flag_id):
return True
@ -90,7 +90,7 @@ cdef class Lexeme:
return False
@staticmethod
cdef inline bint c_set_flag(LexemeC* lex, attr_id_t flag_id, bint value) nogil:
cdef inline bint c_set_flag(LexemeC* lex, attr_id_t flag_id, bint value) noexcept nogil:
cdef flags_t one = 1
if value:
lex.flags |= one << flag_id

View File

@ -70,7 +70,7 @@ cdef class Lexeme:
if isinstance(other, Lexeme):
a = self.orth
b = other.orth
elif isinstance(other, long):
elif isinstance(other, int):
a = self.orth
b = other
elif isinstance(other, str):
@ -104,7 +104,7 @@ cdef class Lexeme:
# skip PROB, e.g. from lexemes.jsonl
if isinstance(value, float):
continue
elif isinstance(value, (int, long)):
elif isinstance(value, int):
Lexeme.set_struct_attr(self.c, attr, value)
else:
Lexeme.set_struct_attr(self.c, attr, self.vocab.strings.add(value))

View File

@ -1,4 +1,4 @@
# cython: binding=True, infer_types=True
# cython: binding=True, infer_types=True, language_level=3
from cpython.object cimport PyObject
from libc.stdint cimport int64_t
@ -27,6 +27,5 @@ cpdef bint levenshtein_compare(input_text: str, pattern_text: str, fuzzy: int =
return levenshtein(input_text, pattern_text, max_edits) <= max_edits
@registry.misc("spacy.levenshtein_compare.v1")
def make_levenshtein_compare():
return levenshtein_compare

View File

@ -625,7 +625,7 @@ cdef action_t get_action(
const TokenC * token,
const attr_t * extra_attrs,
const int8_t * predicate_matches
) nogil:
) noexcept nogil:
"""We need to consider:
a) Does the token match the specification? [Yes, No]
b) What's the quantifier? [1, 0+, ?]
@ -740,7 +740,7 @@ cdef int8_t get_is_match(
const TokenC* token,
const attr_t* extra_attrs,
const int8_t* predicate_matches
) nogil:
) noexcept nogil:
for i in range(state.pattern.nr_py):
if predicate_matches[state.pattern.py_predicates[i]] == -1:
return 0
@ -755,14 +755,14 @@ cdef int8_t get_is_match(
return True
cdef inline int8_t get_is_final(PatternStateC state) nogil:
cdef inline int8_t get_is_final(PatternStateC state) noexcept nogil:
if state.pattern[1].quantifier == FINAL_ID:
return 1
else:
return 0
cdef inline int8_t get_quantifier(PatternStateC state) nogil:
cdef inline int8_t get_quantifier(PatternStateC state) noexcept nogil:
return state.pattern.quantifier
@ -805,7 +805,7 @@ cdef TokenPatternC* init_pattern(Pool mem, attr_t entity_id, object token_specs)
return pattern
cdef attr_t get_ent_id(const TokenPatternC* pattern) nogil:
cdef attr_t get_ent_id(const TokenPatternC* pattern) noexcept nogil:
while pattern.quantifier != FINAL_ID:
pattern += 1
id_attr = pattern[0].attrs[0]

View File

@ -47,7 +47,7 @@ cdef class PhraseMatcher:
self._terminal_hash = 826361138722620965
map_init(self.mem, self.c_map, 8)
if isinstance(attr, (int, long)):
if isinstance(attr, int):
self.attr = attr
else:
if attr is None:

View File

@ -7,7 +7,6 @@ from ..tokens import Doc
from ..util import registry
@registry.layers("spacy.CharEmbed.v1")
def CharacterEmbed(nM: int, nC: int) -> Model[List[Doc], List[Floats2d]]:
# nM: Number of dimensions per character. nC: Number of characters.
return Model(

View File

@ -3,7 +3,6 @@ from thinc.api import Model, normal_init
from ..util import registry
@registry.layers("spacy.PrecomputableAffine.v1")
def PrecomputableAffine(nO, nI, nF, nP, dropout=0.1):
model = Model(
"precomputable_affine",

View File

@ -50,7 +50,6 @@ def models_with_nvtx_range(nlp, forward_color: int, backprop_color: int):
return nlp
@registry.callbacks("spacy.models_with_nvtx_range.v1")
def create_models_with_nvtx_range(
forward_color: int = -1, backprop_color: int = -1
) -> Callable[["Language"], "Language"]:
@ -110,7 +109,6 @@ def pipes_with_nvtx_range(
return nlp
@registry.callbacks("spacy.models_and_pipes_with_nvtx_range.v1")
def create_models_and_pipes_with_nvtx_range(
forward_color: int = -1,
backprop_color: int = -1,

View File

@ -4,7 +4,6 @@ from ..attrs import LOWER
from ..util import registry
@registry.layers("spacy.extract_ngrams.v1")
def extract_ngrams(ngram_size: int, attr: int = LOWER) -> Model:
model: Model = Model("extract_ngrams", forward)
model.attrs["ngram_size"] = ngram_size

View File

@ -6,7 +6,6 @@ from thinc.types import Ints1d, Ragged
from ..util import registry
@registry.layers("spacy.extract_spans.v1")
def extract_spans() -> Model[Tuple[Ragged, Ragged], Ragged]:
"""Extract spans from a sequence of source arrays, as specified by an array
of (start, end) indices. The output is a ragged array of the

View File

@ -6,8 +6,9 @@ from thinc.types import Ints2d
from ..tokens import Doc
@registry.layers("spacy.FeatureExtractor.v1")
def FeatureExtractor(columns: List[Union[int, str]]) -> Model[List[Doc], List[Ints2d]]:
def FeatureExtractor(
columns: Union[List[str], List[int], List[Union[int, str]]]
) -> Model[List[Doc], List[Ints2d]]:
return Model("extract_features", forward, attrs={"columns": columns})

View File

@ -28,7 +28,6 @@ from ...vocab import Vocab
from ..extract_spans import extract_spans
@registry.architectures("spacy.EntityLinker.v2")
def build_nel_encoder(
tok2vec: Model, nO: Optional[int] = None
) -> Model[List[Doc], Floats2d]:
@ -92,7 +91,6 @@ def span_maker_forward(model, docs: List[Doc], is_train) -> Tuple[Ragged, Callab
return out, lambda x: []
@registry.misc("spacy.KBFromFile.v1")
def load_kb(
kb_path: Path,
) -> Callable[[Vocab], KnowledgeBase]:
@ -104,7 +102,6 @@ def load_kb(
return kb_from_file
@registry.misc("spacy.EmptyKB.v2")
def empty_kb_for_config() -> Callable[[Vocab, int], KnowledgeBase]:
def empty_kb_factory(vocab: Vocab, entity_vector_length: int):
return InMemoryLookupKB(vocab=vocab, entity_vector_length=entity_vector_length)
@ -112,7 +109,6 @@ def empty_kb_for_config() -> Callable[[Vocab, int], KnowledgeBase]:
return empty_kb_factory
@registry.misc("spacy.EmptyKB.v1")
def empty_kb(
entity_vector_length: int,
) -> Callable[[Vocab], KnowledgeBase]:
@ -122,12 +118,10 @@ def empty_kb(
return empty_kb_factory
@registry.misc("spacy.CandidateGenerator.v1")
def create_candidates() -> Callable[[KnowledgeBase, Span], Iterable[Candidate]]:
return get_candidates
@registry.misc("spacy.CandidateBatchGenerator.v1")
def create_candidates_batch() -> Callable[
[KnowledgeBase, Iterable[Span]], Iterable[Iterable[Candidate]]
]:

View File

@ -30,7 +30,6 @@ if TYPE_CHECKING:
from ...vocab import Vocab # noqa: F401
@registry.architectures("spacy.PretrainVectors.v1")
def create_pretrain_vectors(
maxout_pieces: int, hidden_size: int, loss: str
) -> Callable[["Vocab", Model], Model]:
@ -57,7 +56,6 @@ def create_pretrain_vectors(
return create_vectors_objective
@registry.architectures("spacy.PretrainCharacters.v1")
def create_pretrain_characters(
maxout_pieces: int, hidden_size: int, n_characters: int
) -> Callable[["Vocab", Model], Model]:

View File

@ -11,7 +11,6 @@ from .._precomputable_affine import PrecomputableAffine
from ..tb_framework import TransitionModel
@registry.architectures("spacy.TransitionBasedParser.v2")
def build_tb_parser_model(
tok2vec: Model[List[Doc], List[Floats2d]],
state_type: Literal["parser", "ner"],

View File

@ -10,7 +10,6 @@ InT = List[Doc]
OutT = Floats2d
@registry.architectures("spacy.SpanFinder.v1")
def build_finder_model(
tok2vec: Model[InT, List[Floats2d]], scorer: Model[OutT, OutT]
) -> Model[InT, OutT]:

View File

@ -22,7 +22,6 @@ from ...util import registry
from ..extract_spans import extract_spans
@registry.layers("spacy.LinearLogistic.v1")
def build_linear_logistic(nO=None, nI=None) -> Model[Floats2d, Floats2d]:
"""An output layer for multi-label classification. It uses a linear layer
followed by a logistic activation.
@ -30,7 +29,6 @@ def build_linear_logistic(nO=None, nI=None) -> Model[Floats2d, Floats2d]:
return chain(Linear(nO=nO, nI=nI, init_W=glorot_uniform_init), Logistic())
@registry.layers("spacy.mean_max_reducer.v1")
def build_mean_max_reducer(hidden_size: int) -> Model[Ragged, Floats2d]:
"""Reduce sequences by concatenating their mean and max pooled vectors,
and then combine the concatenated vectors with a hidden layer.
@ -46,7 +44,6 @@ def build_mean_max_reducer(hidden_size: int) -> Model[Ragged, Floats2d]:
)
@registry.architectures("spacy.SpanCategorizer.v1")
def build_spancat_model(
tok2vec: Model[List[Doc], List[Floats2d]],
reducer: Model[Ragged, Floats2d],

View File

@ -7,7 +7,6 @@ from ...tokens import Doc
from ...util import registry
@registry.architectures("spacy.Tagger.v2")
def build_tagger_model(
tok2vec: Model[List[Doc], List[Floats2d]], nO: Optional[int] = None, normalize=False
) -> Model[List[Doc], List[Floats2d]]:

View File

@ -44,7 +44,6 @@ from .tok2vec import get_tok2vec_width
NEG_VALUE = -5000
@registry.architectures("spacy.TextCatCNN.v2")
def build_simple_cnn_text_classifier(
tok2vec: Model, exclusive_classes: bool, nO: Optional[int] = None
) -> Model[List[Doc], Floats2d]:
@ -72,7 +71,6 @@ def resize_and_set_ref(model, new_nO, resizable_layer):
return model
@registry.architectures("spacy.TextCatBOW.v2")
def build_bow_text_classifier(
exclusive_classes: bool,
ngram_size: int,
@ -88,7 +86,6 @@ def build_bow_text_classifier(
)
@registry.architectures("spacy.TextCatBOW.v3")
def build_bow_text_classifier_v3(
exclusive_classes: bool,
ngram_size: int,
@ -142,7 +139,6 @@ def _build_bow_text_classifier(
return model
@registry.architectures("spacy.TextCatEnsemble.v2")
def build_text_classifier_v2(
tok2vec: Model[List[Doc], List[Floats2d]],
linear_model: Model[List[Doc], Floats2d],
@ -200,7 +196,6 @@ def init_ensemble_textcat(model, X, Y) -> Model:
return model
@registry.architectures("spacy.TextCatLowData.v1")
def build_text_classifier_lowdata(
width: int, dropout: Optional[float], nO: Optional[int] = None
) -> Model[List[Doc], Floats2d]:
@ -221,7 +216,6 @@ def build_text_classifier_lowdata(
return model
@registry.architectures("spacy.TextCatParametricAttention.v1")
def build_textcat_parametric_attention_v1(
tok2vec: Model[List[Doc], List[Floats2d]],
exclusive_classes: bool,
@ -294,7 +288,6 @@ def _init_parametric_attention_with_residual_nonlinear(model, X, Y) -> Model:
return model
@registry.architectures("spacy.TextCatReduce.v1")
def build_reduce_text_classifier(
tok2vec: Model,
exclusive_classes: bool,

View File

@ -29,7 +29,6 @@ from ..featureextractor import FeatureExtractor
from ..staticvectors import StaticVectors
@registry.architectures("spacy.Tok2VecListener.v1")
def tok2vec_listener_v1(width: int, upstream: str = "*"):
tok2vec = Tok2VecListener(upstream_name=upstream, width=width)
return tok2vec
@ -46,7 +45,6 @@ def get_tok2vec_width(model: Model):
return nO
@registry.architectures("spacy.HashEmbedCNN.v2")
def build_hash_embed_cnn_tok2vec(
*,
width: int,
@ -102,7 +100,6 @@ def build_hash_embed_cnn_tok2vec(
)
@registry.architectures("spacy.Tok2Vec.v2")
def build_Tok2Vec_model(
embed: Model[List[Doc], List[Floats2d]],
encode: Model[List[Floats2d], List[Floats2d]],
@ -123,10 +120,9 @@ def build_Tok2Vec_model(
return tok2vec
@registry.architectures("spacy.MultiHashEmbed.v2")
def MultiHashEmbed(
width: int,
attrs: List[Union[str, int]],
attrs: Union[List[str], List[int], List[Union[str, int]]],
rows: List[int],
include_static_vectors: bool,
) -> Model[List[Doc], List[Floats2d]]:
@ -192,7 +188,7 @@ def MultiHashEmbed(
)
else:
model = chain(
FeatureExtractor(list(attrs)),
FeatureExtractor(attrs),
cast(Model[List[Ints2d], Ragged], list2ragged()),
with_array(concatenate(*embeddings)),
max_out,
@ -201,7 +197,6 @@ def MultiHashEmbed(
return model
@registry.architectures("spacy.CharacterEmbed.v2")
def CharacterEmbed(
width: int,
rows: int,
@ -278,7 +273,6 @@ def CharacterEmbed(
return model
@registry.architectures("spacy.MaxoutWindowEncoder.v2")
def MaxoutWindowEncoder(
width: int, window_size: int, maxout_pieces: int, depth: int
) -> Model[List[Floats2d], List[Floats2d]]:
@ -310,7 +304,6 @@ def MaxoutWindowEncoder(
return with_array(model, pad=receptive_field)
@registry.architectures("spacy.MishWindowEncoder.v2")
def MishWindowEncoder(
width: int, window_size: int, depth: int
) -> Model[List[Floats2d], List[Floats2d]]:
@ -333,7 +326,6 @@ def MishWindowEncoder(
return with_array(model)
@registry.architectures("spacy.TorchBiLSTMEncoder.v1")
def BiLSTMEncoder(
width: int, depth: int, dropout: float
) -> Model[List[Floats2d], List[Floats2d]]:

View File

@ -52,14 +52,14 @@ cdef SizesC get_c_sizes(model, int batch_size) except *:
return output
cdef ActivationsC alloc_activations(SizesC n) nogil:
cdef ActivationsC alloc_activations(SizesC n) noexcept nogil:
cdef ActivationsC A
memset(&A, 0, sizeof(A))
resize_activations(&A, n)
return A
cdef void free_activations(const ActivationsC* A) nogil:
cdef void free_activations(const ActivationsC* A) noexcept nogil:
free(A.token_ids)
free(A.scores)
free(A.unmaxed)
@ -67,7 +67,7 @@ cdef void free_activations(const ActivationsC* A) nogil:
free(A.is_valid)
cdef void resize_activations(ActivationsC* A, SizesC n) nogil:
cdef void resize_activations(ActivationsC* A, SizesC n) noexcept nogil:
if n.states <= A._max_size:
A._curr_size = n.states
return
@ -100,7 +100,7 @@ cdef void resize_activations(ActivationsC* A, SizesC n) nogil:
cdef void predict_states(
CBlas cblas, ActivationsC* A, StateC** states, const WeightsC* W, SizesC n
) nogil:
) noexcept nogil:
resize_activations(A, n)
for i in range(n.states):
states[i].set_context_tokens(&A.token_ids[i*n.feats], n.feats)
@ -159,7 +159,7 @@ cdef void sum_state_features(
int B,
int F,
int O
) nogil:
) noexcept nogil:
cdef int idx, b, f
cdef const float* feature
padding = cached
@ -183,7 +183,7 @@ cdef void cpu_log_loss(
const int* is_valid,
const float* scores,
int O
) nogil:
) noexcept nogil:
"""Do multi-label log loss"""
cdef double max_, gmax, Z, gZ
best = arg_max_if_gold(scores, costs, is_valid, O)
@ -209,7 +209,7 @@ cdef void cpu_log_loss(
cdef int arg_max_if_gold(
const weight_t* scores, const weight_t* costs, const int* is_valid, int n
) nogil:
) noexcept nogil:
# Find minimum cost
cdef float cost = 1
for i in range(n):
@ -224,7 +224,7 @@ cdef int arg_max_if_gold(
return best
cdef int arg_max_if_valid(const weight_t* scores, const int* is_valid, int n) nogil:
cdef int arg_max_if_valid(const weight_t* scores, const int* is_valid, int n) noexcept nogil:
cdef int best = -1
for i in range(n):
if is_valid[i] >= 1:

View File

@ -13,7 +13,6 @@ from ..vectors import Mode, Vectors
from ..vocab import Vocab
@registry.layers("spacy.StaticVectors.v2")
def StaticVectors(
nO: Optional[int] = None,
nM: Optional[int] = None,

View File

@ -4,7 +4,6 @@ from ..util import registry
from .parser_model import ParserStepModel
@registry.layers("spacy.TransitionModel.v1")
def TransitionModel(
tok2vec, lower, upper, resize_output, dropout=0.2, unseen_classes=set()
):

View File

@ -57,16 +57,20 @@ cdef class Morphology:
field_feature_pairs = []
for field in sorted(string_features):
values = string_features[field]
self.strings.add(field, allow_transient=False),
field_id = self.strings[field]
for value in values.split(self.VALUE_SEP):
field_sep_value = field + self.FIELD_SEP + value
self.strings.add(field_sep_value, allow_transient=False),
field_feature_pairs.append((
self.strings.add(field),
self.strings.add(field + self.FIELD_SEP + value),
field_id,
self.strings[field_sep_value]
))
cdef MorphAnalysisC tag = self.create_morph_tag(field_feature_pairs)
# the hash key for the tag is either the hash of the normalized UFEATS
# string or the hash of an empty placeholder
norm_feats_string = self.normalize_features(features)
tag.key = self.strings.add(norm_feats_string)
tag.key = self.strings.add(norm_feats_string, allow_transient=False)
self.insert(tag)
return tag.key

View File

@ -25,3 +25,8 @@ IDS = {
NAMES = {value: key for key, value in IDS.items()}
# As of Cython 3.1, the global Python namespace no longer has the enum
# contents by default.
globals().update(IDS)

View File

@ -17,7 +17,7 @@ from ...typedefs cimport attr_t
from ...vocab cimport EMPTY_LEXEME
cdef inline bint is_space_token(const TokenC* token) nogil:
cdef inline bint is_space_token(const TokenC* token) noexcept nogil:
return Lexeme.c_check_flag(token.lex, IS_SPACE)
cdef struct ArcC:
@ -41,7 +41,7 @@ cdef cppclass StateC:
int offset
int _b_i
__init__(const TokenC* sent, int length) nogil:
inline __init__(const TokenC* sent, int length) noexcept nogil:
this._sent = sent
this._heads = <int*>calloc(length, sizeof(int))
if not (this._sent and this._heads):
@ -57,10 +57,10 @@ cdef cppclass StateC:
memset(&this._empty_token, 0, sizeof(TokenC))
this._empty_token.lex = &EMPTY_LEXEME
__dealloc__():
inline __dealloc__():
free(this._heads)
void set_context_tokens(int* ids, int n) nogil:
inline void set_context_tokens(int* ids, int n) noexcept nogil:
cdef int i, j
if n == 1:
if this.B(0) >= 0:
@ -131,14 +131,14 @@ cdef cppclass StateC:
else:
ids[i] = -1
int S(int i) nogil const:
inline int S(int i) noexcept nogil const:
if i >= this._stack.size():
return -1
elif i < 0:
return -1
return this._stack.at(this._stack.size() - (i+1))
int B(int i) nogil const:
inline int B(int i) noexcept nogil const:
if i < 0:
return -1
elif i < this._rebuffer.size():
@ -150,19 +150,19 @@ cdef cppclass StateC:
else:
return b_i
const TokenC* B_(int i) nogil const:
inline const TokenC* B_(int i) noexcept nogil const:
return this.safe_get(this.B(i))
const TokenC* E_(int i) nogil const:
inline const TokenC* E_(int i) noexcept nogil const:
return this.safe_get(this.E(i))
const TokenC* safe_get(int i) nogil const:
inline const TokenC* safe_get(int i) noexcept nogil const:
if i < 0 or i >= this.length:
return &this._empty_token
else:
return &this._sent[i]
void map_get_arcs(const unordered_map[int, vector[ArcC]] &heads_arcs, vector[ArcC]* out) nogil const:
inline void map_get_arcs(const unordered_map[int, vector[ArcC]] &heads_arcs, vector[ArcC]* out) noexcept nogil const:
cdef const vector[ArcC]* arcs
head_arcs_it = heads_arcs.const_begin()
while head_arcs_it != heads_arcs.const_end():
@ -175,23 +175,23 @@ cdef cppclass StateC:
incr(arcs_it)
incr(head_arcs_it)
void get_arcs(vector[ArcC]* out) nogil const:
inline void get_arcs(vector[ArcC]* out) noexcept nogil const:
this.map_get_arcs(this._left_arcs, out)
this.map_get_arcs(this._right_arcs, out)
int H(int child) nogil const:
inline int H(int child) noexcept nogil const:
if child >= this.length or child < 0:
return -1
else:
return this._heads[child]
int E(int i) nogil const:
inline int E(int i) noexcept nogil const:
if this._ents.size() == 0:
return -1
else:
return this._ents.back().start
int nth_child(const unordered_map[int, vector[ArcC]]& heads_arcs, int head, int idx) nogil const:
inline int nth_child(const unordered_map[int, vector[ArcC]]& heads_arcs, int head, int idx) noexcept nogil const:
if idx < 1:
return -1
@ -215,22 +215,22 @@ cdef cppclass StateC:
return -1
int L(int head, int idx) nogil const:
inline int L(int head, int idx) noexcept nogil const:
return this.nth_child(this._left_arcs, head, idx)
int R(int head, int idx) nogil const:
inline int R(int head, int idx) noexcept nogil const:
return this.nth_child(this._right_arcs, head, idx)
bint empty() nogil const:
inline bint empty() noexcept nogil const:
return this._stack.size() == 0
bint eol() nogil const:
inline bint eol() noexcept nogil const:
return this.buffer_length() == 0
bint is_final() nogil const:
inline bint is_final() noexcept nogil const:
return this.stack_depth() <= 0 and this.eol()
int cannot_sent_start(int word) nogil const:
inline int cannot_sent_start(int word) noexcept nogil const:
if word < 0 or word >= this.length:
return 0
elif this._sent[word].sent_start == -1:
@ -238,7 +238,7 @@ cdef cppclass StateC:
else:
return 0
int is_sent_start(int word) nogil const:
inline int is_sent_start(int word) noexcept nogil const:
if word < 0 or word >= this.length:
return 0
elif this._sent[word].sent_start == 1:
@ -248,20 +248,20 @@ cdef cppclass StateC:
else:
return 0
void set_sent_start(int word, int value) nogil:
inline void set_sent_start(int word, int value) noexcept nogil:
if value >= 1:
this._sent_starts.insert(word)
bint has_head(int child) nogil const:
inline bint has_head(int child) noexcept nogil const:
return this._heads[child] >= 0
int l_edge(int word) nogil const:
inline int l_edge(int word) noexcept nogil const:
return word
int r_edge(int word) nogil const:
inline int r_edge(int word) noexcept nogil const:
return word
int n_arcs(const unordered_map[int, vector[ArcC]] &heads_arcs, int head) nogil const:
inline int n_arcs(const unordered_map[int, vector[ArcC]] &heads_arcs, int head) noexcept nogil const:
cdef int n = 0
head_arcs_it = heads_arcs.const_find(head)
if head_arcs_it == heads_arcs.const_end():
@ -277,28 +277,28 @@ cdef cppclass StateC:
return n
int n_L(int head) nogil const:
inline int n_L(int head) noexcept nogil const:
return n_arcs(this._left_arcs, head)
int n_R(int head) nogil const:
inline int n_R(int head) noexcept nogil const:
return n_arcs(this._right_arcs, head)
bint stack_is_connected() nogil const:
inline bint stack_is_connected() noexcept nogil const:
return False
bint entity_is_open() nogil const:
inline bint entity_is_open() noexcept nogil const:
if this._ents.size() == 0:
return False
else:
return this._ents.back().end == -1
int stack_depth() nogil const:
inline int stack_depth() noexcept nogil const:
return this._stack.size()
int buffer_length() nogil const:
inline int buffer_length() noexcept nogil const:
return (this.length - this._b_i) + this._rebuffer.size()
void push() nogil:
inline void push() noexcept nogil:
b0 = this.B(0)
if this._rebuffer.size():
b0 = this._rebuffer.back()
@ -308,32 +308,32 @@ cdef cppclass StateC:
this._b_i += 1
this._stack.push_back(b0)
void pop() nogil:
inline void pop() noexcept nogil:
this._stack.pop_back()
void force_final() nogil:
inline void force_final() noexcept nogil:
# This should only be used in desperate situations, as it may leave
# the analysis in an unexpected state.
this._stack.clear()
this._b_i = this.length
void unshift() nogil:
inline void unshift() noexcept nogil:
s0 = this._stack.back()
this._unshiftable[s0] = 1
this._rebuffer.push_back(s0)
this._stack.pop_back()
int is_unshiftable(int item) nogil const:
inline int is_unshiftable(int item) noexcept nogil const:
if item >= this._unshiftable.size():
return 0
else:
return this._unshiftable.at(item)
void set_reshiftable(int item) nogil:
inline void set_reshiftable(int item) noexcept nogil:
if item < this._unshiftable.size():
this._unshiftable[item] = 0
void add_arc(int head, int child, attr_t label) nogil:
inline void add_arc(int head, int child, attr_t label) noexcept nogil:
if this.has_head(child):
this.del_arc(this.H(child), child)
cdef ArcC arc
@ -346,7 +346,7 @@ cdef cppclass StateC:
this._right_arcs[arc.head].push_back(arc)
this._heads[child] = head
void map_del_arc(unordered_map[int, vector[ArcC]]* heads_arcs, int h_i, int c_i) nogil:
inline void map_del_arc(unordered_map[int, vector[ArcC]]* heads_arcs, int h_i, int c_i) noexcept nogil:
arcs_it = heads_arcs.find(h_i)
if arcs_it == heads_arcs.end():
return
@ -367,13 +367,13 @@ cdef cppclass StateC:
arc.label = 0
break
void del_arc(int h_i, int c_i) nogil:
inline void del_arc(int h_i, int c_i) noexcept nogil:
if h_i > c_i:
this.map_del_arc(&this._left_arcs, h_i, c_i)
else:
this.map_del_arc(&this._right_arcs, h_i, c_i)
SpanC get_ent() nogil const:
inline SpanC get_ent() noexcept nogil const:
cdef SpanC ent
if this._ents.size() == 0:
ent.start = 0
@ -383,17 +383,17 @@ cdef cppclass StateC:
else:
return this._ents.back()
void open_ent(attr_t label) nogil:
inline void open_ent(attr_t label) noexcept nogil:
cdef SpanC ent
ent.start = this.B(0)
ent.label = label
ent.end = -1
this._ents.push_back(ent)
void close_ent() nogil:
inline void close_ent() noexcept nogil:
this._ents.back().end = this.B(0)+1
void clone(const StateC* src) nogil:
inline void clone(const StateC* src) noexcept nogil:
this.length = src.length
this._sent = src._sent
this._stack = src._stack

View File

@ -155,7 +155,7 @@ cdef GoldParseStateC create_gold_state(
return gs
cdef void update_gold_state(GoldParseStateC* gs, const StateC* s) nogil:
cdef void update_gold_state(GoldParseStateC* gs, const StateC* s) noexcept nogil:
for i in range(gs.length):
gs.state_bits[i] = set_state_flag(
gs.state_bits[i],
@ -203,7 +203,7 @@ cdef class ArcEagerGold:
def __init__(self, ArcEager moves, StateClass stcls, Example example):
self.mem = Pool()
heads, labels = example.get_aligned_parse(projectivize=True)
labels = [example.x.vocab.strings.add(label) if label is not None else MISSING_DEP for label in labels]
labels = [example.x.vocab.strings.add(label, allow_transient=False) if label is not None else MISSING_DEP for label in labels]
sent_starts = _get_aligned_sent_starts(example)
assert len(heads) == len(labels) == len(sent_starts), (len(heads), len(labels), len(sent_starts))
self.c = create_gold_state(self.mem, stcls.c, heads, labels, sent_starts)
@ -239,12 +239,12 @@ def _get_aligned_sent_starts(example):
return [None] * len(example.x)
cdef int check_state_gold(char state_bits, char flag) nogil:
cdef int check_state_gold(char state_bits, char flag) noexcept nogil:
cdef char one = 1
return 1 if (state_bits & (one << flag)) else 0
cdef int set_state_flag(char state_bits, char flag, int value) nogil:
cdef int set_state_flag(char state_bits, char flag, int value) noexcept nogil:
cdef char one = 1
if value:
return state_bits | (one << flag)
@ -252,27 +252,27 @@ cdef int set_state_flag(char state_bits, char flag, int value) nogil:
return state_bits & ~(one << flag)
cdef int is_head_in_stack(const GoldParseStateC* gold, int i) nogil:
cdef int is_head_in_stack(const GoldParseStateC* gold, int i) noexcept nogil:
return check_state_gold(gold.state_bits[i], HEAD_IN_STACK)
cdef int is_head_in_buffer(const GoldParseStateC* gold, int i) nogil:
cdef int is_head_in_buffer(const GoldParseStateC* gold, int i) noexcept nogil:
return check_state_gold(gold.state_bits[i], HEAD_IN_BUFFER)
cdef int is_head_unknown(const GoldParseStateC* gold, int i) nogil:
cdef int is_head_unknown(const GoldParseStateC* gold, int i) noexcept nogil:
return check_state_gold(gold.state_bits[i], HEAD_UNKNOWN)
cdef int is_sent_start(const GoldParseStateC* gold, int i) nogil:
cdef int is_sent_start(const GoldParseStateC* gold, int i) noexcept nogil:
return check_state_gold(gold.state_bits[i], IS_SENT_START)
cdef int is_sent_start_unknown(const GoldParseStateC* gold, int i) nogil:
cdef int is_sent_start_unknown(const GoldParseStateC* gold, int i) noexcept nogil:
return check_state_gold(gold.state_bits[i], SENT_START_UNKNOWN)
# Helper functions for the arc-eager oracle
cdef weight_t push_cost(const StateC* state, const GoldParseStateC* gold) nogil:
cdef weight_t push_cost(const StateC* state, const GoldParseStateC* gold) noexcept nogil:
cdef weight_t cost = 0
b0 = state.B(0)
if b0 < 0:
@ -285,7 +285,7 @@ cdef weight_t push_cost(const StateC* state, const GoldParseStateC* gold) nogil:
return cost
cdef weight_t pop_cost(const StateC* state, const GoldParseStateC* gold) nogil:
cdef weight_t pop_cost(const StateC* state, const GoldParseStateC* gold) noexcept nogil:
cdef weight_t cost = 0
s0 = state.S(0)
if s0 < 0:
@ -296,7 +296,7 @@ cdef weight_t pop_cost(const StateC* state, const GoldParseStateC* gold) nogil:
return cost
cdef bint arc_is_gold(const GoldParseStateC* gold, int head, int child) nogil:
cdef bint arc_is_gold(const GoldParseStateC* gold, int head, int child) noexcept nogil:
if is_head_unknown(gold, child):
return True
elif gold.heads[child] == head:
@ -305,7 +305,7 @@ cdef bint arc_is_gold(const GoldParseStateC* gold, int head, int child) nogil:
return False
cdef bint label_is_gold(const GoldParseStateC* gold, int child, attr_t label) nogil:
cdef bint label_is_gold(const GoldParseStateC* gold, int child, attr_t label) noexcept nogil:
if is_head_unknown(gold, child):
return True
elif label == 0:
@ -316,7 +316,7 @@ cdef bint label_is_gold(const GoldParseStateC* gold, int child, attr_t label) no
return False
cdef bint _is_gold_root(const GoldParseStateC* gold, int word) nogil:
cdef bint _is_gold_root(const GoldParseStateC* gold, int word) noexcept nogil:
return gold.heads[word] == word or is_head_unknown(gold, word)
@ -336,7 +336,7 @@ cdef class Shift:
* Advance buffer
"""
@staticmethod
cdef bint is_valid(const StateC* st, attr_t label) nogil:
cdef bint is_valid(const StateC* st, attr_t label) noexcept nogil:
if st.stack_depth() == 0:
return 1
elif st.buffer_length() < 2:
@ -349,11 +349,11 @@ cdef class Shift:
return 1
@staticmethod
cdef int transition(StateC* st, attr_t label) nogil:
cdef int transition(StateC* st, attr_t label) noexcept nogil:
st.push()
@staticmethod
cdef weight_t cost(const StateC* state, const void* _gold, attr_t label) nogil:
cdef weight_t cost(const StateC* state, const void* _gold, attr_t label) noexcept nogil:
gold = <const GoldParseStateC*>_gold
return gold.push_cost
@ -375,7 +375,7 @@ cdef class Reduce:
cost by those arcs.
"""
@staticmethod
cdef bint is_valid(const StateC* st, attr_t label) nogil:
cdef bint is_valid(const StateC* st, attr_t label) noexcept nogil:
if st.stack_depth() == 0:
return False
elif st.buffer_length() == 0:
@ -386,14 +386,14 @@ cdef class Reduce:
return True
@staticmethod
cdef int transition(StateC* st, attr_t label) nogil:
cdef int transition(StateC* st, attr_t label) noexcept nogil:
if st.has_head(st.S(0)) or st.stack_depth() == 1:
st.pop()
else:
st.unshift()
@staticmethod
cdef weight_t cost(const StateC* state, const void* _gold, attr_t label) nogil:
cdef weight_t cost(const StateC* state, const void* _gold, attr_t label) noexcept nogil:
gold = <const GoldParseStateC*>_gold
if state.is_sent_start(state.B(0)):
return 0
@ -421,7 +421,7 @@ cdef class LeftArc:
pop_cost - Arc(B[0], S[0], label) + (Arc(S[1], S[0]) if H(S[0]) else Arcs(S, S[0]))
"""
@staticmethod
cdef bint is_valid(const StateC* st, attr_t label) nogil:
cdef bint is_valid(const StateC* st, attr_t label) noexcept nogil:
if st.stack_depth() == 0:
return 0
elif st.buffer_length() == 0:
@ -434,7 +434,7 @@ cdef class LeftArc:
return 1
@staticmethod
cdef int transition(StateC* st, attr_t label) nogil:
cdef int transition(StateC* st, attr_t label) noexcept nogil:
st.add_arc(st.B(0), st.S(0), label)
# If we change the stack, it's okay to remove the shifted mark, as
# we can't get in an infinite loop this way.
@ -442,7 +442,7 @@ cdef class LeftArc:
st.pop()
@staticmethod
cdef inline weight_t cost(const StateC* state, const void* _gold, attr_t label) nogil:
cdef inline weight_t cost(const StateC* state, const void* _gold, attr_t label) noexcept nogil:
gold = <const GoldParseStateC*>_gold
cdef weight_t cost = gold.pop_cost
s0 = state.S(0)
@ -474,7 +474,7 @@ cdef class RightArc:
push_cost + (not shifted[b0] and Arc(B[1:], B[0])) - Arc(S[0], B[0], label)
"""
@staticmethod
cdef bint is_valid(const StateC* st, attr_t label) nogil:
cdef bint is_valid(const StateC* st, attr_t label) noexcept nogil:
if st.stack_depth() == 0:
return 0
elif st.buffer_length() == 0:
@ -488,12 +488,12 @@ cdef class RightArc:
return 1
@staticmethod
cdef int transition(StateC* st, attr_t label) nogil:
cdef int transition(StateC* st, attr_t label) noexcept nogil:
st.add_arc(st.S(0), st.B(0), label)
st.push()
@staticmethod
cdef inline weight_t cost(const StateC* state, const void* _gold, attr_t label) nogil:
cdef inline weight_t cost(const StateC* state, const void* _gold, attr_t label) noexcept nogil:
gold = <const GoldParseStateC*>_gold
cost = gold.push_cost
s0 = state.S(0)
@ -525,7 +525,7 @@ cdef class Break:
* Arcs between S and B[1]
"""
@staticmethod
cdef bint is_valid(const StateC* st, attr_t label) nogil:
cdef bint is_valid(const StateC* st, attr_t label) noexcept nogil:
if st.buffer_length() < 2:
return False
elif st.B(1) != st.B(0) + 1:
@ -538,11 +538,11 @@ cdef class Break:
return True
@staticmethod
cdef int transition(StateC* st, attr_t label) nogil:
cdef int transition(StateC* st, attr_t label) noexcept nogil:
st.set_sent_start(st.B(1), 1)
@staticmethod
cdef weight_t cost(const StateC* state, const void* _gold, attr_t label) nogil:
cdef weight_t cost(const StateC* state, const void* _gold, attr_t label) noexcept nogil:
gold = <const GoldParseStateC*>_gold
cdef int b0 = state.B(0)
cdef int cost = 0
@ -785,7 +785,7 @@ cdef class ArcEager(TransitionSystem):
else:
return False
cdef int set_valid(self, int* output, const StateC* st) nogil:
cdef int set_valid(self, int* output, const StateC* st) noexcept nogil:
cdef int[N_MOVES] is_valid
is_valid[SHIFT] = Shift.is_valid(st, 0)
is_valid[REDUCE] = Reduce.is_valid(st, 0)

View File

@ -110,7 +110,7 @@ cdef void update_gold_state(GoldNERStateC* gs, const StateC* state) except *:
cdef do_func_t[N_MOVES] do_funcs
cdef bint _entity_is_sunk(const StateC* state, Transition* golds) nogil:
cdef bint _entity_is_sunk(const StateC* state, Transition* golds) noexcept nogil:
if not state.entity_is_open():
return False
@ -238,7 +238,7 @@ cdef class BiluoPushDown(TransitionSystem):
def add_action(self, int action, label_name, freq=None):
cdef attr_t label_id
if not isinstance(label_name, (int, long)):
if not isinstance(label_name, int):
label_id = self.strings.add(label_name)
else:
label_id = label_name
@ -347,21 +347,21 @@ cdef class BiluoPushDown(TransitionSystem):
cdef class Missing:
@staticmethod
cdef bint is_valid(const StateC* st, attr_t label) nogil:
cdef bint is_valid(const StateC* st, attr_t label) noexcept nogil:
return False
@staticmethod
cdef int transition(StateC* s, attr_t label) nogil:
cdef int transition(StateC* s, attr_t label) noexcept nogil:
pass
@staticmethod
cdef weight_t cost(const StateC* s, const void* _gold, attr_t label) nogil:
cdef weight_t cost(const StateC* s, const void* _gold, attr_t label) noexcept nogil:
return 9000
cdef class Begin:
@staticmethod
cdef bint is_valid(const StateC* st, attr_t label) nogil:
cdef bint is_valid(const StateC* st, attr_t label) noexcept nogil:
cdef int preset_ent_iob = st.B_(0).ent_iob
cdef attr_t preset_ent_label = st.B_(0).ent_type
if st.entity_is_open():
@ -400,13 +400,13 @@ cdef class Begin:
return True
@staticmethod
cdef int transition(StateC* st, attr_t label) nogil:
cdef int transition(StateC* st, attr_t label) noexcept nogil:
st.open_ent(label)
st.push()
st.pop()
@staticmethod
cdef weight_t cost(const StateC* s, const void* _gold, attr_t label) nogil:
cdef weight_t cost(const StateC* s, const void* _gold, attr_t label) noexcept nogil:
gold = <GoldNERStateC*>_gold
b0 = s.B(0)
cdef int cost = 0
@ -439,7 +439,7 @@ cdef class Begin:
cdef class In:
@staticmethod
cdef bint is_valid(const StateC* st, attr_t label) nogil:
cdef bint is_valid(const StateC* st, attr_t label) noexcept nogil:
if not st.entity_is_open():
return False
if st.buffer_length() < 2:
@ -475,12 +475,12 @@ cdef class In:
return True
@staticmethod
cdef int transition(StateC* st, attr_t label) nogil:
cdef int transition(StateC* st, attr_t label) noexcept nogil:
st.push()
st.pop()
@staticmethod
cdef weight_t cost(const StateC* s, const void* _gold, attr_t label) nogil:
cdef weight_t cost(const StateC* s, const void* _gold, attr_t label) noexcept nogil:
gold = <GoldNERStateC*>_gold
cdef int next_act = gold.ner[s.B(1)].move if s.B(1) >= 0 else OUT
cdef int g_act = gold.ner[s.B(0)].move
@ -510,7 +510,7 @@ cdef class In:
cdef class Last:
@staticmethod
cdef bint is_valid(const StateC* st, attr_t label) nogil:
cdef bint is_valid(const StateC* st, attr_t label) noexcept nogil:
cdef int preset_ent_iob = st.B_(0).ent_iob
cdef attr_t preset_ent_label = st.B_(0).ent_type
if label == 0:
@ -535,13 +535,13 @@ cdef class Last:
return True
@staticmethod
cdef int transition(StateC* st, attr_t label) nogil:
cdef int transition(StateC* st, attr_t label) noexcept nogil:
st.close_ent()
st.push()
st.pop()
@staticmethod
cdef weight_t cost(const StateC* s, const void* _gold, attr_t label) nogil:
cdef weight_t cost(const StateC* s, const void* _gold, attr_t label) noexcept nogil:
gold = <GoldNERStateC*>_gold
b0 = s.B(0)
ent_start = s.E(0)
@ -581,7 +581,7 @@ cdef class Last:
cdef class Unit:
@staticmethod
cdef bint is_valid(const StateC* st, attr_t label) nogil:
cdef bint is_valid(const StateC* st, attr_t label) noexcept nogil:
cdef int preset_ent_iob = st.B_(0).ent_iob
cdef attr_t preset_ent_label = st.B_(0).ent_type
if label == 0:
@ -609,14 +609,14 @@ cdef class Unit:
return True
@staticmethod
cdef int transition(StateC* st, attr_t label) nogil:
cdef int transition(StateC* st, attr_t label) noexcept nogil:
st.open_ent(label)
st.close_ent()
st.push()
st.pop()
@staticmethod
cdef weight_t cost(const StateC* s, const void* _gold, attr_t label) nogil:
cdef weight_t cost(const StateC* s, const void* _gold, attr_t label) noexcept nogil:
gold = <GoldNERStateC*>_gold
cdef int g_act = gold.ner[s.B(0)].move
cdef attr_t g_tag = gold.ner[s.B(0)].label
@ -646,7 +646,7 @@ cdef class Unit:
cdef class Out:
@staticmethod
cdef bint is_valid(const StateC* st, attr_t label) nogil:
cdef bint is_valid(const StateC* st, attr_t label) noexcept nogil:
cdef int preset_ent_iob = st.B_(0).ent_iob
if st.entity_is_open():
return False
@ -658,12 +658,12 @@ cdef class Out:
return True
@staticmethod
cdef int transition(StateC* st, attr_t label) nogil:
cdef int transition(StateC* st, attr_t label) noexcept nogil:
st.push()
st.pop()
@staticmethod
cdef weight_t cost(const StateC* s, const void* _gold, attr_t label) nogil:
cdef weight_t cost(const StateC* s, const void* _gold, attr_t label) noexcept nogil:
gold = <GoldNERStateC*>_gold
cdef int g_act = gold.ner[s.B(0)].move
cdef weight_t cost = 0

View File

@ -94,7 +94,7 @@ cdef bool _has_head_as_ancestor(int tokenid, int head, const vector[int]& heads)
return False
cdef string heads_to_string(const vector[int]& heads) nogil:
cdef string heads_to_string(const vector[int]& heads) noexcept nogil:
cdef vector[int].const_iterator citer
cdef string cycle_str
@ -183,7 +183,7 @@ cpdef deprojectivize(Doc doc):
new_label, head_label = label.split(DELIMITER)
new_head = _find_new_head(doc[i], head_label)
doc.c[i].head = new_head.i - i
doc.c[i].dep = doc.vocab.strings.add(new_label)
doc.c[i].dep = doc.vocab.strings.add(new_label, allow_transient=False)
set_children_from_heads(doc.c, 0, doc.length)
return doc

View File

@ -15,22 +15,22 @@ cdef struct Transition:
weight_t score
bint (*is_valid)(const StateC* state, attr_t label) nogil
weight_t (*get_cost)(const StateC* state, const void* gold, attr_t label) nogil
int (*do)(StateC* state, attr_t label) nogil
bint (*is_valid)(const StateC* state, attr_t label) noexcept nogil
weight_t (*get_cost)(const StateC* state, const void* gold, attr_t label) noexcept nogil
int (*do)(StateC* state, attr_t label) noexcept nogil
ctypedef weight_t (*get_cost_func_t)(
const StateC* state, const void* gold, attr_tlabel
) nogil
) noexcept nogil
ctypedef weight_t (*move_cost_func_t)(
const StateC* state, const void* gold
) nogil
) noexcept nogil
ctypedef weight_t (*label_cost_func_t)(
const StateC* state, const void* gold, attr_t label
) nogil
) noexcept nogil
ctypedef int (*do_func_t)(StateC* state, attr_t label) nogil
ctypedef int (*do_func_t)(StateC* state, attr_t label) noexcept nogil
ctypedef void* (*init_state_t)(Pool mem, int length, void* tokens) except NULL
@ -53,7 +53,7 @@ cdef class TransitionSystem:
cdef Transition init_transition(self, int clas, int move, attr_t label) except *
cdef int set_valid(self, int* output, const StateC* st) nogil
cdef int set_valid(self, int* output, const StateC* st) noexcept nogil
cdef int set_costs(self, int* is_valid, weight_t* costs,
const StateC* state, gold) except -1

View File

@ -149,7 +149,7 @@ cdef class TransitionSystem:
action = self.lookup_transition(move_name)
return action.is_valid(stcls.c, action.label)
cdef int set_valid(self, int* is_valid, const StateC* st) nogil:
cdef int set_valid(self, int* is_valid, const StateC* st) noexcept nogil:
cdef int i
for i in range(self.n_moves):
is_valid[i] = self.c[i].is_valid(st, self.c[i].label)
@ -191,8 +191,7 @@ cdef class TransitionSystem:
def add_action(self, int action, label_name):
cdef attr_t label_id
if not isinstance(label_name, int) and \
not isinstance(label_name, long):
if not isinstance(label_name, int):
label_id = self.strings.add(label_name)
else:
label_id = label_name

View File

@ -1,3 +1,5 @@
import importlib
import sys
from pathlib import Path
from typing import Any, Callable, Dict, Iterable, List, Optional, Tuple, Union
@ -22,19 +24,6 @@ TagMapType = Dict[str, Dict[Union[int, str], Union[int, str]]]
MorphRulesType = Dict[str, Dict[str, Dict[Union[int, str], Union[int, str]]]]
@Language.factory(
"attribute_ruler",
default_config={
"validate": False,
"scorer": {"@scorers": "spacy.attribute_ruler_scorer.v1"},
},
)
def make_attribute_ruler(
nlp: Language, name: str, validate: bool, scorer: Optional[Callable]
):
return AttributeRuler(nlp.vocab, name, validate=validate, scorer=scorer)
def attribute_ruler_score(examples: Iterable[Example], **kwargs) -> Dict[str, Any]:
def morph_key_getter(token, attr):
return getattr(token, attr).key
@ -54,7 +43,6 @@ def attribute_ruler_score(examples: Iterable[Example], **kwargs) -> Dict[str, An
return results
@registry.scorers("spacy.attribute_ruler_scorer.v1")
def make_attribute_ruler_scorer():
return attribute_ruler_score
@ -355,3 +343,11 @@ def _split_morph_attrs(attrs: dict) -> Tuple[dict, dict]:
else:
morph_attrs[k] = v
return other_attrs, morph_attrs
# Setup backwards compatibility hook for factories
def __getattr__(name):
if name == "make_attribute_ruler":
module = importlib.import_module("spacy.pipeline.factories")
return module.make_attribute_ruler
raise AttributeError(f"module {__name__} has no attribute {name}")

View File

@ -1,4 +1,6 @@
# cython: infer_types=True, binding=True
import importlib
import sys
from collections import defaultdict
from typing import Callable, Optional
@ -39,188 +41,6 @@ subword_features = true
DEFAULT_PARSER_MODEL = Config().from_str(default_model_config)["model"]
@Language.factory(
"parser",
assigns=["token.dep", "token.head", "token.is_sent_start", "doc.sents"],
default_config={
"moves": None,
"update_with_oracle_cut_size": 100,
"learn_tokens": False,
"min_action_freq": 30,
"model": DEFAULT_PARSER_MODEL,
"scorer": {"@scorers": "spacy.parser_scorer.v1"},
},
default_score_weights={
"dep_uas": 0.5,
"dep_las": 0.5,
"dep_las_per_type": None,
"sents_p": None,
"sents_r": None,
"sents_f": 0.0,
},
)
def make_parser(
nlp: Language,
name: str,
model: Model,
moves: Optional[TransitionSystem],
update_with_oracle_cut_size: int,
learn_tokens: bool,
min_action_freq: int,
scorer: Optional[Callable],
):
"""Create a transition-based DependencyParser component. The dependency parser
jointly learns sentence segmentation and labelled dependency parsing, and can
optionally learn to merge tokens that had been over-segmented by the tokenizer.
The parser uses a variant of the non-monotonic arc-eager transition-system
described by Honnibal and Johnson (2014), with the addition of a "break"
transition to perform the sentence segmentation. Nivre's pseudo-projective
dependency transformation is used to allow the parser to predict
non-projective parses.
The parser is trained using an imitation learning objective. The parser follows
the actions predicted by the current weights, and at each state, determines
which actions are compatible with the optimal parse that could be reached
from the current state. The weights such that the scores assigned to the
set of optimal actions is increased, while scores assigned to other
actions are decreased. Note that more than one action may be optimal for
a given state.
model (Model): The model for the transition-based parser. The model needs
to have a specific substructure of named components --- see the
spacy.ml.tb_framework.TransitionModel for details.
moves (Optional[TransitionSystem]): This defines how the parse-state is created,
updated and evaluated. If 'moves' is None, a new instance is
created with `self.TransitionSystem()`. Defaults to `None`.
update_with_oracle_cut_size (int): During training, cut long sequences into
shorter segments by creating intermediate states based on the gold-standard
history. The model is not very sensitive to this parameter, so you usually
won't need to change it. 100 is a good default.
learn_tokens (bool): Whether to learn to merge subtokens that are split
relative to the gold standard. Experimental.
min_action_freq (int): The minimum frequency of labelled actions to retain.
Rarer labelled actions have their label backed-off to "dep". While this
primarily affects the label accuracy, it can also affect the attachment
structure, as the labels are used to represent the pseudo-projectivity
transformation.
scorer (Optional[Callable]): The scoring method.
"""
return DependencyParser(
nlp.vocab,
model,
name,
moves=moves,
update_with_oracle_cut_size=update_with_oracle_cut_size,
multitasks=[],
learn_tokens=learn_tokens,
min_action_freq=min_action_freq,
beam_width=1,
beam_density=0.0,
beam_update_prob=0.0,
# At some point in the future we can try to implement support for
# partial annotations, perhaps only in the beam objective.
incorrect_spans_key=None,
scorer=scorer,
)
@Language.factory(
"beam_parser",
assigns=["token.dep", "token.head", "token.is_sent_start", "doc.sents"],
default_config={
"beam_width": 8,
"beam_density": 0.01,
"beam_update_prob": 0.5,
"moves": None,
"update_with_oracle_cut_size": 100,
"learn_tokens": False,
"min_action_freq": 30,
"model": DEFAULT_PARSER_MODEL,
"scorer": {"@scorers": "spacy.parser_scorer.v1"},
},
default_score_weights={
"dep_uas": 0.5,
"dep_las": 0.5,
"dep_las_per_type": None,
"sents_p": None,
"sents_r": None,
"sents_f": 0.0,
},
)
def make_beam_parser(
nlp: Language,
name: str,
model: Model,
moves: Optional[TransitionSystem],
update_with_oracle_cut_size: int,
learn_tokens: bool,
min_action_freq: int,
beam_width: int,
beam_density: float,
beam_update_prob: float,
scorer: Optional[Callable],
):
"""Create a transition-based DependencyParser component that uses beam-search.
The dependency parser jointly learns sentence segmentation and labelled
dependency parsing, and can optionally learn to merge tokens that had been
over-segmented by the tokenizer.
The parser uses a variant of the non-monotonic arc-eager transition-system
described by Honnibal and Johnson (2014), with the addition of a "break"
transition to perform the sentence segmentation. Nivre's pseudo-projective
dependency transformation is used to allow the parser to predict
non-projective parses.
The parser is trained using a global objective. That is, it learns to assign
probabilities to whole parses.
model (Model): The model for the transition-based parser. The model needs
to have a specific substructure of named components --- see the
spacy.ml.tb_framework.TransitionModel for details.
moves (Optional[TransitionSystem]): This defines how the parse-state is created,
updated and evaluated. If 'moves' is None, a new instance is
created with `self.TransitionSystem()`. Defaults to `None`.
update_with_oracle_cut_size (int): During training, cut long sequences into
shorter segments by creating intermediate states based on the gold-standard
history. The model is not very sensitive to this parameter, so you usually
won't need to change it. 100 is a good default.
beam_width (int): The number of candidate analyses to maintain.
beam_density (float): The minimum ratio between the scores of the first and
last candidates in the beam. This allows the parser to avoid exploring
candidates that are too far behind. This is mostly intended to improve
efficiency, but it can also improve accuracy as deeper search is not
always better.
beam_update_prob (float): The chance of making a beam update, instead of a
greedy update. Greedy updates are an approximation for the beam updates,
and are faster to compute.
learn_tokens (bool): Whether to learn to merge subtokens that are split
relative to the gold standard. Experimental.
min_action_freq (int): The minimum frequency of labelled actions to retain.
Rarer labelled actions have their label backed-off to "dep". While this
primarily affects the label accuracy, it can also affect the attachment
structure, as the labels are used to represent the pseudo-projectivity
transformation.
"""
return DependencyParser(
nlp.vocab,
model,
name,
moves=moves,
update_with_oracle_cut_size=update_with_oracle_cut_size,
beam_width=beam_width,
beam_density=beam_density,
beam_update_prob=beam_update_prob,
multitasks=[],
learn_tokens=learn_tokens,
min_action_freq=min_action_freq,
# At some point in the future we can try to implement support for
# partial annotations, perhaps only in the beam objective.
incorrect_spans_key=None,
scorer=scorer,
)
def parser_score(examples, **kwargs):
"""Score a batch of examples.
@ -246,7 +66,6 @@ def parser_score(examples, **kwargs):
return results
@registry.scorers("spacy.parser_scorer.v1")
def make_parser_scorer():
return parser_score
@ -346,3 +165,14 @@ cdef class DependencyParser(Parser):
# because we instead have a label frequency cut-off and back off rare
# labels to 'dep'.
pass
# Setup backwards compatibility hook for factories
def __getattr__(name):
if name == "make_parser":
module = importlib.import_module("spacy.pipeline.factories")
return module.make_parser
elif name == "make_beam_parser":
module = importlib.import_module("spacy.pipeline.factories")
return module.make_beam_parser
raise AttributeError(f"module {__name__} has no attribute {name}")

View File

@ -1,3 +1,5 @@
import importlib
import sys
from collections import Counter
from itertools import islice
from typing import Any, Callable, Dict, Iterable, List, Optional, Tuple, cast
@ -39,43 +41,6 @@ subword_features = true
DEFAULT_EDIT_TREE_LEMMATIZER_MODEL = Config().from_str(default_model_config)["model"]
@Language.factory(
"trainable_lemmatizer",
assigns=["token.lemma"],
requires=[],
default_config={
"model": DEFAULT_EDIT_TREE_LEMMATIZER_MODEL,
"backoff": "orth",
"min_tree_freq": 3,
"overwrite": False,
"top_k": 1,
"scorer": {"@scorers": "spacy.lemmatizer_scorer.v1"},
},
default_score_weights={"lemma_acc": 1.0},
)
def make_edit_tree_lemmatizer(
nlp: Language,
name: str,
model: Model,
backoff: Optional[str],
min_tree_freq: int,
overwrite: bool,
top_k: int,
scorer: Optional[Callable],
):
"""Construct an EditTreeLemmatizer component."""
return EditTreeLemmatizer(
nlp.vocab,
model,
name,
backoff=backoff,
min_tree_freq=min_tree_freq,
overwrite=overwrite,
top_k=top_k,
scorer=scorer,
)
class EditTreeLemmatizer(TrainablePipe):
"""
Lemmatizer that lemmatizes each word using a predicted edit tree.
@ -421,3 +386,11 @@ class EditTreeLemmatizer(TrainablePipe):
self.tree2label[tree_id] = len(self.cfg["labels"])
self.cfg["labels"].append(tree_id)
return self.tree2label[tree_id]
# Setup backwards compatibility hook for factories
def __getattr__(name):
if name == "make_edit_tree_lemmatizer":
module = importlib.import_module("spacy.pipeline.factories")
return module.make_edit_tree_lemmatizer
raise AttributeError(f"module {__name__} has no attribute {name}")

View File

@ -1,4 +1,6 @@
import importlib
import random
import sys
from itertools import islice
from pathlib import Path
from typing import Any, Callable, Dict, Iterable, List, Optional, Union
@ -40,117 +42,10 @@ subword_features = true
DEFAULT_NEL_MODEL = Config().from_str(default_model_config)["model"]
@Language.factory(
"entity_linker",
requires=["doc.ents", "doc.sents", "token.ent_iob", "token.ent_type"],
assigns=["token.ent_kb_id"],
default_config={
"model": DEFAULT_NEL_MODEL,
"labels_discard": [],
"n_sents": 0,
"incl_prior": True,
"incl_context": True,
"entity_vector_length": 64,
"get_candidates": {"@misc": "spacy.CandidateGenerator.v1"},
"get_candidates_batch": {"@misc": "spacy.CandidateBatchGenerator.v1"},
"generate_empty_kb": {"@misc": "spacy.EmptyKB.v2"},
"overwrite": True,
"scorer": {"@scorers": "spacy.entity_linker_scorer.v1"},
"use_gold_ents": True,
"candidates_batch_size": 1,
"threshold": None,
},
default_score_weights={
"nel_micro_f": 1.0,
"nel_micro_r": None,
"nel_micro_p": None,
},
)
def make_entity_linker(
nlp: Language,
name: str,
model: Model,
*,
labels_discard: Iterable[str],
n_sents: int,
incl_prior: bool,
incl_context: bool,
entity_vector_length: int,
get_candidates: Callable[[KnowledgeBase, Span], Iterable[Candidate]],
get_candidates_batch: Callable[
[KnowledgeBase, Iterable[Span]], Iterable[Iterable[Candidate]]
],
generate_empty_kb: Callable[[Vocab, int], KnowledgeBase],
overwrite: bool,
scorer: Optional[Callable],
use_gold_ents: bool,
candidates_batch_size: int,
threshold: Optional[float] = None,
):
"""Construct an EntityLinker component.
model (Model[List[Doc], Floats2d]): A model that learns document vector
representations. Given a batch of Doc objects, it should return a single
array, with one row per item in the batch.
labels_discard (Iterable[str]): NER labels that will automatically get a "NIL" prediction.
n_sents (int): The number of neighbouring sentences to take into account.
incl_prior (bool): Whether or not to include prior probabilities from the KB in the model.
incl_context (bool): Whether or not to include the local context in the model.
entity_vector_length (int): Size of encoding vectors in the KB.
get_candidates (Callable[[KnowledgeBase, Span], Iterable[Candidate]]): Function that
produces a list of candidates, given a certain knowledge base and a textual mention.
get_candidates_batch (
Callable[[KnowledgeBase, Iterable[Span]], Iterable[Iterable[Candidate]]], Iterable[Candidate]]
): Function that produces a list of candidates, given a certain knowledge base and several textual mentions.
generate_empty_kb (Callable[[Vocab, int], KnowledgeBase]): Callable returning empty KnowledgeBase.
scorer (Optional[Callable]): The scoring method.
use_gold_ents (bool): Whether to copy entities from gold docs during training or not. If false, another
component must provide entity annotations.
candidates_batch_size (int): Size of batches for entity candidate generation.
threshold (Optional[float]): Confidence threshold for entity predictions. If confidence is below the threshold,
prediction is discarded. If None, predictions are not filtered by any threshold.
"""
if not model.attrs.get("include_span_maker", False):
# The only difference in arguments here is that use_gold_ents and threshold aren't available.
return EntityLinker_v1(
nlp.vocab,
model,
name,
labels_discard=labels_discard,
n_sents=n_sents,
incl_prior=incl_prior,
incl_context=incl_context,
entity_vector_length=entity_vector_length,
get_candidates=get_candidates,
overwrite=overwrite,
scorer=scorer,
)
return EntityLinker(
nlp.vocab,
model,
name,
labels_discard=labels_discard,
n_sents=n_sents,
incl_prior=incl_prior,
incl_context=incl_context,
entity_vector_length=entity_vector_length,
get_candidates=get_candidates,
get_candidates_batch=get_candidates_batch,
generate_empty_kb=generate_empty_kb,
overwrite=overwrite,
scorer=scorer,
use_gold_ents=use_gold_ents,
candidates_batch_size=candidates_batch_size,
threshold=threshold,
)
def entity_linker_score(examples, **kwargs):
return Scorer.score_links(examples, negative_labels=[EntityLinker.NIL], **kwargs)
@registry.scorers("spacy.entity_linker_scorer.v1")
def make_entity_linker_scorer():
return entity_linker_score
@ -676,3 +571,11 @@ class EntityLinker(TrainablePipe):
def add_label(self, label):
raise NotImplementedError
# Setup backwards compatibility hook for factories
def __getattr__(name):
if name == "make_entity_linker":
module = importlib.import_module("spacy.pipeline.factories")
return module.make_entity_linker
raise AttributeError(f"module {__name__} has no attribute {name}")

View File

@ -1,3 +1,5 @@
import importlib
import sys
import warnings
from collections import defaultdict
from pathlib import Path
@ -19,51 +21,10 @@ DEFAULT_ENT_ID_SEP = "||"
PatternType = Dict[str, Union[str, List[Dict[str, Any]]]]
@Language.factory(
"entity_ruler",
assigns=["doc.ents", "token.ent_type", "token.ent_iob"],
default_config={
"phrase_matcher_attr": None,
"matcher_fuzzy_compare": {"@misc": "spacy.levenshtein_compare.v1"},
"validate": False,
"overwrite_ents": False,
"ent_id_sep": DEFAULT_ENT_ID_SEP,
"scorer": {"@scorers": "spacy.entity_ruler_scorer.v1"},
},
default_score_weights={
"ents_f": 1.0,
"ents_p": 0.0,
"ents_r": 0.0,
"ents_per_type": None,
},
)
def make_entity_ruler(
nlp: Language,
name: str,
phrase_matcher_attr: Optional[Union[int, str]],
matcher_fuzzy_compare: Callable,
validate: bool,
overwrite_ents: bool,
ent_id_sep: str,
scorer: Optional[Callable],
):
return EntityRuler(
nlp,
name,
phrase_matcher_attr=phrase_matcher_attr,
matcher_fuzzy_compare=matcher_fuzzy_compare,
validate=validate,
overwrite_ents=overwrite_ents,
ent_id_sep=ent_id_sep,
scorer=scorer,
)
def entity_ruler_score(examples, **kwargs):
return get_ner_prf(examples)
@registry.scorers("spacy.entity_ruler_scorer.v1")
def make_entity_ruler_scorer():
return entity_ruler_score
@ -539,3 +500,11 @@ class EntityRuler(Pipe):
srsly.write_jsonl(path, self.patterns)
else:
to_disk(path, serializers, {})
# Setup backwards compatibility hook for factories
def __getattr__(name):
if name == "make_entity_ruler":
module = importlib.import_module("spacy.pipeline.factories")
return module.make_entity_ruler
raise AttributeError(f"module {__name__} has no attribute {name}")

929
spacy/pipeline/factories.py Normal file
View File

@ -0,0 +1,929 @@
from typing import Any, Callable, Dict, Iterable, List, Optional, Tuple, Union
from thinc.api import Model
from thinc.types import Floats2d, Ragged
from ..kb import Candidate, KnowledgeBase
from ..language import Language
from ..pipeline._parser_internals.transition_system import TransitionSystem
from ..pipeline.attributeruler import AttributeRuler
from ..pipeline.dep_parser import DEFAULT_PARSER_MODEL, DependencyParser
from ..pipeline.edit_tree_lemmatizer import (
DEFAULT_EDIT_TREE_LEMMATIZER_MODEL,
EditTreeLemmatizer,
)
# Import factory default configurations
from ..pipeline.entity_linker import DEFAULT_NEL_MODEL, EntityLinker, EntityLinker_v1
from ..pipeline.entityruler import DEFAULT_ENT_ID_SEP, EntityRuler
from ..pipeline.functions import DocCleaner, TokenSplitter
from ..pipeline.lemmatizer import Lemmatizer
from ..pipeline.morphologizer import DEFAULT_MORPH_MODEL, Morphologizer
from ..pipeline.multitask import DEFAULT_MT_MODEL, MultitaskObjective
from ..pipeline.ner import DEFAULT_NER_MODEL, EntityRecognizer
from ..pipeline.sentencizer import Sentencizer
from ..pipeline.senter import DEFAULT_SENTER_MODEL, SentenceRecognizer
from ..pipeline.span_finder import DEFAULT_SPAN_FINDER_MODEL, SpanFinder
from ..pipeline.span_ruler import DEFAULT_SPANS_KEY as SPAN_RULER_DEFAULT_SPANS_KEY
from ..pipeline.span_ruler import (
SpanRuler,
prioritize_existing_ents_filter,
prioritize_new_ents_filter,
)
from ..pipeline.spancat import (
DEFAULT_SPANCAT_MODEL,
DEFAULT_SPANCAT_SINGLELABEL_MODEL,
DEFAULT_SPANS_KEY,
SpanCategorizer,
Suggester,
)
from ..pipeline.tagger import DEFAULT_TAGGER_MODEL, Tagger
from ..pipeline.textcat import DEFAULT_SINGLE_TEXTCAT_MODEL, TextCategorizer
from ..pipeline.textcat_multilabel import (
DEFAULT_MULTI_TEXTCAT_MODEL,
MultiLabel_TextCategorizer,
)
from ..pipeline.tok2vec import DEFAULT_TOK2VEC_MODEL, Tok2Vec
from ..tokens.doc import Doc
from ..tokens.span import Span
from ..vocab import Vocab
# Global flag to track if factories have been registered
FACTORIES_REGISTERED = False
def register_factories() -> None:
"""Register all factories with the registry.
This function registers all pipeline component factories, centralizing
the registrations that were previously done with @Language.factory decorators.
"""
global FACTORIES_REGISTERED
if FACTORIES_REGISTERED:
return
# Register factories using the same pattern as Language.factory decorator
# We use Language.factory()() pattern which exactly mimics the decorator
# attributeruler
Language.factory(
"attribute_ruler",
default_config={
"validate": False,
"scorer": {"@scorers": "spacy.attribute_ruler_scorer.v1"},
},
)(make_attribute_ruler)
# entity_linker
Language.factory(
"entity_linker",
requires=["doc.ents", "doc.sents", "token.ent_iob", "token.ent_type"],
assigns=["token.ent_kb_id"],
default_config={
"model": DEFAULT_NEL_MODEL,
"labels_discard": [],
"n_sents": 0,
"incl_prior": True,
"incl_context": True,
"entity_vector_length": 64,
"get_candidates": {"@misc": "spacy.CandidateGenerator.v1"},
"get_candidates_batch": {"@misc": "spacy.CandidateBatchGenerator.v1"},
"generate_empty_kb": {"@misc": "spacy.EmptyKB.v2"},
"overwrite": True,
"scorer": {"@scorers": "spacy.entity_linker_scorer.v1"},
"use_gold_ents": True,
"candidates_batch_size": 1,
"threshold": None,
},
default_score_weights={
"nel_micro_f": 1.0,
"nel_micro_r": None,
"nel_micro_p": None,
},
)(make_entity_linker)
# entity_ruler
Language.factory(
"entity_ruler",
assigns=["doc.ents", "token.ent_type", "token.ent_iob"],
default_config={
"phrase_matcher_attr": None,
"matcher_fuzzy_compare": {"@misc": "spacy.levenshtein_compare.v1"},
"validate": False,
"overwrite_ents": False,
"ent_id_sep": DEFAULT_ENT_ID_SEP,
"scorer": {"@scorers": "spacy.entity_ruler_scorer.v1"},
},
default_score_weights={
"ents_f": 1.0,
"ents_p": 0.0,
"ents_r": 0.0,
"ents_per_type": None,
},
)(make_entity_ruler)
# lemmatizer
Language.factory(
"lemmatizer",
assigns=["token.lemma"],
default_config={
"model": None,
"mode": "lookup",
"overwrite": False,
"scorer": {"@scorers": "spacy.lemmatizer_scorer.v1"},
},
default_score_weights={"lemma_acc": 1.0},
)(make_lemmatizer)
# textcat
Language.factory(
"textcat",
assigns=["doc.cats"],
default_config={
"threshold": 0.0,
"model": DEFAULT_SINGLE_TEXTCAT_MODEL,
"scorer": {"@scorers": "spacy.textcat_scorer.v2"},
},
default_score_weights={
"cats_score": 1.0,
"cats_score_desc": None,
"cats_micro_p": None,
"cats_micro_r": None,
"cats_micro_f": None,
"cats_macro_p": None,
"cats_macro_r": None,
"cats_macro_f": None,
"cats_macro_auc": None,
"cats_f_per_type": None,
},
)(make_textcat)
# token_splitter
Language.factory(
"token_splitter",
default_config={"min_length": 25, "split_length": 10},
retokenizes=True,
)(make_token_splitter)
# doc_cleaner
Language.factory(
"doc_cleaner",
default_config={"attrs": {"tensor": None, "_.trf_data": None}, "silent": True},
)(make_doc_cleaner)
# tok2vec
Language.factory(
"tok2vec",
assigns=["doc.tensor"],
default_config={"model": DEFAULT_TOK2VEC_MODEL},
)(make_tok2vec)
# senter
Language.factory(
"senter",
assigns=["token.is_sent_start"],
default_config={
"model": DEFAULT_SENTER_MODEL,
"overwrite": False,
"scorer": {"@scorers": "spacy.senter_scorer.v1"},
},
default_score_weights={"sents_f": 1.0, "sents_p": 0.0, "sents_r": 0.0},
)(make_senter)
# morphologizer
Language.factory(
"morphologizer",
assigns=["token.morph", "token.pos"],
default_config={
"model": DEFAULT_MORPH_MODEL,
"overwrite": True,
"extend": False,
"scorer": {"@scorers": "spacy.morphologizer_scorer.v1"},
"label_smoothing": 0.0,
},
default_score_weights={
"pos_acc": 0.5,
"morph_acc": 0.5,
"morph_per_feat": None,
},
)(make_morphologizer)
# spancat
Language.factory(
"spancat",
assigns=["doc.spans"],
default_config={
"threshold": 0.5,
"spans_key": DEFAULT_SPANS_KEY,
"max_positive": None,
"model": DEFAULT_SPANCAT_MODEL,
"suggester": {"@misc": "spacy.ngram_suggester.v1", "sizes": [1, 2, 3]},
"scorer": {"@scorers": "spacy.spancat_scorer.v1"},
},
default_score_weights={"spans_sc_f": 1.0, "spans_sc_p": 0.0, "spans_sc_r": 0.0},
)(make_spancat)
# spancat_singlelabel
Language.factory(
"spancat_singlelabel",
assigns=["doc.spans"],
default_config={
"spans_key": DEFAULT_SPANS_KEY,
"model": DEFAULT_SPANCAT_SINGLELABEL_MODEL,
"negative_weight": 1.0,
"suggester": {"@misc": "spacy.ngram_suggester.v1", "sizes": [1, 2, 3]},
"scorer": {"@scorers": "spacy.spancat_scorer.v1"},
"allow_overlap": True,
},
default_score_weights={"spans_sc_f": 1.0, "spans_sc_p": 0.0, "spans_sc_r": 0.0},
)(make_spancat_singlelabel)
# future_entity_ruler
Language.factory(
"future_entity_ruler",
assigns=["doc.ents"],
default_config={
"phrase_matcher_attr": None,
"validate": False,
"overwrite_ents": False,
"scorer": {"@scorers": "spacy.entity_ruler_scorer.v1"},
"ent_id_sep": "__unused__",
"matcher_fuzzy_compare": {"@misc": "spacy.levenshtein_compare.v1"},
},
default_score_weights={
"ents_f": 1.0,
"ents_p": 0.0,
"ents_r": 0.0,
"ents_per_type": None,
},
)(make_future_entity_ruler)
# span_ruler
Language.factory(
"span_ruler",
assigns=["doc.spans"],
default_config={
"spans_key": SPAN_RULER_DEFAULT_SPANS_KEY,
"spans_filter": None,
"annotate_ents": False,
"ents_filter": {"@misc": "spacy.first_longest_spans_filter.v1"},
"phrase_matcher_attr": None,
"matcher_fuzzy_compare": {"@misc": "spacy.levenshtein_compare.v1"},
"validate": False,
"overwrite": True,
"scorer": {
"@scorers": "spacy.overlapping_labeled_spans_scorer.v1",
"spans_key": SPAN_RULER_DEFAULT_SPANS_KEY,
},
},
default_score_weights={
f"spans_{SPAN_RULER_DEFAULT_SPANS_KEY}_f": 1.0,
f"spans_{SPAN_RULER_DEFAULT_SPANS_KEY}_p": 0.0,
f"spans_{SPAN_RULER_DEFAULT_SPANS_KEY}_r": 0.0,
f"spans_{SPAN_RULER_DEFAULT_SPANS_KEY}_per_type": None,
},
)(make_span_ruler)
# trainable_lemmatizer
Language.factory(
"trainable_lemmatizer",
assigns=["token.lemma"],
requires=[],
default_config={
"model": DEFAULT_EDIT_TREE_LEMMATIZER_MODEL,
"backoff": "orth",
"min_tree_freq": 3,
"overwrite": False,
"top_k": 1,
"scorer": {"@scorers": "spacy.lemmatizer_scorer.v1"},
},
default_score_weights={"lemma_acc": 1.0},
)(make_edit_tree_lemmatizer)
# textcat_multilabel
Language.factory(
"textcat_multilabel",
assigns=["doc.cats"],
default_config={
"threshold": 0.5,
"model": DEFAULT_MULTI_TEXTCAT_MODEL,
"scorer": {"@scorers": "spacy.textcat_multilabel_scorer.v2"},
},
default_score_weights={
"cats_score": 1.0,
"cats_score_desc": None,
"cats_micro_p": None,
"cats_micro_r": None,
"cats_micro_f": None,
"cats_macro_p": None,
"cats_macro_r": None,
"cats_macro_f": None,
"cats_macro_auc": None,
"cats_f_per_type": None,
},
)(make_multilabel_textcat)
# span_finder
Language.factory(
"span_finder",
assigns=["doc.spans"],
default_config={
"threshold": 0.5,
"model": DEFAULT_SPAN_FINDER_MODEL,
"spans_key": DEFAULT_SPANS_KEY,
"max_length": 25,
"min_length": None,
"scorer": {"@scorers": "spacy.span_finder_scorer.v1"},
},
default_score_weights={
f"spans_{DEFAULT_SPANS_KEY}_f": 1.0,
f"spans_{DEFAULT_SPANS_KEY}_p": 0.0,
f"spans_{DEFAULT_SPANS_KEY}_r": 0.0,
},
)(make_span_finder)
# ner
Language.factory(
"ner",
assigns=["doc.ents", "token.ent_iob", "token.ent_type"],
default_config={
"moves": None,
"update_with_oracle_cut_size": 100,
"model": DEFAULT_NER_MODEL,
"incorrect_spans_key": None,
"scorer": {"@scorers": "spacy.ner_scorer.v1"},
},
default_score_weights={
"ents_f": 1.0,
"ents_p": 0.0,
"ents_r": 0.0,
"ents_per_type": None,
},
)(make_ner)
# beam_ner
Language.factory(
"beam_ner",
assigns=["doc.ents", "token.ent_iob", "token.ent_type"],
default_config={
"moves": None,
"update_with_oracle_cut_size": 100,
"model": DEFAULT_NER_MODEL,
"beam_density": 0.01,
"beam_update_prob": 0.5,
"beam_width": 32,
"incorrect_spans_key": None,
"scorer": {"@scorers": "spacy.ner_scorer.v1"},
},
default_score_weights={
"ents_f": 1.0,
"ents_p": 0.0,
"ents_r": 0.0,
"ents_per_type": None,
},
)(make_beam_ner)
# parser
Language.factory(
"parser",
assigns=["token.dep", "token.head", "token.is_sent_start", "doc.sents"],
default_config={
"moves": None,
"update_with_oracle_cut_size": 100,
"learn_tokens": False,
"min_action_freq": 30,
"model": DEFAULT_PARSER_MODEL,
"scorer": {"@scorers": "spacy.parser_scorer.v1"},
},
default_score_weights={
"dep_uas": 0.5,
"dep_las": 0.5,
"dep_las_per_type": None,
"sents_p": None,
"sents_r": None,
"sents_f": 0.0,
},
)(make_parser)
# beam_parser
Language.factory(
"beam_parser",
assigns=["token.dep", "token.head", "token.is_sent_start", "doc.sents"],
default_config={
"moves": None,
"update_with_oracle_cut_size": 100,
"learn_tokens": False,
"min_action_freq": 30,
"beam_width": 8,
"beam_density": 0.0001,
"beam_update_prob": 0.5,
"model": DEFAULT_PARSER_MODEL,
"scorer": {"@scorers": "spacy.parser_scorer.v1"},
},
default_score_weights={
"dep_uas": 0.5,
"dep_las": 0.5,
"dep_las_per_type": None,
"sents_p": None,
"sents_r": None,
"sents_f": 0.0,
},
)(make_beam_parser)
# tagger
Language.factory(
"tagger",
assigns=["token.tag"],
default_config={
"model": DEFAULT_TAGGER_MODEL,
"overwrite": False,
"scorer": {"@scorers": "spacy.tagger_scorer.v1"},
"neg_prefix": "!",
"label_smoothing": 0.0,
},
default_score_weights={
"tag_acc": 1.0,
"pos_acc": 0.0,
"tag_micro_p": None,
"tag_micro_r": None,
"tag_micro_f": None,
},
)(make_tagger)
# nn_labeller
Language.factory(
"nn_labeller",
default_config={
"labels": None,
"target": "dep_tag_offset",
"model": DEFAULT_MT_MODEL,
},
)(make_nn_labeller)
# sentencizer
Language.factory(
"sentencizer",
assigns=["token.is_sent_start", "doc.sents"],
default_config={
"punct_chars": None,
"overwrite": False,
"scorer": {"@scorers": "spacy.senter_scorer.v1"},
},
default_score_weights={"sents_f": 1.0, "sents_p": 0.0, "sents_r": 0.0},
)(make_sentencizer)
# Set the flag to indicate that all factories have been registered
FACTORIES_REGISTERED = True
# We can't have function implementations for these factories in Cython, because
# we need to build a Pydantic model for them dynamically, reading their argument
# structure from the signature. In Cython 3, this doesn't work because the
# from __future__ import annotations semantics are used, which means the types
# are stored as strings.
def make_sentencizer(
nlp: Language,
name: str,
punct_chars: Optional[List[str]],
overwrite: bool,
scorer: Optional[Callable],
):
return Sentencizer(
name, punct_chars=punct_chars, overwrite=overwrite, scorer=scorer
)
def make_attribute_ruler(
nlp: Language, name: str, validate: bool, scorer: Optional[Callable]
):
return AttributeRuler(nlp.vocab, name, validate=validate, scorer=scorer)
def make_entity_linker(
nlp: Language,
name: str,
model: Model,
*,
labels_discard: Iterable[str],
n_sents: int,
incl_prior: bool,
incl_context: bool,
entity_vector_length: int,
get_candidates: Callable[[KnowledgeBase, Span], Iterable[Candidate]],
get_candidates_batch: Callable[
[KnowledgeBase, Iterable[Span]], Iterable[Iterable[Candidate]]
],
generate_empty_kb: Callable[[Vocab, int], KnowledgeBase],
overwrite: bool,
scorer: Optional[Callable],
use_gold_ents: bool,
candidates_batch_size: int,
threshold: Optional[float] = None,
):
if not model.attrs.get("include_span_maker", False):
# The only difference in arguments here is that use_gold_ents and threshold aren't available.
return EntityLinker_v1(
nlp.vocab,
model,
name,
labels_discard=labels_discard,
n_sents=n_sents,
incl_prior=incl_prior,
incl_context=incl_context,
entity_vector_length=entity_vector_length,
get_candidates=get_candidates,
overwrite=overwrite,
scorer=scorer,
)
return EntityLinker(
nlp.vocab,
model,
name,
labels_discard=labels_discard,
n_sents=n_sents,
incl_prior=incl_prior,
incl_context=incl_context,
entity_vector_length=entity_vector_length,
get_candidates=get_candidates,
get_candidates_batch=get_candidates_batch,
generate_empty_kb=generate_empty_kb,
overwrite=overwrite,
scorer=scorer,
use_gold_ents=use_gold_ents,
candidates_batch_size=candidates_batch_size,
threshold=threshold,
)
def make_lemmatizer(
nlp: Language,
model: Optional[Model],
name: str,
mode: str,
overwrite: bool,
scorer: Optional[Callable],
):
return Lemmatizer(
nlp.vocab, model, name, mode=mode, overwrite=overwrite, scorer=scorer
)
def make_textcat(
nlp: Language,
name: str,
model: Model[List[Doc], List[Floats2d]],
threshold: float,
scorer: Optional[Callable],
) -> TextCategorizer:
return TextCategorizer(nlp.vocab, model, name, threshold=threshold, scorer=scorer)
def make_token_splitter(
nlp: Language, name: str, *, min_length: int = 0, split_length: int = 0
):
return TokenSplitter(min_length=min_length, split_length=split_length)
def make_doc_cleaner(nlp: Language, name: str, *, attrs: Dict[str, Any], silent: bool):
return DocCleaner(attrs, silent=silent)
def make_tok2vec(nlp: Language, name: str, model: Model) -> Tok2Vec:
return Tok2Vec(nlp.vocab, model, name)
def make_spancat(
nlp: Language,
name: str,
suggester: Suggester,
model: Model[Tuple[List[Doc], Ragged], Floats2d],
spans_key: str,
scorer: Optional[Callable],
threshold: float,
max_positive: Optional[int],
) -> SpanCategorizer:
return SpanCategorizer(
nlp.vocab,
model=model,
suggester=suggester,
name=name,
spans_key=spans_key,
negative_weight=None,
allow_overlap=True,
max_positive=max_positive,
threshold=threshold,
scorer=scorer,
add_negative_label=False,
)
def make_spancat_singlelabel(
nlp: Language,
name: str,
suggester: Suggester,
model: Model[Tuple[List[Doc], Ragged], Floats2d],
spans_key: str,
negative_weight: float,
allow_overlap: bool,
scorer: Optional[Callable],
) -> SpanCategorizer:
return SpanCategorizer(
nlp.vocab,
model=model,
suggester=suggester,
name=name,
spans_key=spans_key,
negative_weight=negative_weight,
allow_overlap=allow_overlap,
max_positive=1,
add_negative_label=True,
threshold=None,
scorer=scorer,
)
def make_future_entity_ruler(
nlp: Language,
name: str,
phrase_matcher_attr: Optional[Union[int, str]],
matcher_fuzzy_compare: Callable,
validate: bool,
overwrite_ents: bool,
scorer: Optional[Callable],
ent_id_sep: str,
):
if overwrite_ents:
ents_filter = prioritize_new_ents_filter
else:
ents_filter = prioritize_existing_ents_filter
return SpanRuler(
nlp,
name,
spans_key=None,
spans_filter=None,
annotate_ents=True,
ents_filter=ents_filter,
phrase_matcher_attr=phrase_matcher_attr,
matcher_fuzzy_compare=matcher_fuzzy_compare,
validate=validate,
overwrite=False,
scorer=scorer,
)
def make_entity_ruler(
nlp: Language,
name: str,
phrase_matcher_attr: Optional[Union[int, str]],
matcher_fuzzy_compare: Callable,
validate: bool,
overwrite_ents: bool,
ent_id_sep: str,
scorer: Optional[Callable],
):
return EntityRuler(
nlp,
name,
phrase_matcher_attr=phrase_matcher_attr,
matcher_fuzzy_compare=matcher_fuzzy_compare,
validate=validate,
overwrite_ents=overwrite_ents,
ent_id_sep=ent_id_sep,
scorer=scorer,
)
def make_span_ruler(
nlp: Language,
name: str,
spans_key: Optional[str],
spans_filter: Optional[Callable[[Iterable[Span], Iterable[Span]], Iterable[Span]]],
annotate_ents: bool,
ents_filter: Callable[[Iterable[Span], Iterable[Span]], Iterable[Span]],
phrase_matcher_attr: Optional[Union[int, str]],
matcher_fuzzy_compare: Callable,
validate: bool,
overwrite: bool,
scorer: Optional[Callable],
):
return SpanRuler(
nlp,
name,
spans_key=spans_key,
spans_filter=spans_filter,
annotate_ents=annotate_ents,
ents_filter=ents_filter,
phrase_matcher_attr=phrase_matcher_attr,
matcher_fuzzy_compare=matcher_fuzzy_compare,
validate=validate,
overwrite=overwrite,
scorer=scorer,
)
def make_edit_tree_lemmatizer(
nlp: Language,
name: str,
model: Model,
backoff: Optional[str],
min_tree_freq: int,
overwrite: bool,
top_k: int,
scorer: Optional[Callable],
):
return EditTreeLemmatizer(
nlp.vocab,
model,
name,
backoff=backoff,
min_tree_freq=min_tree_freq,
overwrite=overwrite,
top_k=top_k,
scorer=scorer,
)
def make_multilabel_textcat(
nlp: Language,
name: str,
model: Model[List[Doc], List[Floats2d]],
threshold: float,
scorer: Optional[Callable],
) -> MultiLabel_TextCategorizer:
return MultiLabel_TextCategorizer(
nlp.vocab, model, name, threshold=threshold, scorer=scorer
)
def make_span_finder(
nlp: Language,
name: str,
model: Model[Iterable[Doc], Floats2d],
spans_key: str,
threshold: float,
max_length: Optional[int],
min_length: Optional[int],
scorer: Optional[Callable],
) -> SpanFinder:
return SpanFinder(
nlp,
model=model,
threshold=threshold,
name=name,
scorer=scorer,
max_length=max_length,
min_length=min_length,
spans_key=spans_key,
)
def make_ner(
nlp: Language,
name: str,
model: Model,
moves: Optional[TransitionSystem],
update_with_oracle_cut_size: int,
incorrect_spans_key: Optional[str],
scorer: Optional[Callable],
):
return EntityRecognizer(
nlp.vocab,
model,
name=name,
moves=moves,
update_with_oracle_cut_size=update_with_oracle_cut_size,
incorrect_spans_key=incorrect_spans_key,
scorer=scorer,
)
def make_beam_ner(
nlp: Language,
name: str,
model: Model,
moves: Optional[TransitionSystem],
update_with_oracle_cut_size: int,
beam_width: int,
beam_density: float,
beam_update_prob: float,
incorrect_spans_key: Optional[str],
scorer: Optional[Callable],
):
return EntityRecognizer(
nlp.vocab,
model,
name=name,
moves=moves,
update_with_oracle_cut_size=update_with_oracle_cut_size,
beam_width=beam_width,
beam_density=beam_density,
beam_update_prob=beam_update_prob,
incorrect_spans_key=incorrect_spans_key,
scorer=scorer,
)
def make_parser(
nlp: Language,
name: str,
model: Model,
moves: Optional[TransitionSystem],
update_with_oracle_cut_size: int,
learn_tokens: bool,
min_action_freq: int,
scorer: Optional[Callable],
):
return DependencyParser(
nlp.vocab,
model,
name=name,
moves=moves,
update_with_oracle_cut_size=update_with_oracle_cut_size,
learn_tokens=learn_tokens,
min_action_freq=min_action_freq,
scorer=scorer,
)
def make_beam_parser(
nlp: Language,
name: str,
model: Model,
moves: Optional[TransitionSystem],
update_with_oracle_cut_size: int,
learn_tokens: bool,
min_action_freq: int,
beam_width: int,
beam_density: float,
beam_update_prob: float,
scorer: Optional[Callable],
):
return DependencyParser(
nlp.vocab,
model,
name=name,
moves=moves,
update_with_oracle_cut_size=update_with_oracle_cut_size,
learn_tokens=learn_tokens,
min_action_freq=min_action_freq,
beam_width=beam_width,
beam_density=beam_density,
beam_update_prob=beam_update_prob,
scorer=scorer,
)
def make_tagger(
nlp: Language,
name: str,
model: Model,
overwrite: bool,
scorer: Optional[Callable],
neg_prefix: str,
label_smoothing: float,
):
return Tagger(
nlp.vocab,
model,
name=name,
overwrite=overwrite,
scorer=scorer,
neg_prefix=neg_prefix,
label_smoothing=label_smoothing,
)
def make_nn_labeller(
nlp: Language, name: str, model: Model, labels: Optional[dict], target: str
):
return MultitaskObjective(nlp.vocab, model, name, target=target)
def make_morphologizer(
nlp: Language,
model: Model,
name: str,
overwrite: bool,
extend: bool,
label_smoothing: float,
scorer: Optional[Callable],
):
return Morphologizer(
nlp.vocab,
model,
name,
overwrite=overwrite,
extend=extend,
label_smoothing=label_smoothing,
scorer=scorer,
)
def make_senter(
nlp: Language, name: str, model: Model, overwrite: bool, scorer: Optional[Callable]
):
return SentenceRecognizer(
nlp.vocab, model, name, overwrite=overwrite, scorer=scorer
)

View File

@ -1,3 +1,5 @@
import importlib
import sys
import warnings
from typing import Any, Dict
@ -73,17 +75,6 @@ def merge_subtokens(doc: Doc, label: str = "subtok") -> Doc:
return doc
@Language.factory(
"token_splitter",
default_config={"min_length": 25, "split_length": 10},
retokenizes=True,
)
def make_token_splitter(
nlp: Language, name: str, *, min_length: int = 0, split_length: int = 0
):
return TokenSplitter(min_length=min_length, split_length=split_length)
class TokenSplitter:
def __init__(self, min_length: int = 0, split_length: int = 0):
self.min_length = min_length
@ -141,14 +132,6 @@ class TokenSplitter:
util.from_disk(path, serializers, [])
@Language.factory(
"doc_cleaner",
default_config={"attrs": {"tensor": None, "_.trf_data": None}, "silent": True},
)
def make_doc_cleaner(nlp: Language, name: str, *, attrs: Dict[str, Any], silent: bool):
return DocCleaner(attrs, silent=silent)
class DocCleaner:
def __init__(self, attrs: Dict[str, Any], *, silent: bool = True):
self.cfg: Dict[str, Any] = {"attrs": dict(attrs), "silent": silent}
@ -201,3 +184,14 @@ class DocCleaner:
"cfg": lambda p: self.cfg.update(srsly.read_json(p)),
}
util.from_disk(path, serializers, [])
# Setup backwards compatibility hook for factories
def __getattr__(name):
if name == "make_doc_cleaner":
module = importlib.import_module("spacy.pipeline.factories")
return module.make_doc_cleaner
elif name == "make_token_splitter":
module = importlib.import_module("spacy.pipeline.factories")
return module.make_token_splitter
raise AttributeError(f"module {__name__} has no attribute {name}")

View File

@ -1,3 +1,5 @@
import importlib
import sys
import warnings
from pathlib import Path
from typing import Any, Callable, Dict, Iterable, List, Optional, Tuple, Union
@ -16,35 +18,10 @@ from ..vocab import Vocab
from .pipe import Pipe
@Language.factory(
"lemmatizer",
assigns=["token.lemma"],
default_config={
"model": None,
"mode": "lookup",
"overwrite": False,
"scorer": {"@scorers": "spacy.lemmatizer_scorer.v1"},
},
default_score_weights={"lemma_acc": 1.0},
)
def make_lemmatizer(
nlp: Language,
model: Optional[Model],
name: str,
mode: str,
overwrite: bool,
scorer: Optional[Callable],
):
return Lemmatizer(
nlp.vocab, model, name, mode=mode, overwrite=overwrite, scorer=scorer
)
def lemmatizer_score(examples: Iterable[Example], **kwargs) -> Dict[str, Any]:
return Scorer.score_token_attr(examples, "lemma", **kwargs)
@registry.scorers("spacy.lemmatizer_scorer.v1")
def make_lemmatizer_scorer():
return lemmatizer_score
@ -241,7 +218,10 @@ class Lemmatizer(Pipe):
if not form:
pass
elif form in index or not form.isalpha():
forms.append(form)
if form in index:
forms.insert(0, form)
else:
forms.append(form)
else:
oov_forms.append(form)
# Remove duplicates but preserve the ordering of applied "rules"
@ -334,3 +314,11 @@ class Lemmatizer(Pipe):
util.from_bytes(bytes_data, deserialize, exclude)
self._validate_tables()
return self
# Setup backwards compatibility hook for factories
def __getattr__(name):
if name == "make_lemmatizer":
module = importlib.import_module("spacy.pipeline.factories")
return module.make_lemmatizer
raise AttributeError(f"module {__name__} has no attribute {name}")

View File

@ -1,4 +1,6 @@
# cython: infer_types=True, binding=True
import importlib
import sys
from itertools import islice
from typing import Callable, Dict, Optional, Union
@ -47,25 +49,6 @@ maxout_pieces = 3
DEFAULT_MORPH_MODEL = Config().from_str(default_model_config)["model"]
@Language.factory(
"morphologizer",
assigns=["token.morph", "token.pos"],
default_config={"model": DEFAULT_MORPH_MODEL, "overwrite": True, "extend": False,
"scorer": {"@scorers": "spacy.morphologizer_scorer.v1"}, "label_smoothing": 0.0},
default_score_weights={"pos_acc": 0.5, "morph_acc": 0.5, "morph_per_feat": None},
)
def make_morphologizer(
nlp: Language,
model: Model,
name: str,
overwrite: bool,
extend: bool,
label_smoothing: float,
scorer: Optional[Callable],
):
return Morphologizer(nlp.vocab, model, name, overwrite=overwrite, extend=extend, label_smoothing=label_smoothing, scorer=scorer)
def morphologizer_score(examples, **kwargs):
def morph_key_getter(token, attr):
return getattr(token, attr).key
@ -81,7 +64,6 @@ def morphologizer_score(examples, **kwargs):
return results
@registry.scorers("spacy.morphologizer_scorer.v1")
def make_morphologizer_scorer():
return morphologizer_score
@ -309,3 +291,11 @@ class Morphologizer(Tagger):
if self.model.ops.xp.isnan(loss):
raise ValueError(Errors.E910.format(name=self.name))
return float(loss), d_scores
# Setup backwards compatibility hook for factories
def __getattr__(name):
if name == "make_morphologizer":
module = importlib.import_module("spacy.pipeline.factories")
return module.make_morphologizer
raise AttributeError(f"module {__name__} has no attribute {name}")

View File

@ -1,4 +1,6 @@
# cython: infer_types=True, binding=True
import importlib
import sys
from typing import Optional
import numpy
@ -30,14 +32,6 @@ subword_features = true
DEFAULT_MT_MODEL = Config().from_str(default_model_config)["model"]
@Language.factory(
"nn_labeller",
default_config={"labels": None, "target": "dep_tag_offset", "model": DEFAULT_MT_MODEL}
)
def make_nn_labeller(nlp: Language, name: str, model: Model, labels: Optional[dict], target: str):
return MultitaskObjective(nlp.vocab, model, name)
class MultitaskObjective(Tagger):
"""Experimental: Assist training of a parser or tagger, by training a
side-objective.
@ -213,3 +207,11 @@ class ClozeMultitask(TrainablePipe):
def add_label(self, label):
raise NotImplementedError
# Setup backwards compatibility hook for factories
def __getattr__(name):
if name == "make_nn_labeller":
module = importlib.import_module("spacy.pipeline.factories")
return module.make_nn_labeller
raise AttributeError(f"module {__name__} has no attribute {name}")

View File

@ -1,4 +1,6 @@
# cython: infer_types=True, binding=True
import importlib
import sys
from collections import defaultdict
from typing import Callable, Optional
@ -36,154 +38,10 @@ subword_features = true
DEFAULT_NER_MODEL = Config().from_str(default_model_config)["model"]
@Language.factory(
"ner",
assigns=["doc.ents", "token.ent_iob", "token.ent_type"],
default_config={
"moves": None,
"update_with_oracle_cut_size": 100,
"model": DEFAULT_NER_MODEL,
"incorrect_spans_key": None,
"scorer": {"@scorers": "spacy.ner_scorer.v1"},
},
default_score_weights={"ents_f": 1.0, "ents_p": 0.0, "ents_r": 0.0, "ents_per_type": None},
)
def make_ner(
nlp: Language,
name: str,
model: Model,
moves: Optional[TransitionSystem],
update_with_oracle_cut_size: int,
incorrect_spans_key: Optional[str],
scorer: Optional[Callable],
):
"""Create a transition-based EntityRecognizer component. The entity recognizer
identifies non-overlapping labelled spans of tokens.
The transition-based algorithm used encodes certain assumptions that are
effective for "traditional" named entity recognition tasks, but may not be
a good fit for every span identification problem. Specifically, the loss
function optimizes for whole entity accuracy, so if your inter-annotator
agreement on boundary tokens is low, the component will likely perform poorly
on your problem. The transition-based algorithm also assumes that the most
decisive information about your entities will be close to their initial tokens.
If your entities are long and characterised by tokens in their middle, the
component will likely do poorly on your task.
model (Model): The model for the transition-based parser. The model needs
to have a specific substructure of named components --- see the
spacy.ml.tb_framework.TransitionModel for details.
moves (Optional[TransitionSystem]): This defines how the parse-state is created,
updated and evaluated. If 'moves' is None, a new instance is
created with `self.TransitionSystem()`. Defaults to `None`.
update_with_oracle_cut_size (int): During training, cut long sequences into
shorter segments by creating intermediate states based on the gold-standard
history. The model is not very sensitive to this parameter, so you usually
won't need to change it. 100 is a good default.
incorrect_spans_key (Optional[str]): Identifies spans that are known
to be incorrect entity annotations. The incorrect entity annotations
can be stored in the span group, under this key.
scorer (Optional[Callable]): The scoring method.
"""
return EntityRecognizer(
nlp.vocab,
model,
name,
moves=moves,
update_with_oracle_cut_size=update_with_oracle_cut_size,
incorrect_spans_key=incorrect_spans_key,
multitasks=[],
beam_width=1,
beam_density=0.0,
beam_update_prob=0.0,
scorer=scorer,
)
@Language.factory(
"beam_ner",
assigns=["doc.ents", "token.ent_iob", "token.ent_type"],
default_config={
"moves": None,
"update_with_oracle_cut_size": 100,
"model": DEFAULT_NER_MODEL,
"beam_density": 0.01,
"beam_update_prob": 0.5,
"beam_width": 32,
"incorrect_spans_key": None,
"scorer": None,
},
default_score_weights={"ents_f": 1.0, "ents_p": 0.0, "ents_r": 0.0, "ents_per_type": None},
)
def make_beam_ner(
nlp: Language,
name: str,
model: Model,
moves: Optional[TransitionSystem],
update_with_oracle_cut_size: int,
beam_width: int,
beam_density: float,
beam_update_prob: float,
incorrect_spans_key: Optional[str],
scorer: Optional[Callable],
):
"""Create a transition-based EntityRecognizer component that uses beam-search.
The entity recognizer identifies non-overlapping labelled spans of tokens.
The transition-based algorithm used encodes certain assumptions that are
effective for "traditional" named entity recognition tasks, but may not be
a good fit for every span identification problem. Specifically, the loss
function optimizes for whole entity accuracy, so if your inter-annotator
agreement on boundary tokens is low, the component will likely perform poorly
on your problem. The transition-based algorithm also assumes that the most
decisive information about your entities will be close to their initial tokens.
If your entities are long and characterised by tokens in their middle, the
component will likely do poorly on your task.
model (Model): The model for the transition-based parser. The model needs
to have a specific substructure of named components --- see the
spacy.ml.tb_framework.TransitionModel for details.
moves (Optional[TransitionSystem]): This defines how the parse-state is created,
updated and evaluated. If 'moves' is None, a new instance is
created with `self.TransitionSystem()`. Defaults to `None`.
update_with_oracle_cut_size (int): During training, cut long sequences into
shorter segments by creating intermediate states based on the gold-standard
history. The model is not very sensitive to this parameter, so you usually
won't need to change it. 100 is a good default.
beam_width (int): The number of candidate analyses to maintain.
beam_density (float): The minimum ratio between the scores of the first and
last candidates in the beam. This allows the parser to avoid exploring
candidates that are too far behind. This is mostly intended to improve
efficiency, but it can also improve accuracy as deeper search is not
always better.
beam_update_prob (float): The chance of making a beam update, instead of a
greedy update. Greedy updates are an approximation for the beam updates,
and are faster to compute.
incorrect_spans_key (Optional[str]): Optional key into span groups of
entities known to be non-entities.
scorer (Optional[Callable]): The scoring method.
"""
return EntityRecognizer(
nlp.vocab,
model,
name,
moves=moves,
update_with_oracle_cut_size=update_with_oracle_cut_size,
multitasks=[],
beam_width=beam_width,
beam_density=beam_density,
beam_update_prob=beam_update_prob,
incorrect_spans_key=incorrect_spans_key,
scorer=scorer,
)
def ner_score(examples, **kwargs):
return get_ner_prf(examples, **kwargs)
@registry.scorers("spacy.ner_scorer.v1")
def make_ner_scorer():
return ner_score
@ -261,3 +119,14 @@ cdef class EntityRecognizer(Parser):
score_dict[(start, end, label)] += score
entity_scores.append(score_dict)
return entity_scores
# Setup backwards compatibility hook for factories
def __getattr__(name):
if name == "make_ner":
module = importlib.import_module("spacy.pipeline.factories")
return module.make_ner
elif name == "make_beam_ner":
module = importlib.import_module("spacy.pipeline.factories")
return module.make_beam_ner
raise AttributeError(f"module {__name__} has no attribute {name}")

View File

@ -21,13 +21,6 @@ cdef class Pipe:
DOCS: https://spacy.io/api/pipe
"""
@classmethod
def __init_subclass__(cls, **kwargs):
"""Raise a warning if an inheriting class implements 'begin_training'
(from v2) instead of the new 'initialize' method (from v3)"""
if hasattr(cls, "begin_training"):
warnings.warn(Warnings.W088.format(name=cls.__name__))
def __call__(self, Doc doc) -> Doc:
"""Apply the pipe to one document. The document is modified in place,
and returned. This usually happens under the hood when the nlp object

View File

@ -1,4 +1,6 @@
# cython: infer_types=True, binding=True
import importlib
import sys
from typing import Callable, List, Optional
import srsly
@ -14,22 +16,6 @@ from .senter import senter_score
BACKWARD_OVERWRITE = False
@Language.factory(
"sentencizer",
assigns=["token.is_sent_start", "doc.sents"],
default_config={"punct_chars": None, "overwrite": False, "scorer": {"@scorers": "spacy.senter_scorer.v1"}},
default_score_weights={"sents_f": 1.0, "sents_p": 0.0, "sents_r": 0.0},
)
def make_sentencizer(
nlp: Language,
name: str,
punct_chars: Optional[List[str]],
overwrite: bool,
scorer: Optional[Callable],
):
return Sentencizer(name, punct_chars=punct_chars, overwrite=overwrite, scorer=scorer)
class Sentencizer(Pipe):
"""Segment the Doc into sentences using a rule-based strategy.
@ -181,3 +167,11 @@ class Sentencizer(Pipe):
self.punct_chars = set(cfg.get("punct_chars", self.default_punct_chars))
self.overwrite = cfg.get("overwrite", self.overwrite)
return self
# Setup backwards compatibility hook for factories
def __getattr__(name):
if name == "make_sentencizer":
module = importlib.import_module("spacy.pipeline.factories")
return module.make_sentencizer
raise AttributeError(f"module {__name__} has no attribute {name}")

View File

@ -1,4 +1,6 @@
# cython: infer_types=True, binding=True
import importlib
import sys
from itertools import islice
from typing import Callable, Optional
@ -34,16 +36,6 @@ subword_features = true
DEFAULT_SENTER_MODEL = Config().from_str(default_model_config)["model"]
@Language.factory(
"senter",
assigns=["token.is_sent_start"],
default_config={"model": DEFAULT_SENTER_MODEL, "overwrite": False, "scorer": {"@scorers": "spacy.senter_scorer.v1"}},
default_score_weights={"sents_f": 1.0, "sents_p": 0.0, "sents_r": 0.0},
)
def make_senter(nlp: Language, name: str, model: Model, overwrite: bool, scorer: Optional[Callable]):
return SentenceRecognizer(nlp.vocab, model, name, overwrite=overwrite, scorer=scorer)
def senter_score(examples, **kwargs):
def has_sents(doc):
return doc.has_annotation("SENT_START")
@ -53,7 +45,6 @@ def senter_score(examples, **kwargs):
return results
@registry.scorers("spacy.senter_scorer.v1")
def make_senter_scorer():
return senter_score
@ -185,3 +176,11 @@ class SentenceRecognizer(Tagger):
def add_label(self, label, values=None):
raise NotImplementedError
# Setup backwards compatibility hook for factories
def __getattr__(name):
if name == "make_senter":
module = importlib.import_module("spacy.pipeline.factories")
return module.make_senter
raise AttributeError(f"module {__name__} has no attribute {name}")

View File

@ -1,3 +1,5 @@
import importlib
import sys
from typing import Any, Callable, Dict, Iterable, List, Optional, Tuple
from thinc.api import Config, Model, Optimizer, set_dropout_rate
@ -41,63 +43,6 @@ depth = 4
DEFAULT_SPAN_FINDER_MODEL = Config().from_str(span_finder_default_config)["model"]
@Language.factory(
"span_finder",
assigns=["doc.spans"],
default_config={
"threshold": 0.5,
"model": DEFAULT_SPAN_FINDER_MODEL,
"spans_key": DEFAULT_SPANS_KEY,
"max_length": 25,
"min_length": None,
"scorer": {"@scorers": "spacy.span_finder_scorer.v1"},
},
default_score_weights={
f"spans_{DEFAULT_SPANS_KEY}_f": 1.0,
f"spans_{DEFAULT_SPANS_KEY}_p": 0.0,
f"spans_{DEFAULT_SPANS_KEY}_r": 0.0,
},
)
def make_span_finder(
nlp: Language,
name: str,
model: Model[Iterable[Doc], Floats2d],
spans_key: str,
threshold: float,
max_length: Optional[int],
min_length: Optional[int],
scorer: Optional[Callable],
) -> "SpanFinder":
"""Create a SpanFinder component. The component predicts whether a token is
the start or the end of a potential span.
model (Model[List[Doc], Floats2d]): A model instance that
is given a list of documents and predicts a probability for each token.
spans_key (str): Key of the doc.spans dict to save the spans under. During
initialization and training, the component will look for spans on the
reference document under the same key.
threshold (float): Minimum probability to consider a prediction positive.
max_length (Optional[int]): Maximum length of the produced spans, defaults
to None meaning unlimited length.
min_length (Optional[int]): Minimum length of the produced spans, defaults
to None meaning shortest span length is 1.
scorer (Optional[Callable]): The scoring method. Defaults to
Scorer.score_spans for the Doc.spans[spans_key] with overlapping
spans allowed.
"""
return SpanFinder(
nlp,
model=model,
threshold=threshold,
name=name,
scorer=scorer,
max_length=max_length,
min_length=min_length,
spans_key=spans_key,
)
@registry.scorers("spacy.span_finder_scorer.v1")
def make_span_finder_scorer():
return span_finder_score
@ -333,3 +278,11 @@ class SpanFinder(TrainablePipe):
self.model.initialize(X=docs, Y=Y)
else:
self.model.initialize()
# Setup backwards compatibility hook for factories
def __getattr__(name):
if name == "make_span_finder":
module = importlib.import_module("spacy.pipeline.factories")
return module.make_span_finder
raise AttributeError(f"module {__name__} has no attribute {name}")

View File

@ -1,3 +1,5 @@
import importlib
import sys
import warnings
from functools import partial
from pathlib import Path
@ -32,105 +34,6 @@ PatternType = Dict[str, Union[str, List[Dict[str, Any]]]]
DEFAULT_SPANS_KEY = "ruler"
@Language.factory(
"future_entity_ruler",
assigns=["doc.ents"],
default_config={
"phrase_matcher_attr": None,
"validate": False,
"overwrite_ents": False,
"scorer": {"@scorers": "spacy.entity_ruler_scorer.v1"},
"ent_id_sep": "__unused__",
"matcher_fuzzy_compare": {"@misc": "spacy.levenshtein_compare.v1"},
},
default_score_weights={
"ents_f": 1.0,
"ents_p": 0.0,
"ents_r": 0.0,
"ents_per_type": None,
},
)
def make_entity_ruler(
nlp: Language,
name: str,
phrase_matcher_attr: Optional[Union[int, str]],
matcher_fuzzy_compare: Callable,
validate: bool,
overwrite_ents: bool,
scorer: Optional[Callable],
ent_id_sep: str,
):
if overwrite_ents:
ents_filter = prioritize_new_ents_filter
else:
ents_filter = prioritize_existing_ents_filter
return SpanRuler(
nlp,
name,
spans_key=None,
spans_filter=None,
annotate_ents=True,
ents_filter=ents_filter,
phrase_matcher_attr=phrase_matcher_attr,
matcher_fuzzy_compare=matcher_fuzzy_compare,
validate=validate,
overwrite=False,
scorer=scorer,
)
@Language.factory(
"span_ruler",
assigns=["doc.spans"],
default_config={
"spans_key": DEFAULT_SPANS_KEY,
"spans_filter": None,
"annotate_ents": False,
"ents_filter": {"@misc": "spacy.first_longest_spans_filter.v1"},
"phrase_matcher_attr": None,
"matcher_fuzzy_compare": {"@misc": "spacy.levenshtein_compare.v1"},
"validate": False,
"overwrite": True,
"scorer": {
"@scorers": "spacy.overlapping_labeled_spans_scorer.v1",
"spans_key": DEFAULT_SPANS_KEY,
},
},
default_score_weights={
f"spans_{DEFAULT_SPANS_KEY}_f": 1.0,
f"spans_{DEFAULT_SPANS_KEY}_p": 0.0,
f"spans_{DEFAULT_SPANS_KEY}_r": 0.0,
f"spans_{DEFAULT_SPANS_KEY}_per_type": None,
},
)
def make_span_ruler(
nlp: Language,
name: str,
spans_key: Optional[str],
spans_filter: Optional[Callable[[Iterable[Span], Iterable[Span]], Iterable[Span]]],
annotate_ents: bool,
ents_filter: Callable[[Iterable[Span], Iterable[Span]], Iterable[Span]],
phrase_matcher_attr: Optional[Union[int, str]],
matcher_fuzzy_compare: Callable,
validate: bool,
overwrite: bool,
scorer: Optional[Callable],
):
return SpanRuler(
nlp,
name,
spans_key=spans_key,
spans_filter=spans_filter,
annotate_ents=annotate_ents,
ents_filter=ents_filter,
phrase_matcher_attr=phrase_matcher_attr,
matcher_fuzzy_compare=matcher_fuzzy_compare,
validate=validate,
overwrite=overwrite,
scorer=scorer,
)
def prioritize_new_ents_filter(
entities: Iterable[Span], spans: Iterable[Span]
) -> List[Span]:
@ -157,7 +60,6 @@ def prioritize_new_ents_filter(
return entities + new_entities
@registry.misc("spacy.prioritize_new_ents_filter.v1")
def make_prioritize_new_ents_filter():
return prioritize_new_ents_filter
@ -188,7 +90,6 @@ def prioritize_existing_ents_filter(
return entities + new_entities
@registry.misc("spacy.prioritize_existing_ents_filter.v1")
def make_preserve_existing_ents_filter():
return prioritize_existing_ents_filter
@ -208,7 +109,6 @@ def overlapping_labeled_spans_score(
return Scorer.score_spans(examples, **kwargs)
@registry.scorers("spacy.overlapping_labeled_spans_scorer.v1")
def make_overlapping_labeled_spans_scorer(spans_key: str = DEFAULT_SPANS_KEY):
return partial(overlapping_labeled_spans_score, spans_key=spans_key)
@ -595,3 +495,14 @@ class SpanRuler(Pipe):
"patterns": lambda p: srsly.write_jsonl(p, self.patterns),
}
util.to_disk(path, serializers, {})
# Setup backwards compatibility hook for factories
def __getattr__(name):
if name == "make_span_ruler":
module = importlib.import_module("spacy.pipeline.factories")
return module.make_span_ruler
elif name == "make_entity_ruler":
module = importlib.import_module("spacy.pipeline.factories")
return module.make_future_entity_ruler
raise AttributeError(f"module {__name__} has no attribute {name}")

View File

@ -1,3 +1,5 @@
import importlib
import sys
from dataclasses import dataclass
from functools import partial
from typing import Any, Callable, Dict, Iterable, List, Optional, Tuple, Union, cast
@ -134,7 +136,6 @@ def preset_spans_suggester(
return output
@registry.misc("spacy.ngram_suggester.v1")
def build_ngram_suggester(sizes: List[int]) -> Suggester:
"""Suggest all spans of the given lengths. Spans are returned as a ragged
array of integers. The array has two columns, indicating the start and end
@ -143,7 +144,6 @@ def build_ngram_suggester(sizes: List[int]) -> Suggester:
return partial(ngram_suggester, sizes=sizes)
@registry.misc("spacy.ngram_range_suggester.v1")
def build_ngram_range_suggester(min_size: int, max_size: int) -> Suggester:
"""Suggest all spans of the given lengths between a given min and max value - both inclusive.
Spans are returned as a ragged array of integers. The array has two columns,
@ -152,7 +152,6 @@ def build_ngram_range_suggester(min_size: int, max_size: int) -> Suggester:
return build_ngram_suggester(sizes)
@registry.misc("spacy.preset_spans_suggester.v1")
def build_preset_spans_suggester(spans_key: str) -> Suggester:
"""Suggest all spans that are already stored in doc.spans[spans_key].
This is useful when an upstream component is used to set the spans
@ -160,136 +159,6 @@ def build_preset_spans_suggester(spans_key: str) -> Suggester:
return partial(preset_spans_suggester, spans_key=spans_key)
@Language.factory(
"spancat",
assigns=["doc.spans"],
default_config={
"threshold": 0.5,
"spans_key": DEFAULT_SPANS_KEY,
"max_positive": None,
"model": DEFAULT_SPANCAT_MODEL,
"suggester": {"@misc": "spacy.ngram_suggester.v1", "sizes": [1, 2, 3]},
"scorer": {"@scorers": "spacy.spancat_scorer.v1"},
},
default_score_weights={"spans_sc_f": 1.0, "spans_sc_p": 0.0, "spans_sc_r": 0.0},
)
def make_spancat(
nlp: Language,
name: str,
suggester: Suggester,
model: Model[Tuple[List[Doc], Ragged], Floats2d],
spans_key: str,
scorer: Optional[Callable],
threshold: float,
max_positive: Optional[int],
) -> "SpanCategorizer":
"""Create a SpanCategorizer component and configure it for multi-label
classification to be able to assign multiple labels for each span.
The span categorizer consists of two
parts: a suggester function that proposes candidate spans, and a labeller
model that predicts one or more labels for each span.
name (str): The component instance name, used to add entries to the
losses during training.
suggester (Callable[[Iterable[Doc], Optional[Ops]], Ragged]): A function that suggests spans.
Spans are returned as a ragged array with two integer columns, for the
start and end positions.
model (Model[Tuple[List[Doc], Ragged], Floats2d]): A model instance that
is given a list of documents and (start, end) indices representing
candidate span offsets. The model predicts a probability for each category
for each span.
spans_key (str): Key of the doc.spans dict to save the spans under. During
initialization and training, the component will look for spans on the
reference document under the same key.
scorer (Optional[Callable]): The scoring method. Defaults to
Scorer.score_spans for the Doc.spans[spans_key] with overlapping
spans allowed.
threshold (float): Minimum probability to consider a prediction positive.
Spans with a positive prediction will be saved on the Doc. Defaults to
0.5.
max_positive (Optional[int]): Maximum number of labels to consider positive
per span. Defaults to None, indicating no limit.
"""
return SpanCategorizer(
nlp.vocab,
model=model,
suggester=suggester,
name=name,
spans_key=spans_key,
negative_weight=None,
allow_overlap=True,
max_positive=max_positive,
threshold=threshold,
scorer=scorer,
add_negative_label=False,
)
@Language.factory(
"spancat_singlelabel",
assigns=["doc.spans"],
default_config={
"spans_key": DEFAULT_SPANS_KEY,
"model": DEFAULT_SPANCAT_SINGLELABEL_MODEL,
"negative_weight": 1.0,
"suggester": {"@misc": "spacy.ngram_suggester.v1", "sizes": [1, 2, 3]},
"scorer": {"@scorers": "spacy.spancat_scorer.v1"},
"allow_overlap": True,
},
default_score_weights={"spans_sc_f": 1.0, "spans_sc_p": 0.0, "spans_sc_r": 0.0},
)
def make_spancat_singlelabel(
nlp: Language,
name: str,
suggester: Suggester,
model: Model[Tuple[List[Doc], Ragged], Floats2d],
spans_key: str,
negative_weight: float,
allow_overlap: bool,
scorer: Optional[Callable],
) -> "SpanCategorizer":
"""Create a SpanCategorizer component and configure it for multi-class
classification. With this configuration each span can get at most one
label. The span categorizer consists of two
parts: a suggester function that proposes candidate spans, and a labeller
model that predicts one or more labels for each span.
name (str): The component instance name, used to add entries to the
losses during training.
suggester (Callable[[Iterable[Doc], Optional[Ops]], Ragged]): A function that suggests spans.
Spans are returned as a ragged array with two integer columns, for the
start and end positions.
model (Model[Tuple[List[Doc], Ragged], Floats2d]): A model instance that
is given a list of documents and (start, end) indices representing
candidate span offsets. The model predicts a probability for each category
for each span.
spans_key (str): Key of the doc.spans dict to save the spans under. During
initialization and training, the component will look for spans on the
reference document under the same key.
scorer (Optional[Callable]): The scoring method. Defaults to
Scorer.score_spans for the Doc.spans[spans_key] with overlapping
spans allowed.
negative_weight (float): Multiplier for the loss terms.
Can be used to downweight the negative samples if there are too many.
allow_overlap (bool): If True the data is assumed to contain overlapping spans.
Otherwise it produces non-overlapping spans greedily prioritizing
higher assigned label scores.
"""
return SpanCategorizer(
nlp.vocab,
model=model,
suggester=suggester,
name=name,
spans_key=spans_key,
negative_weight=negative_weight,
allow_overlap=allow_overlap,
max_positive=1,
add_negative_label=True,
threshold=None,
scorer=scorer,
)
def spancat_score(examples: Iterable[Example], **kwargs) -> Dict[str, Any]:
kwargs = dict(kwargs)
attr_prefix = "spans_"
@ -303,7 +172,6 @@ def spancat_score(examples: Iterable[Example], **kwargs) -> Dict[str, Any]:
return Scorer.score_spans(examples, **kwargs)
@registry.scorers("spacy.spancat_scorer.v1")
def make_spancat_scorer():
return spancat_score
@ -785,3 +653,14 @@ class SpanCategorizer(TrainablePipe):
spans.attrs["scores"] = numpy.array(attrs_scores)
return spans
# Setup backwards compatibility hook for factories
def __getattr__(name):
if name == "make_spancat":
module = importlib.import_module("spacy.pipeline.factories")
return module.make_spancat
elif name == "make_spancat_singlelabel":
module = importlib.import_module("spacy.pipeline.factories")
return module.make_spancat_singlelabel
raise AttributeError(f"module {__name__} has no attribute {name}")

View File

@ -1,4 +1,6 @@
# cython: infer_types=True, binding=True
import importlib
import sys
from itertools import islice
from typing import Callable, Optional
@ -35,36 +37,10 @@ subword_features = true
DEFAULT_TAGGER_MODEL = Config().from_str(default_model_config)["model"]
@Language.factory(
"tagger",
assigns=["token.tag"],
default_config={"model": DEFAULT_TAGGER_MODEL, "overwrite": False, "scorer": {"@scorers": "spacy.tagger_scorer.v1"}, "neg_prefix": "!", "label_smoothing": 0.0},
default_score_weights={"tag_acc": 1.0},
)
def make_tagger(
nlp: Language,
name: str,
model: Model,
overwrite: bool,
scorer: Optional[Callable],
neg_prefix: str,
label_smoothing: float,
):
"""Construct a part-of-speech tagger component.
model (Model[List[Doc], List[Floats2d]]): A model instance that predicts
the tag probabilities. The output vectors should match the number of tags
in size, and be normalized as probabilities (all scores between 0 and 1,
with the rows summing to 1).
"""
return Tagger(nlp.vocab, model, name, overwrite=overwrite, scorer=scorer, neg_prefix=neg_prefix, label_smoothing=label_smoothing)
def tagger_score(examples, **kwargs):
return Scorer.score_token_attr(examples, "tag", **kwargs)
@registry.scorers("spacy.tagger_scorer.v1")
def make_tagger_scorer():
return tagger_score
@ -317,3 +293,11 @@ class Tagger(TrainablePipe):
self.cfg["labels"].append(label)
self.vocab.strings.add(label)
return 1
# Setup backwards compatibility hook for factories
def __getattr__(name):
if name == "make_tagger":
module = importlib.import_module("spacy.pipeline.factories")
return module.make_tagger
raise AttributeError(f"module {__name__} has no attribute {name}")

View File

@ -1,3 +1,5 @@
import importlib
import sys
from itertools import islice
from typing import Any, Callable, Dict, Iterable, List, Optional, Tuple
@ -74,46 +76,6 @@ subword_features = true
"""
@Language.factory(
"textcat",
assigns=["doc.cats"],
default_config={
"threshold": 0.0,
"model": DEFAULT_SINGLE_TEXTCAT_MODEL,
"scorer": {"@scorers": "spacy.textcat_scorer.v2"},
},
default_score_weights={
"cats_score": 1.0,
"cats_score_desc": None,
"cats_micro_p": None,
"cats_micro_r": None,
"cats_micro_f": None,
"cats_macro_p": None,
"cats_macro_r": None,
"cats_macro_f": None,
"cats_macro_auc": None,
"cats_f_per_type": None,
},
)
def make_textcat(
nlp: Language,
name: str,
model: Model[List[Doc], List[Floats2d]],
threshold: float,
scorer: Optional[Callable],
) -> "TextCategorizer":
"""Create a TextCategorizer component. The text categorizer predicts categories
over a whole document. It can learn one or more labels, and the labels are considered
to be mutually exclusive (i.e. one true label per doc).
model (Model[List[Doc], List[Floats2d]]): A model instance that predicts
scores for each category.
threshold (float): Cutoff to consider a prediction "positive".
scorer (Optional[Callable]): The scoring method.
"""
return TextCategorizer(nlp.vocab, model, name, threshold=threshold, scorer=scorer)
def textcat_score(examples: Iterable[Example], **kwargs) -> Dict[str, Any]:
return Scorer.score_cats(
examples,
@ -123,7 +85,6 @@ def textcat_score(examples: Iterable[Example], **kwargs) -> Dict[str, Any]:
)
@registry.scorers("spacy.textcat_scorer.v2")
def make_textcat_scorer():
return textcat_score
@ -412,3 +373,11 @@ class TextCategorizer(TrainablePipe):
for val in vals:
if not (val == 1.0 or val == 0.0):
raise ValueError(Errors.E851.format(val=val))
# Setup backwards compatibility hook for factories
def __getattr__(name):
if name == "make_textcat":
module = importlib.import_module("spacy.pipeline.factories")
return module.make_textcat
raise AttributeError(f"module {__name__} has no attribute {name}")

View File

@ -1,3 +1,5 @@
import importlib
import sys
from itertools import islice
from typing import Any, Callable, Dict, Iterable, List, Optional
@ -72,49 +74,6 @@ subword_features = true
"""
@Language.factory(
"textcat_multilabel",
assigns=["doc.cats"],
default_config={
"threshold": 0.5,
"model": DEFAULT_MULTI_TEXTCAT_MODEL,
"scorer": {"@scorers": "spacy.textcat_multilabel_scorer.v2"},
},
default_score_weights={
"cats_score": 1.0,
"cats_score_desc": None,
"cats_micro_p": None,
"cats_micro_r": None,
"cats_micro_f": None,
"cats_macro_p": None,
"cats_macro_r": None,
"cats_macro_f": None,
"cats_macro_auc": None,
"cats_f_per_type": None,
},
)
def make_multilabel_textcat(
nlp: Language,
name: str,
model: Model[List[Doc], List[Floats2d]],
threshold: float,
scorer: Optional[Callable],
) -> "MultiLabel_TextCategorizer":
"""Create a MultiLabel_TextCategorizer component. The text categorizer predicts categories
over a whole document. It can learn one or more labels, and the labels are considered
to be non-mutually exclusive, which means that there can be zero or more labels
per doc).
model (Model[List[Doc], List[Floats2d]]): A model instance that predicts
scores for each category.
threshold (float): Cutoff to consider a prediction "positive".
scorer (Optional[Callable]): The scoring method.
"""
return MultiLabel_TextCategorizer(
nlp.vocab, model, name, threshold=threshold, scorer=scorer
)
def textcat_multilabel_score(examples: Iterable[Example], **kwargs) -> Dict[str, Any]:
return Scorer.score_cats(
examples,
@ -124,7 +83,6 @@ def textcat_multilabel_score(examples: Iterable[Example], **kwargs) -> Dict[str,
)
@registry.scorers("spacy.textcat_multilabel_scorer.v2")
def make_textcat_multilabel_scorer():
return textcat_multilabel_score
@ -212,3 +170,11 @@ class MultiLabel_TextCategorizer(TextCategorizer):
for val in ex.reference.cats.values():
if not (val == 1.0 or val == 0.0):
raise ValueError(Errors.E851.format(val=val))
# Setup backwards compatibility hook for factories
def __getattr__(name):
if name == "make_multilabel_textcat":
module = importlib.import_module("spacy.pipeline.factories")
return module.make_multilabel_textcat
raise AttributeError(f"module {__name__} has no attribute {name}")

View File

@ -1,3 +1,5 @@
import importlib
import sys
from itertools import islice
from typing import Any, Callable, Dict, Iterable, List, Optional, Sequence
@ -24,13 +26,6 @@ subword_features = true
DEFAULT_TOK2VEC_MODEL = Config().from_str(default_model_config)["model"]
@Language.factory(
"tok2vec", assigns=["doc.tensor"], default_config={"model": DEFAULT_TOK2VEC_MODEL}
)
def make_tok2vec(nlp: Language, name: str, model: Model) -> "Tok2Vec":
return Tok2Vec(nlp.vocab, model, name)
class Tok2Vec(TrainablePipe):
"""Apply a "token-to-vector" model and set its outputs in the doc.tensor
attribute. This is mostly useful to share a single subnetwork between multiple
@ -320,3 +315,11 @@ def forward(model: Tok2VecListener, inputs, is_train: bool):
def _empty_backprop(dX): # for pickling
return []
# Setup backwards compatibility hook for factories
def __getattr__(name):
if name == "make_tok2vec":
module = importlib.import_module("spacy.pipeline.factories")
return module.make_tok2vec
raise AttributeError(f"module {__name__} has no attribute {name}")

View File

@ -19,7 +19,7 @@ cdef class Parser(TrainablePipe):
StateC** states,
WeightsC weights,
SizesC sizes
) nogil
) noexcept nogil
cdef void c_transition_batch(
self,
@ -27,4 +27,4 @@ cdef class Parser(TrainablePipe):
const float* scores,
int nr_class,
int batch_size
) nogil
) noexcept nogil

View File

@ -316,7 +316,7 @@ cdef class Parser(TrainablePipe):
cdef void _parseC(
self, CBlas cblas, StateC** states, WeightsC weights, SizesC sizes
) nogil:
) noexcept nogil:
cdef int i
cdef vector[StateC*] unfinished
cdef ActivationsC activations = alloc_activations(sizes)
@ -359,7 +359,7 @@ cdef class Parser(TrainablePipe):
const float* scores,
int nr_class,
int batch_size
) nogil:
) noexcept nogil:
# n_moves should not be zero at this point, but make sure to avoid zero-length mem alloc
with gil:
assert self.moves.n_moves > 0, Errors.E924.format(name=self.name)

245
spacy/registrations.py Normal file
View File

@ -0,0 +1,245 @@
"""Centralized registry population for spaCy config
This module centralizes registry decorations to prevent circular import issues
with Cython annotation changes from __future__ import annotations. Functions
remain in their original locations, but decoration is moved here.
Component definitions and registrations are in spacy/pipeline/factories.py
"""
# Global flag to track if registry has been populated
REGISTRY_POPULATED = False
def populate_registry() -> None:
"""Populate the registry with all necessary components.
This function should be called before accessing the registry, to ensure
it's populated. The function uses a global flag to prevent repopulation.
"""
global REGISTRY_POPULATED
if REGISTRY_POPULATED:
return
# Import all necessary modules
from .lang.ja import create_tokenizer as create_japanese_tokenizer
from .lang.ko import create_tokenizer as create_korean_tokenizer
from .lang.th import create_thai_tokenizer
from .lang.vi import create_vietnamese_tokenizer
from .lang.zh import create_chinese_tokenizer
from .language import load_lookups_data
from .matcher.levenshtein import make_levenshtein_compare
from .ml.models.entity_linker import (
create_candidates,
create_candidates_batch,
empty_kb,
empty_kb_for_config,
load_kb,
)
from .pipeline.attributeruler import make_attribute_ruler_scorer
from .pipeline.dep_parser import make_parser_scorer
# Import the functions we refactored by removing direct registry decorators
from .pipeline.entity_linker import make_entity_linker_scorer
from .pipeline.entityruler import (
make_entity_ruler_scorer as make_entityruler_scorer,
)
from .pipeline.lemmatizer import make_lemmatizer_scorer
from .pipeline.morphologizer import make_morphologizer_scorer
from .pipeline.ner import make_ner_scorer
from .pipeline.senter import make_senter_scorer
from .pipeline.span_finder import make_span_finder_scorer
from .pipeline.span_ruler import (
make_overlapping_labeled_spans_scorer,
make_preserve_existing_ents_filter,
make_prioritize_new_ents_filter,
)
from .pipeline.spancat import (
build_ngram_range_suggester,
build_ngram_suggester,
build_preset_spans_suggester,
make_spancat_scorer,
)
# Import all pipeline components that were using registry decorators
from .pipeline.tagger import make_tagger_scorer
from .pipeline.textcat import make_textcat_scorer
from .pipeline.textcat_multilabel import make_textcat_multilabel_scorer
from .util import make_first_longest_spans_filter, registry
# Register miscellaneous components
registry.misc("spacy.first_longest_spans_filter.v1")(
make_first_longest_spans_filter
)
registry.misc("spacy.ngram_suggester.v1")(build_ngram_suggester)
registry.misc("spacy.ngram_range_suggester.v1")(build_ngram_range_suggester)
registry.misc("spacy.preset_spans_suggester.v1")(build_preset_spans_suggester)
registry.misc("spacy.prioritize_new_ents_filter.v1")(
make_prioritize_new_ents_filter
)
registry.misc("spacy.prioritize_existing_ents_filter.v1")(
make_preserve_existing_ents_filter
)
registry.misc("spacy.levenshtein_compare.v1")(make_levenshtein_compare)
# KB-related registrations
registry.misc("spacy.KBFromFile.v1")(load_kb)
registry.misc("spacy.EmptyKB.v2")(empty_kb_for_config)
registry.misc("spacy.EmptyKB.v1")(empty_kb)
registry.misc("spacy.CandidateGenerator.v1")(create_candidates)
registry.misc("spacy.CandidateBatchGenerator.v1")(create_candidates_batch)
registry.misc("spacy.LookupsDataLoader.v1")(load_lookups_data)
# Need to get references to the existing functions in registry by importing the function that is there
# For the registry that was previously decorated
# Import ML components that use registry
from .language import create_tokenizer
from .ml._precomputable_affine import PrecomputableAffine
from .ml.callbacks import (
create_models_and_pipes_with_nvtx_range,
create_models_with_nvtx_range,
)
from .ml.extract_ngrams import extract_ngrams
from .ml.extract_spans import extract_spans
# Import decorator-removed ML components
from .ml.featureextractor import FeatureExtractor
from .ml.models.entity_linker import build_nel_encoder
from .ml.models.multi_task import (
create_pretrain_characters,
create_pretrain_vectors,
)
from .ml.models.parser import build_tb_parser_model
from .ml.models.span_finder import build_finder_model
from .ml.models.spancat import (
build_linear_logistic,
build_mean_max_reducer,
build_spancat_model,
)
from .ml.models.tagger import build_tagger_model
from .ml.models.textcat import (
build_bow_text_classifier,
build_bow_text_classifier_v3,
build_reduce_text_classifier,
build_simple_cnn_text_classifier,
build_text_classifier_lowdata,
build_text_classifier_v2,
build_textcat_parametric_attention_v1,
)
from .ml.models.tok2vec import (
BiLSTMEncoder,
CharacterEmbed,
MaxoutWindowEncoder,
MishWindowEncoder,
MultiHashEmbed,
build_hash_embed_cnn_tok2vec,
build_Tok2Vec_model,
tok2vec_listener_v1,
)
from .ml.staticvectors import StaticVectors
from .ml.tb_framework import TransitionModel
from .training.augment import (
create_combined_augmenter,
create_lower_casing_augmenter,
create_orth_variants_augmenter,
)
from .training.batchers import (
configure_minibatch,
configure_minibatch_by_padded_size,
configure_minibatch_by_words,
)
from .training.callbacks import create_copy_from_base_model
from .training.loggers import console_logger, console_logger_v3
# Register scorers
registry.scorers("spacy.tagger_scorer.v1")(make_tagger_scorer)
registry.scorers("spacy.ner_scorer.v1")(make_ner_scorer)
# span_ruler_scorer removed as it's not in span_ruler.py
registry.scorers("spacy.entity_ruler_scorer.v1")(make_entityruler_scorer)
registry.scorers("spacy.senter_scorer.v1")(make_senter_scorer)
registry.scorers("spacy.textcat_scorer.v1")(make_textcat_scorer)
registry.scorers("spacy.textcat_scorer.v2")(make_textcat_scorer)
registry.scorers("spacy.textcat_multilabel_scorer.v1")(
make_textcat_multilabel_scorer
)
registry.scorers("spacy.textcat_multilabel_scorer.v2")(
make_textcat_multilabel_scorer
)
registry.scorers("spacy.lemmatizer_scorer.v1")(make_lemmatizer_scorer)
registry.scorers("spacy.span_finder_scorer.v1")(make_span_finder_scorer)
registry.scorers("spacy.spancat_scorer.v1")(make_spancat_scorer)
registry.scorers("spacy.entity_linker_scorer.v1")(make_entity_linker_scorer)
registry.scorers("spacy.overlapping_labeled_spans_scorer.v1")(
make_overlapping_labeled_spans_scorer
)
registry.scorers("spacy.attribute_ruler_scorer.v1")(make_attribute_ruler_scorer)
registry.scorers("spacy.parser_scorer.v1")(make_parser_scorer)
registry.scorers("spacy.morphologizer_scorer.v1")(make_morphologizer_scorer)
# Register tokenizers
registry.tokenizers("spacy.Tokenizer.v1")(create_tokenizer)
registry.tokenizers("spacy.ja.JapaneseTokenizer")(create_japanese_tokenizer)
registry.tokenizers("spacy.zh.ChineseTokenizer")(create_chinese_tokenizer)
registry.tokenizers("spacy.ko.KoreanTokenizer")(create_korean_tokenizer)
registry.tokenizers("spacy.vi.VietnameseTokenizer")(create_vietnamese_tokenizer)
registry.tokenizers("spacy.th.ThaiTokenizer")(create_thai_tokenizer)
# Register tok2vec architectures we've modified
registry.architectures("spacy.Tok2VecListener.v1")(tok2vec_listener_v1)
registry.architectures("spacy.HashEmbedCNN.v2")(build_hash_embed_cnn_tok2vec)
registry.architectures("spacy.Tok2Vec.v2")(build_Tok2Vec_model)
registry.architectures("spacy.MultiHashEmbed.v2")(MultiHashEmbed)
registry.architectures("spacy.CharacterEmbed.v2")(CharacterEmbed)
registry.architectures("spacy.MaxoutWindowEncoder.v2")(MaxoutWindowEncoder)
registry.architectures("spacy.MishWindowEncoder.v2")(MishWindowEncoder)
registry.architectures("spacy.TorchBiLSTMEncoder.v1")(BiLSTMEncoder)
registry.architectures("spacy.EntityLinker.v2")(build_nel_encoder)
registry.architectures("spacy.TextCatCNN.v2")(build_simple_cnn_text_classifier)
registry.architectures("spacy.TextCatBOW.v2")(build_bow_text_classifier)
registry.architectures("spacy.TextCatBOW.v3")(build_bow_text_classifier_v3)
registry.architectures("spacy.TextCatEnsemble.v2")(build_text_classifier_v2)
registry.architectures("spacy.TextCatLowData.v1")(build_text_classifier_lowdata)
registry.architectures("spacy.TextCatParametricAttention.v1")(
build_textcat_parametric_attention_v1
)
registry.architectures("spacy.TextCatReduce.v1")(build_reduce_text_classifier)
registry.architectures("spacy.SpanCategorizer.v1")(build_spancat_model)
registry.architectures("spacy.SpanFinder.v1")(build_finder_model)
registry.architectures("spacy.TransitionBasedParser.v2")(build_tb_parser_model)
registry.architectures("spacy.PretrainVectors.v1")(create_pretrain_vectors)
registry.architectures("spacy.PretrainCharacters.v1")(create_pretrain_characters)
registry.architectures("spacy.Tagger.v2")(build_tagger_model)
# Register layers
registry.layers("spacy.FeatureExtractor.v1")(FeatureExtractor)
registry.layers("spacy.extract_spans.v1")(extract_spans)
registry.layers("spacy.extract_ngrams.v1")(extract_ngrams)
registry.layers("spacy.LinearLogistic.v1")(build_linear_logistic)
registry.layers("spacy.mean_max_reducer.v1")(build_mean_max_reducer)
registry.layers("spacy.StaticVectors.v2")(StaticVectors)
registry.layers("spacy.PrecomputableAffine.v1")(PrecomputableAffine)
registry.layers("spacy.CharEmbed.v1")(CharacterEmbed)
registry.layers("spacy.TransitionModel.v1")(TransitionModel)
# Register callbacks
registry.callbacks("spacy.copy_from_base_model.v1")(create_copy_from_base_model)
registry.callbacks("spacy.models_with_nvtx_range.v1")(create_models_with_nvtx_range)
registry.callbacks("spacy.models_and_pipes_with_nvtx_range.v1")(
create_models_and_pipes_with_nvtx_range
)
# Register loggers
registry.loggers("spacy.ConsoleLogger.v2")(console_logger)
registry.loggers("spacy.ConsoleLogger.v3")(console_logger_v3)
# Register batchers
registry.batchers("spacy.batch_by_padded.v1")(configure_minibatch_by_padded_size)
registry.batchers("spacy.batch_by_words.v1")(configure_minibatch_by_words)
registry.batchers("spacy.batch_by_sequence.v1")(configure_minibatch)
# Register augmenters
registry.augmenters("spacy.combined_augmenter.v1")(create_combined_augmenter)
registry.augmenters("spacy.lower_case.v1")(create_lower_casing_augmenter)
registry.augmenters("spacy.orth_variants.v1")(create_orth_variants_augmenter)
# Set the flag to indicate that the registry has been populated
REGISTRY_POPULATED = True

View File

@ -25,5 +25,7 @@ cdef class StringStore:
cdef vector[hash_t] keys
cdef public PreshMap _map
cdef const Utf8Str* intern_unicode(self, str py_string)
cdef const Utf8Str* _intern_utf8(self, char* utf8_string, int length, hash_t* precalculated_hash)
cdef const Utf8Str* intern_unicode(self, str py_string, bint allow_transient)
cdef const Utf8Str* _intern_utf8(self, char* utf8_string, int length, hash_t* precalculated_hash, bint allow_transient)
cdef vector[hash_t] _transient_keys
cdef Pool _non_temp_mem

View File

@ -1,9 +1,14 @@
# cython: infer_types=True
# cython: profile=False
cimport cython
from contextlib import contextmanager
from typing import List, Optional
from libc.stdint cimport uint32_t
from libc.string cimport memcpy
from murmurhash.mrmr cimport hash32, hash64
from preshed.maps cimport map_clear
import srsly
@ -31,7 +36,7 @@ def get_string_id(key):
This function optimises for convenience over performance, so shouldn't be
used in tight loops.
"""
cdef hash_t str_hash
cdef hash_t str_hash
if isinstance(key, str):
if len(key) == 0:
return 0
@ -45,8 +50,8 @@ def get_string_id(key):
elif _try_coerce_to_hash(key, &str_hash):
# Coerce the integral key to the expected primitive hash type.
# This ensures that custom/overloaded "primitive" data types
# such as those implemented by numpy are not inadvertently used
# downsteam (as these are internally implemented as custom PyObjects
# such as those implemented by numpy are not inadvertently used
# downsteam (as these are internally implemented as custom PyObjects
# whose comparison operators can incur a significant overhead).
return str_hash
else:
@ -119,10 +124,11 @@ cdef class StringStore:
strings (iterable): A sequence of unicode strings to add to the store.
"""
self.mem = Pool()
self._non_temp_mem = self.mem
self._map = PreshMap()
if strings is not None:
for string in strings:
self.add(string)
self.add(string, allow_transient=False)
def __getitem__(self, object string_or_id):
"""Retrieve a string from a given hash, or vice versa.
@ -152,14 +158,17 @@ cdef class StringStore:
return SYMBOLS_BY_INT[str_hash]
else:
utf8str = <Utf8Str*>self._map.get(str_hash)
if utf8str is NULL:
raise KeyError(Errors.E018.format(hash_value=string_or_id))
else:
return decode_Utf8Str(utf8str)
else:
# TODO: Raise an error instead
utf8str = <Utf8Str*>self._map.get(string_or_id)
if utf8str is NULL:
raise KeyError(Errors.E018.format(hash_value=string_or_id))
else:
return decode_Utf8Str(utf8str)
if utf8str is NULL:
raise KeyError(Errors.E018.format(hash_value=string_or_id))
else:
return decode_Utf8Str(utf8str)
def as_int(self, key):
"""If key is an int, return it; otherwise, get the int value."""
@ -175,12 +184,48 @@ cdef class StringStore:
else:
return self[key]
def add(self, string):
def __len__(self) -> int:
"""The number of strings in the store.
RETURNS (int): The number of strings in the store.
"""
return self.keys.size() + self._transient_keys.size()
@contextmanager
def memory_zone(self, mem: Optional[Pool] = None) -> Pool:
"""Begin a block where all resources allocated during the block will
be freed at the end of it. If a resources was created within the
memory zone block, accessing it outside the block is invalid.
Behaviour of this invalid access is undefined. Memory zones should
not be nested.
The memory zone is helpful for services that need to process large
volumes of text with a defined memory budget.
"""
if mem is None:
mem = Pool()
self.mem = mem
yield mem
for key in self._transient_keys:
map_clear(self._map.c_map, key)
self._transient_keys.clear()
self.mem = self._non_temp_mem
def add(self, string: str, allow_transient: Optional[bool] = None) -> int:
"""Add a string to the StringStore.
string (str): The string to add.
allow_transient (bool): Allow the string to be stored in the 'transient'
map, which will be flushed at the end of the memory zone. Strings
encountered during arbitrary text processing should be added
with allow_transient=True, while labels and other strings used
internally should not.
RETURNS (uint64): The string's hash value.
"""
if not string:
return 0
if allow_transient is None:
allow_transient = self.mem is not self._non_temp_mem
cdef hash_t str_hash
if isinstance(string, str):
if string in SYMBOLS_BY_STR:
@ -188,22 +233,26 @@ cdef class StringStore:
string = string.encode("utf8")
str_hash = hash_utf8(string, len(string))
self._intern_utf8(string, len(string), &str_hash)
self._intern_utf8(string, len(string), &str_hash, allow_transient)
elif isinstance(string, bytes):
if string in SYMBOLS_BY_STR:
return SYMBOLS_BY_STR[string]
str_hash = hash_utf8(string, len(string))
self._intern_utf8(string, len(string), &str_hash)
self._intern_utf8(string, len(string), &str_hash, allow_transient)
else:
raise TypeError(Errors.E017.format(value_type=type(string)))
return str_hash
def __len__(self):
"""The number of strings in the store.
if string in SYMBOLS_BY_STR:
return SYMBOLS_BY_STR[string]
else:
return self._intern_str(string, allow_transient)
RETURNS (int): The number of strings in the store.
"""
return self.keys.size()
return self.keys.size() + self._transient_keys.size()
def __contains__(self, string_or_id not None):
"""Check whether a string or ID is in the store.
@ -222,12 +271,17 @@ cdef class StringStore:
pass
else:
# TODO: Raise an error instead
return self._map.get(string_or_id) is not NULL
if self._map.get(string_or_id) is not NULL:
return True
else:
return False
if str_hash < len(SYMBOLS_BY_INT):
return True
else:
return self._map.get(str_hash) is not NULL
if self._map.get(str_hash) is not NULL:
return True
else:
return False
def __iter__(self):
"""Iterate over the strings in the store, in order.
@ -240,12 +294,29 @@ cdef class StringStore:
key = self.keys[i]
utf8str = <Utf8Str*>self._map.get(key)
yield decode_Utf8Str(utf8str)
# TODO: Iterate OOV here?
for i in range(self._transient_keys.size()):
key = self._transient_keys[i]
utf8str = <Utf8Str*>self._map.get(key)
yield decode_Utf8Str(utf8str)
def __reduce__(self):
strings = list(self)
return (StringStore, (strings,), None, None, None)
def values(self) -> List[int]:
"""Iterate over the stored strings hashes in insertion order.
RETURNS: A list of string hashs.
"""
cdef int i
hashes = [None] * self._keys.size()
for i in range(self._keys.size()):
hashes[i] = self._keys[i]
transient_hashes = [None] * self._transient_keys.size()
for i in range(self._transient_keys.size()):
transient_hashes[i] = self._transient_keys[i]
return hashes + transient_hashes
def to_disk(self, path):
"""Save the current state to a directory.
@ -269,7 +340,7 @@ cdef class StringStore:
prev = list(self)
self._reset_and_load(strings)
for word in prev:
self.add(word)
self.add(word, allow_transient=False)
return self
def to_bytes(self, **kwargs):
@ -289,30 +360,38 @@ cdef class StringStore:
prev = list(self)
self._reset_and_load(strings)
for word in prev:
self.add(word)
self.add(word, allow_transient=False)
return self
def _reset_and_load(self, strings):
self.mem = Pool()
self._non_temp_mem = self.mem
self._map = PreshMap()
self.keys.clear()
self._transient_keys.clear()
for string in strings:
self.add(string)
self.add(string, allow_transient=False)
cdef const Utf8Str* intern_unicode(self, str py_string):
cdef const Utf8Str* intern_unicode(self, str py_string, bint allow_transient):
# 0 means missing, but we don't bother offsetting the index.
cdef bytes byte_string = py_string.encode("utf8")
return self._intern_utf8(byte_string, len(byte_string), NULL)
return self._intern_utf8(byte_string, len(byte_string), NULL, allow_transient)
@cython.final
cdef const Utf8Str* _intern_utf8(self, char* utf8_string, int length, hash_t* precalculated_hash):
cdef const Utf8Str* _intern_utf8(self, char* utf8_string, int length, hash_t* precalculated_hash, bint allow_transient):
# TODO: This function's API/behaviour is an unholy mess...
# 0 means missing, but we don't bother offsetting the index.
cdef hash_t key = precalculated_hash[0] if precalculated_hash is not NULL else hash_utf8(utf8_string, length)
cdef Utf8Str* value = <Utf8Str*>self._map.get(key)
if value is not NULL:
return value
value = _allocate(self.mem, <unsigned char*>utf8_string, length)
if allow_transient:
value = _allocate(self.mem, <unsigned char*>utf8_string, length)
else:
value = _allocate(self._non_temp_mem, <unsigned char*>utf8_string, length)
self._map.set(key, value)
self.keys.push_back(key)
if allow_transient and self.mem is not self._non_temp_mem:
self._transient_keys.push_back(key)
else:
self.keys.push_back(key)
return value

View File

@ -479,3 +479,4 @@ NAMES = [it[0] for it in sorted(IDS.items(), key=sort_nums)]
# (which is generating an enormous amount of C++ in Cython 0.24+)
# We keep the enum cdef, and just make sure the names are available to Python
locals().update(IDS)

View File

@ -81,6 +81,11 @@ def bn_tokenizer():
return get_lang_class("bn")().tokenizer
@pytest.fixture(scope="session")
def bo_tokenizer():
return get_lang_class("bo")().tokenizer
@pytest.fixture(scope="session")
def ca_tokenizer():
return get_lang_class("ca")().tokenizer
@ -207,6 +212,16 @@ def hr_tokenizer():
return get_lang_class("hr")().tokenizer
@pytest.fixture(scope="session")
def ht_tokenizer():
return get_lang_class("ht")().tokenizer
@pytest.fixture(scope="session")
def ht_vocab():
return get_lang_class("ht")().vocab
@pytest.fixture
def hu_tokenizer():
return get_lang_class("hu")().tokenizer

Some files were not shown because too many files have changed in this diff Show More