mirror of
https://github.com/explosion/spaCy.git
synced 2025-08-03 11:50:19 +03:00
Compare commits
101 Commits
release-v3
...
master
Author | SHA1 | Date | |
---|---|---|---|
|
41e07772dc | ||
|
e8f40e2169 | ||
|
7b1d6e58ff | ||
|
864c2f3b51 | ||
|
75a9d9b9ad | ||
|
bec546cec0 | ||
|
46613e27cf | ||
|
b205ff65e6 | ||
|
92f1b8cdb4 | ||
|
4b65aa79ee | ||
|
d08f4e3b10 | ||
|
6036f344d3 | ||
|
5bebbf7550 | ||
|
911539e9a4 | ||
|
22c1bc785b | ||
|
cb5e760e91 | ||
|
87ec2b72a5 | ||
|
aa8de0ed37 | ||
|
98a19df91a | ||
|
92bd042502 | ||
|
d0c705cbc9 | ||
|
b3c46c315e | ||
|
d194f06437 | ||
|
055e07d9cc | ||
|
8e1c14e977 | ||
|
4278182dd0 | ||
|
85cc763006 | ||
|
ba7468e32e | ||
|
311f7cc9fb | ||
|
682140496a | ||
|
343f4f21d7 | ||
|
be0fa812c2 | ||
|
a6317b3836 | ||
|
3e30b5bef6 | ||
|
3ecec1324c | ||
|
15fbf5ef36 | ||
|
1ee9a19059 | ||
|
0d7e57fc3e | ||
|
ae5c3e078d | ||
|
8d2902b0e7 | ||
|
44d1906453 | ||
|
52a4cb0d14 | ||
|
10a6f508ab | ||
|
bda4bb0184 | ||
|
628c973db5 | ||
|
e0782c5e4c | ||
|
5230754986 | ||
|
411b70f5f3 | ||
|
08705f5a8c | ||
|
77177d0216 | ||
|
5196366af5 | ||
|
29232ad3b5 | ||
|
dd47fbb45f | ||
|
63f1b53c1a | ||
|
0cdcfe56cb | ||
|
924cbc9703 | ||
|
e1d050517d | ||
|
6c038aaae0 | ||
|
f0084b9143 | ||
|
ff81bfb8db | ||
|
9c5b61bdff | ||
|
725ccbac39 | ||
|
a8837beab7 | ||
|
3a0aadcf86 | ||
|
a61a1d43cf | ||
|
114b4894fb | ||
|
dec13b4258 | ||
|
c03f060527 | ||
|
6255cb985f | ||
|
3b165a8716 | ||
|
969832f5d6 | ||
|
8ce53a6bbe | ||
|
6fa0d709d5 | ||
|
5010fcbd3a | ||
|
de4f19f3a3 | ||
|
3d03565498 | ||
|
0576a1ff56 | ||
|
2f1e7ed09a | ||
|
e2dc9b79e1 | ||
|
3c3d75015b | ||
|
50aa3b5cbe | ||
|
8266031454 | ||
|
8dcc4b8daf | ||
|
30f1f33e78 | ||
|
f1a5ff9dba | ||
|
c80dacd046 | ||
|
7fbbb2002a | ||
|
89c1774d43 | ||
|
081e4e385d | ||
|
0190e669c5 | ||
|
54dc4ee8fb | ||
|
5a7ad5572c | ||
|
b18cc94451 | ||
|
4cc3ebe74e | ||
|
a019315534 | ||
|
59ac7e6bdb | ||
|
b65491b641 | ||
|
1b8d560d0e | ||
|
608f65ce40 | ||
|
acbf2a428f | ||
|
55db9c2e87 |
4
.github/workflows/cibuildwheel.yml
vendored
4
.github/workflows/cibuildwheel.yml
vendored
|
@ -14,7 +14,7 @@ jobs:
|
|||
strategy:
|
||||
matrix:
|
||||
# macos-13 is an intel runner, macos-14 is apple silicon
|
||||
os: [ubuntu-latest, windows-latest, macos-13, macos-14]
|
||||
os: [ubuntu-latest, windows-latest, macos-13, macos-14, ubuntu-24.04-arm]
|
||||
|
||||
steps:
|
||||
- uses: actions/checkout@v4
|
||||
|
@ -26,7 +26,7 @@ jobs:
|
|||
# with:
|
||||
# platforms: all
|
||||
- name: Build wheels
|
||||
uses: pypa/cibuildwheel@v2.19.1
|
||||
uses: pypa/cibuildwheel@v2.21.3
|
||||
env:
|
||||
CIBW_ARCHS_LINUX: auto
|
||||
with:
|
||||
|
|
33
.github/workflows/tests.yml
vendored
33
.github/workflows/tests.yml
vendored
|
@ -2,6 +2,8 @@ name: tests
|
|||
|
||||
on:
|
||||
push:
|
||||
tags-ignore:
|
||||
- '**'
|
||||
branches-ignore:
|
||||
- "spacy.io"
|
||||
- "nightly.spacy.io"
|
||||
|
@ -10,7 +12,6 @@ on:
|
|||
- "*.md"
|
||||
- "*.mdx"
|
||||
- "website/**"
|
||||
- ".github/workflows/**"
|
||||
pull_request:
|
||||
types: [opened, synchronize, reopened, edited]
|
||||
paths-ignore:
|
||||
|
@ -30,7 +31,7 @@ jobs:
|
|||
- name: Configure Python version
|
||||
uses: actions/setup-python@v4
|
||||
with:
|
||||
python-version: "3.7"
|
||||
python-version: "3.10"
|
||||
|
||||
- name: black
|
||||
run: |
|
||||
|
@ -44,11 +45,12 @@ jobs:
|
|||
run: |
|
||||
python -m pip install flake8==5.0.4
|
||||
python -m flake8 spacy --count --select=E901,E999,F821,F822,F823,W605 --show-source --statistics
|
||||
- name: cython-lint
|
||||
run: |
|
||||
python -m pip install cython-lint -c requirements.txt
|
||||
# E501: line too log, W291: trailing whitespace, E266: too many leading '#' for block comment
|
||||
cython-lint spacy --ignore E501,W291,E266
|
||||
# Unfortunately cython-lint isn't working after the shift to Cython 3.
|
||||
#- name: cython-lint
|
||||
# run: |
|
||||
# python -m pip install cython-lint -c requirements.txt
|
||||
# # E501: line too log, W291: trailing whitespace, E266: too many leading '#' for block comment
|
||||
# cython-lint spacy --ignore E501,W291,E266
|
||||
|
||||
tests:
|
||||
name: Test
|
||||
|
@ -57,18 +59,7 @@ jobs:
|
|||
fail-fast: true
|
||||
matrix:
|
||||
os: [ubuntu-latest, windows-latest, macos-latest]
|
||||
python_version: ["3.12"]
|
||||
include:
|
||||
- os: windows-latest
|
||||
python_version: "3.7"
|
||||
- os: macos-latest
|
||||
python_version: "3.8"
|
||||
- os: ubuntu-latest
|
||||
python_version: "3.9"
|
||||
- os: windows-latest
|
||||
python_version: "3.10"
|
||||
- os: macos-latest
|
||||
python_version: "3.11"
|
||||
python_version: ["3.9", "3.12", "3.13"]
|
||||
|
||||
runs-on: ${{ matrix.os }}
|
||||
|
||||
|
@ -157,7 +148,9 @@ jobs:
|
|||
- name: "Test assemble CLI"
|
||||
run: |
|
||||
python -c "import spacy; config = spacy.util.load_config('ner.cfg'); config['components']['ner'] = {'source': 'ca_core_news_sm'}; config.to_disk('ner_source_sm.cfg')"
|
||||
PYTHONWARNINGS="error,ignore::DeprecationWarning" python -m spacy assemble ner_source_sm.cfg output_dir
|
||||
python -m spacy assemble ner_source_sm.cfg output_dir
|
||||
env:
|
||||
PYTHONWARNINGS: "error,ignore::DeprecationWarning"
|
||||
if: matrix.python_version == '3.9'
|
||||
|
||||
- name: "Test assemble CLI vectors warning"
|
||||
|
|
|
@ -35,7 +35,7 @@ so that more people can benefit from it.
|
|||
|
||||
When opening an issue, use a **descriptive title** and include your
|
||||
**environment** (operating system, Python version, spaCy version). Our
|
||||
[issue template](https://github.com/explosion/spaCy/issues/new) helps you
|
||||
[issue templates](https://github.com/explosion/spaCy/issues/new/choose) help you
|
||||
remember the most important details to include. If you've discovered a bug, you
|
||||
can also submit a [regression test](#fixing-bugs) straight away. When you're
|
||||
opening an issue to report the bug, simply refer to your pull request in the
|
||||
|
@ -449,8 +449,8 @@ and plugins in spaCy v3.0, and we can't wait to see what you build with it!
|
|||
[`spacy`](https://github.com/topics/spacy?o=desc&s=stars) and
|
||||
[`spacy-extensions`](https://github.com/topics/spacy-extension?o=desc&s=stars)
|
||||
to make it easier to find. Those are also the topics we're linking to from the
|
||||
spaCy website. If you're sharing your project on Twitter, feel free to tag
|
||||
[@spacy_io](https://twitter.com/spacy_io) so we can check it out.
|
||||
spaCy website. If you're sharing your project on X, feel free to tag
|
||||
[@spacy_io](https://x.com/spacy_io) so we can check it out.
|
||||
|
||||
- Once your extension is published, you can open a
|
||||
[PR](https://github.com/explosion/spaCy/pulls) to suggest it for the
|
||||
|
|
|
@ -4,5 +4,6 @@ include README.md
|
|||
include pyproject.toml
|
||||
include spacy/py.typed
|
||||
recursive-include spacy/cli *.yml
|
||||
recursive-include spacy/tests *.json
|
||||
recursive-include licenses *
|
||||
recursive-exclude spacy *.cpp
|
||||
|
|
12
README.md
12
README.md
|
@ -16,7 +16,7 @@ model packaging, deployment and workflow management. spaCy is commercial
|
|||
open-source software, released under the
|
||||
[MIT license](https://github.com/explosion/spaCy/blob/master/LICENSE).
|
||||
|
||||
💫 **Version 3.7 out now!**
|
||||
💫 **Version 3.8 out now!**
|
||||
[Check out the release notes here.](https://github.com/explosion/spaCy/releases)
|
||||
|
||||
[](https://github.com/explosion/spaCy/actions/workflows/tests.yml)
|
||||
|
@ -28,7 +28,6 @@ open-source software, released under the
|
|||
<br />
|
||||
[](https://pypi.org/project/spacy/)
|
||||
[](https://anaconda.org/conda-forge/spacy)
|
||||
[](https://twitter.com/spacy_io)
|
||||
|
||||
## 📖 Documentation
|
||||
|
||||
|
@ -47,6 +46,7 @@ open-source software, released under the
|
|||
| 👩🏫 **[Online Course]** | Learn spaCy in this free and interactive online course. |
|
||||
| 📰 **[Blog]** | Read about current spaCy and Prodigy development, releases, talks and more from Explosion. |
|
||||
| 📺 **[Videos]** | Our YouTube channel with video tutorials, talks and more. |
|
||||
| 🔴 **[Live Stream]** | Join Matt as he works on spaCy and chat about NLP, live every week. |
|
||||
| 🛠 **[Changelog]** | Changes and version history. |
|
||||
| 💝 **[Contribute]** | How to contribute to the spaCy project and code base. |
|
||||
| 👕 **[Swag]** | Support us and our work with unique, custom-designed swag! |
|
||||
|
@ -62,6 +62,7 @@ open-source software, released under the
|
|||
[universe]: https://spacy.io/universe
|
||||
[spacy vs code extension]: https://github.com/explosion/spacy-vscode
|
||||
[videos]: https://www.youtube.com/c/ExplosionAI
|
||||
[live stream]: https://www.youtube.com/playlist?list=PLBmcuObd5An5_iAxNYLJa_xWmNzsYce8c
|
||||
[online course]: https://course.spacy.io
|
||||
[blog]: https://explosion.ai
|
||||
[project templates]: https://github.com/explosion/projects
|
||||
|
@ -79,13 +80,14 @@ more people can benefit from it.
|
|||
| Type | Platforms |
|
||||
| ------------------------------- | --------------------------------------- |
|
||||
| 🚨 **Bug Reports** | [GitHub Issue Tracker] |
|
||||
| 🎁 **Feature Requests & Ideas** | [GitHub Discussions] |
|
||||
| 🎁 **Feature Requests & Ideas** | [GitHub Discussions] · [Live Stream] |
|
||||
| 👩💻 **Usage Questions** | [GitHub Discussions] · [Stack Overflow] |
|
||||
| 🗯 **General Discussion** | [GitHub Discussions] |
|
||||
| 🗯 **General Discussion** | [GitHub Discussions] · [Live Stream] |
|
||||
|
||||
[github issue tracker]: https://github.com/explosion/spaCy/issues
|
||||
[github discussions]: https://github.com/explosion/spaCy/discussions
|
||||
[stack overflow]: https://stackoverflow.com/questions/tagged/spacy
|
||||
[live stream]: https://www.youtube.com/playlist?list=PLBmcuObd5An5_iAxNYLJa_xWmNzsYce8c
|
||||
|
||||
## Features
|
||||
|
||||
|
@ -115,7 +117,7 @@ For detailed installation instructions, see the
|
|||
|
||||
- **Operating system**: macOS / OS X · Linux · Windows (Cygwin, MinGW, Visual
|
||||
Studio)
|
||||
- **Python version**: Python 3.7+ (only 64 bit)
|
||||
- **Python version**: Python >=3.7, <3.13 (only 64 bit)
|
||||
- **Package managers**: [pip] · [conda] (via `conda-forge`)
|
||||
|
||||
[pip]: https://pypi.org/project/spacy/
|
||||
|
|
20
bin/release.sh
Executable file
20
bin/release.sh
Executable file
|
@ -0,0 +1,20 @@
|
|||
#!/usr/bin/env bash
|
||||
|
||||
set -e
|
||||
|
||||
# Insist repository is clean
|
||||
git diff-index --quiet HEAD
|
||||
|
||||
version=$(grep "__version__ = " spacy/about.py)
|
||||
version=${version/__version__ = }
|
||||
version=${version/\'/}
|
||||
version=${version/\'/}
|
||||
version=${version/\"/}
|
||||
version=${version/\"/}
|
||||
|
||||
echo "Pushing release-v"$version
|
||||
|
||||
git tag -d release-v$version || true
|
||||
git push origin :release-v$version || true
|
||||
git tag release-v$version
|
||||
git push origin release-v$version
|
|
@ -1,6 +1,2 @@
|
|||
# build version constraints for use with wheelwright
|
||||
numpy==1.15.0; python_version=='3.7' and platform_machine!='aarch64'
|
||||
numpy==1.19.2; python_version=='3.7' and platform_machine=='aarch64'
|
||||
numpy==1.17.3; python_version=='3.8' and platform_machine!='aarch64'
|
||||
numpy==1.19.2; python_version=='3.8' and platform_machine=='aarch64'
|
||||
numpy>=1.25.0; python_version>='3.9'
|
||||
numpy>=2.0.0,<3.0.0
|
||||
|
|
|
@ -1,13 +1,12 @@
|
|||
[build-system]
|
||||
requires = [
|
||||
"setuptools",
|
||||
"cython>=0.25,<3.0",
|
||||
"cython>=3.0,<4.0",
|
||||
"cymem>=2.0.2,<2.1.0",
|
||||
"preshed>=3.0.2,<3.1.0",
|
||||
"murmurhash>=0.28.0,<1.1.0",
|
||||
"thinc>=8.3.0,<8.4.0",
|
||||
"numpy>=2.0.0,<2.1.0; python_version < '3.9'",
|
||||
"numpy>=2.0.0,<2.1.0; python_version >= '3.9'",
|
||||
"thinc>=8.3.4,<8.4.0",
|
||||
"numpy>=2.0.0,<3.0.0"
|
||||
]
|
||||
build-backend = "setuptools.build_meta"
|
||||
|
||||
|
|
|
@ -3,28 +3,26 @@ spacy-legacy>=3.0.11,<3.1.0
|
|||
spacy-loggers>=1.0.0,<2.0.0
|
||||
cymem>=2.0.2,<2.1.0
|
||||
preshed>=3.0.2,<3.1.0
|
||||
thinc>=8.2.2,<8.3.0
|
||||
thinc>=8.3.4,<8.4.0
|
||||
ml_datasets>=0.2.0,<0.3.0
|
||||
murmurhash>=0.28.0,<1.1.0
|
||||
wasabi>=0.9.1,<1.2.0
|
||||
srsly>=2.4.3,<3.0.0
|
||||
catalogue>=2.0.6,<2.1.0
|
||||
typer>=0.3.0,<1.0.0
|
||||
typer-slim>=0.3.0,<1.0.0
|
||||
weasel>=0.1.0,<0.5.0
|
||||
# Third party dependencies
|
||||
numpy>=2.0.0; python_version < "3.9"
|
||||
numpy>=2.0.0; python_version >= "3.9"
|
||||
numpy>=2.0.0,<3.0.0
|
||||
requests>=2.13.0,<3.0.0
|
||||
tqdm>=4.38.0,<5.0.0
|
||||
pydantic>=1.7.4,!=1.8,!=1.8.1,<3.0.0
|
||||
jinja2
|
||||
langcodes>=3.2.0,<4.0.0
|
||||
# Official Python utilities
|
||||
setuptools
|
||||
packaging>=20.0
|
||||
# Development dependencies
|
||||
pre-commit>=2.13.0
|
||||
cython>=0.25,<3.0
|
||||
cython>=3.0,<4.0
|
||||
pytest>=5.2.0,!=7.1.0
|
||||
pytest-timeout>=1.3.0,<2.0.0
|
||||
mock>=2.0.0,<3.0.0
|
||||
|
|
20
setup.cfg
20
setup.cfg
|
@ -17,12 +17,11 @@ classifiers =
|
|||
Operating System :: Microsoft :: Windows
|
||||
Programming Language :: Cython
|
||||
Programming Language :: Python :: 3
|
||||
Programming Language :: Python :: 3.7
|
||||
Programming Language :: Python :: 3.8
|
||||
Programming Language :: Python :: 3.9
|
||||
Programming Language :: Python :: 3.10
|
||||
Programming Language :: Python :: 3.11
|
||||
Programming Language :: Python :: 3.12
|
||||
Programming Language :: Python :: 3.13
|
||||
Topic :: Scientific/Engineering
|
||||
project_urls =
|
||||
Release notes = https://github.com/explosion/spaCy/releases
|
||||
|
@ -31,18 +30,18 @@ project_urls =
|
|||
[options]
|
||||
zip_safe = false
|
||||
include_package_data = true
|
||||
python_requires = >=3.7
|
||||
python_requires = >=3.9,<3.14
|
||||
# NOTE: This section is superseded by pyproject.toml and will be removed in
|
||||
# spaCy v4
|
||||
setup_requires =
|
||||
cython>=0.25,<3.0
|
||||
numpy>=2.0.0,<2.1.0; python_version < "3.9"
|
||||
numpy>=2.0.0,<2.1.0; python_version >= "3.9"
|
||||
cython>=3.0,<4.0
|
||||
numpy>=2.0.0,<3.0.0; python_version < "3.9"
|
||||
numpy>=2.0.0,<3.0.0; python_version >= "3.9"
|
||||
# We also need our Cython packages here to compile against
|
||||
cymem>=2.0.2,<2.1.0
|
||||
preshed>=3.0.2,<3.1.0
|
||||
murmurhash>=0.28.0,<1.1.0
|
||||
thinc>=8.3.0,<8.4.0
|
||||
thinc>=8.3.4,<8.4.0
|
||||
install_requires =
|
||||
# Our libraries
|
||||
spacy-legacy>=3.0.11,<3.1.0
|
||||
|
@ -50,13 +49,13 @@ install_requires =
|
|||
murmurhash>=0.28.0,<1.1.0
|
||||
cymem>=2.0.2,<2.1.0
|
||||
preshed>=3.0.2,<3.1.0
|
||||
thinc>=8.3.0,<8.4.0
|
||||
thinc>=8.3.4,<8.4.0
|
||||
wasabi>=0.9.1,<1.2.0
|
||||
srsly>=2.4.3,<3.0.0
|
||||
catalogue>=2.0.6,<2.1.0
|
||||
weasel>=0.1.0,<0.5.0
|
||||
# Third-party dependencies
|
||||
typer>=0.3.0,<1.0.0
|
||||
typer-slim>=0.3.0,<1.0.0
|
||||
tqdm>=4.38.0,<5.0.0
|
||||
numpy>=1.15.0; python_version < "3.9"
|
||||
numpy>=1.19.0; python_version >= "3.9"
|
||||
|
@ -66,7 +65,6 @@ install_requires =
|
|||
# Official Python utilities
|
||||
setuptools
|
||||
packaging>=20.0
|
||||
langcodes>=3.2.0,<4.0.0
|
||||
|
||||
[options.entry_points]
|
||||
console_scripts =
|
||||
|
@ -116,7 +114,7 @@ cuda12x =
|
|||
cuda-autodetect =
|
||||
cupy-wheel>=11.0.0,<13.0.0
|
||||
apple =
|
||||
thinc-apple-ops>=0.1.0.dev0,<1.0.0
|
||||
thinc-apple-ops>=1.0.0,<2.0.0
|
||||
# Language tokenizers with external dependencies
|
||||
ja =
|
||||
sudachipy>=0.5.2,!=0.6.1
|
||||
|
|
|
@ -17,6 +17,7 @@ from .cli.info import info # noqa: F401
|
|||
from .errors import Errors
|
||||
from .glossary import explain # noqa: F401
|
||||
from .language import Language
|
||||
from .registrations import REGISTRY_POPULATED, populate_registry
|
||||
from .util import logger, registry # noqa: F401
|
||||
from .vocab import Vocab
|
||||
|
||||
|
|
|
@ -1,5 +1,5 @@
|
|||
# fmt: off
|
||||
__title__ = "spacy"
|
||||
__version__ = "3.8.1"
|
||||
__version__ = "3.8.7"
|
||||
__download_url__ = "https://github.com/explosion/spacy-models/releases/download"
|
||||
__compatibility__ = "https://raw.githubusercontent.com/explosion/spacy-models/master/compatibility.json"
|
||||
|
|
|
@ -170,7 +170,7 @@ def debug_model(
|
|||
msg.divider(f"STEP 3 - prediction")
|
||||
msg.info(str(prediction))
|
||||
|
||||
msg.good(f"Succesfully ended analysis - model looks good.")
|
||||
msg.good(f"Successfully ended analysis - model looks good.")
|
||||
|
||||
|
||||
def _sentences():
|
||||
|
|
|
@ -30,6 +30,7 @@ def package_cli(
|
|||
version: Optional[str] = Opt(None, "--version", "-v", help="Package version to override meta"),
|
||||
build: str = Opt("sdist", "--build", "-b", help="Comma-separated formats to build: sdist and/or wheel, or none."),
|
||||
force: bool = Opt(False, "--force", "-f", "-F", help="Force overwriting existing data in output directory"),
|
||||
require_parent: bool = Opt(True, "--require-parent/--no-require-parent", "-R", "-R", help="Include the parent package (e.g. spacy) in the requirements"),
|
||||
# fmt: on
|
||||
):
|
||||
"""
|
||||
|
@ -60,6 +61,7 @@ def package_cli(
|
|||
create_sdist=create_sdist,
|
||||
create_wheel=create_wheel,
|
||||
force=force,
|
||||
require_parent=require_parent,
|
||||
silent=False,
|
||||
)
|
||||
|
||||
|
@ -74,6 +76,7 @@ def package(
|
|||
create_meta: bool = False,
|
||||
create_sdist: bool = True,
|
||||
create_wheel: bool = False,
|
||||
require_parent: bool = False,
|
||||
force: bool = False,
|
||||
silent: bool = True,
|
||||
) -> None:
|
||||
|
@ -113,7 +116,7 @@ def package(
|
|||
if not meta_path.exists() or not meta_path.is_file():
|
||||
msg.fail("Can't load pipeline meta.json", meta_path, exits=1)
|
||||
meta = srsly.read_json(meta_path)
|
||||
meta = get_meta(input_dir, meta)
|
||||
meta = get_meta(input_dir, meta, require_parent=require_parent)
|
||||
if meta["requirements"]:
|
||||
msg.good(
|
||||
f"Including {len(meta['requirements'])} package requirement(s) from "
|
||||
|
@ -186,6 +189,7 @@ def package(
|
|||
imports.append(code_path.stem)
|
||||
shutil.copy(str(code_path), str(package_path))
|
||||
create_file(main_path / "meta.json", srsly.json_dumps(meta, indent=2))
|
||||
|
||||
create_file(main_path / "setup.py", TEMPLATE_SETUP)
|
||||
create_file(main_path / "MANIFEST.in", TEMPLATE_MANIFEST)
|
||||
init_py = TEMPLATE_INIT.format(
|
||||
|
@ -302,6 +306,8 @@ def get_third_party_dependencies(
|
|||
modules.add(func_info["module"].split(".")[0]) # type: ignore[union-attr]
|
||||
dependencies = []
|
||||
for module_name in modules:
|
||||
if module_name == about.__title__:
|
||||
continue
|
||||
if module_name in distributions:
|
||||
dist = distributions.get(module_name)
|
||||
if dist:
|
||||
|
@ -332,7 +338,9 @@ def create_file(file_path: Path, contents: str) -> None:
|
|||
|
||||
|
||||
def get_meta(
|
||||
model_path: Union[str, Path], existing_meta: Dict[str, Any]
|
||||
model_path: Union[str, Path],
|
||||
existing_meta: Dict[str, Any],
|
||||
require_parent: bool = False,
|
||||
) -> Dict[str, Any]:
|
||||
meta: Dict[str, Any] = {
|
||||
"lang": "en",
|
||||
|
@ -361,6 +369,8 @@ def get_meta(
|
|||
existing_reqs = [util.split_requirement(req)[0] for req in meta["requirements"]]
|
||||
reqs = get_third_party_dependencies(nlp.config, exclude=existing_reqs)
|
||||
meta["requirements"].extend(reqs)
|
||||
if require_parent and about.__title__ not in meta["requirements"]:
|
||||
meta["requirements"].append(about.__title__ + meta["spacy_version"])
|
||||
return meta
|
||||
|
||||
|
||||
|
@ -535,8 +545,11 @@ def list_files(data_dir):
|
|||
|
||||
|
||||
def list_requirements(meta):
|
||||
parent_package = meta.get('parent_package', 'spacy')
|
||||
requirements = [parent_package + meta['spacy_version']]
|
||||
# Up to version 3.7, we included the parent package
|
||||
# in requirements by default. This behaviour is removed
|
||||
# in 3.8, with a setting to include the parent package in
|
||||
# the requirements list in the meta if desired.
|
||||
requirements = []
|
||||
if 'setup_requires' in meta:
|
||||
requirements += meta['setup_requires']
|
||||
if 'requirements' in meta:
|
||||
|
|
16
spacy/lang/bo/__init__.py
Normal file
16
spacy/lang/bo/__init__.py
Normal file
|
@ -0,0 +1,16 @@
|
|||
from ...language import BaseDefaults, Language
|
||||
from .lex_attrs import LEX_ATTRS
|
||||
from .stop_words import STOP_WORDS
|
||||
|
||||
|
||||
class TibetanDefaults(BaseDefaults):
|
||||
lex_attr_getters = LEX_ATTRS
|
||||
stop_words = STOP_WORDS
|
||||
|
||||
|
||||
class Tibetan(Language):
|
||||
lang = "bo"
|
||||
Defaults = TibetanDefaults
|
||||
|
||||
|
||||
__all__ = ["Tibetan"]
|
16
spacy/lang/bo/examples.py
Normal file
16
spacy/lang/bo/examples.py
Normal file
|
@ -0,0 +1,16 @@
|
|||
"""
|
||||
Example sentences to test spaCy and its language models.
|
||||
|
||||
>>> from spacy.lang.bo.examples import sentences
|
||||
>>> docs = nlp.pipe(sentences)
|
||||
"""
|
||||
|
||||
|
||||
sentences = [
|
||||
"དོན་དུ་རྒྱ་མཚོ་བླ་མ་ཞེས་བྱ་ཞིང༌།",
|
||||
"ཏཱ་ལའི་ཞེས་པ་ནི་སོག་སྐད་ཡིན་པ་དེ་བོད་སྐད་དུ་རྒྱ་མཚོའི་དོན་དུ་འཇུག",
|
||||
"སོག་པོ་ཨལ་ཐན་རྒྱལ་པོས་རྒྱལ་དབང་བསོད་ནམས་རྒྱ་མཚོར་ཆེ་བསྟོད་ཀྱི་མཚན་གསོལ་བ་ཞིག་ཡིན་ཞིང༌།",
|
||||
"རྗེས་སུ་རྒྱལ་བ་དགེ་འདུན་གྲུབ་དང༌། དགེ་འདུན་རྒྱ་མཚོ་སོ་སོར་ཡང་ཏཱ་ལའི་བླ་མའི་སྐུ་ཕྲེང་དང་པོ་དང༌།",
|
||||
"གཉིས་པའི་མཚན་དེ་གསོལ་ཞིང༌།༸རྒྱལ་དབང་སྐུ་ཕྲེང་ལྔ་པས་དགའ་ལྡན་ཕོ་བྲང་གི་སྲིད་དབང་བཙུགས་པ་ནས་ཏཱ་ལའི་བླ་མ་ནི་བོད་ཀྱི་ཆོས་སྲིད་གཉིས་ཀྱི་དབུ་ཁྲིད་དུ་གྱུར་ཞིང་།",
|
||||
"ད་ལྟའི་བར་ཏཱ་ལའི་བླ་མ་སྐུ་ཕྲེང་བཅུ་བཞི་བྱོན་ཡོད།",
|
||||
]
|
65
spacy/lang/bo/lex_attrs.py
Normal file
65
spacy/lang/bo/lex_attrs.py
Normal file
|
@ -0,0 +1,65 @@
|
|||
from ...attrs import LIKE_NUM
|
||||
|
||||
# reference 1: https://en.wikipedia.org/wiki/Tibetan_numerals
|
||||
|
||||
_num_words = [
|
||||
"ཀླད་ཀོར་",
|
||||
"གཅིག་",
|
||||
"གཉིས་",
|
||||
"གསུམ་",
|
||||
"བཞི་",
|
||||
"ལྔ་",
|
||||
"དྲུག་",
|
||||
"བདུན་",
|
||||
"བརྒྱད་",
|
||||
"དགུ་",
|
||||
"བཅུ་",
|
||||
"བཅུ་གཅིག་",
|
||||
"བཅུ་གཉིས་",
|
||||
"བཅུ་གསུམ་",
|
||||
"བཅུ་བཞི་",
|
||||
"བཅུ་ལྔ་",
|
||||
"བཅུ་དྲུག་",
|
||||
"བཅུ་བདུན་",
|
||||
"བཅུ་པརྒྱད",
|
||||
"བཅུ་དགུ་",
|
||||
"ཉི་ཤུ་",
|
||||
"སུམ་ཅུ",
|
||||
"བཞི་བཅུ",
|
||||
"ལྔ་བཅུ",
|
||||
"དྲུག་ཅུ",
|
||||
"བདུན་ཅུ",
|
||||
"བརྒྱད་ཅུ",
|
||||
"དགུ་བཅུ",
|
||||
"བརྒྱ་",
|
||||
"སྟོང་",
|
||||
"ཁྲི་",
|
||||
"ས་ཡ་",
|
||||
" བྱེ་བ་",
|
||||
"དུང་ཕྱུར་",
|
||||
"ཐེར་འབུམ་",
|
||||
"ཐེར་འབུམ་ཆེན་པོ་",
|
||||
"ཁྲག་ཁྲིག་",
|
||||
"ཁྲག་ཁྲིག་ཆེན་པོ་",
|
||||
]
|
||||
|
||||
|
||||
def like_num(text):
|
||||
"""
|
||||
Check if text resembles a number
|
||||
"""
|
||||
if text.startswith(("+", "-", "±", "~")):
|
||||
text = text[1:]
|
||||
text = text.replace(",", "").replace(".", "")
|
||||
if text.isdigit():
|
||||
return True
|
||||
if text.count("/") == 1:
|
||||
num, denom = text.split("/")
|
||||
if num.isdigit() and denom.isdigit():
|
||||
return True
|
||||
if text in _num_words:
|
||||
return True
|
||||
return False
|
||||
|
||||
|
||||
LEX_ATTRS = {LIKE_NUM: like_num}
|
198
spacy/lang/bo/stop_words.py
Normal file
198
spacy/lang/bo/stop_words.py
Normal file
|
@ -0,0 +1,198 @@
|
|||
# Source: https://zenodo.org/records/10148636
|
||||
|
||||
STOP_WORDS = set(
|
||||
"""
|
||||
འི་
|
||||
།
|
||||
དུ་
|
||||
གིས་
|
||||
སོགས་
|
||||
ཏེ
|
||||
གི་
|
||||
རྣམས་
|
||||
ནི
|
||||
ཀུན་
|
||||
ཡི་
|
||||
འདི
|
||||
ཀྱི་
|
||||
སྙེད་
|
||||
པས་
|
||||
གཞན་
|
||||
ཀྱིས་
|
||||
ཡི
|
||||
ལ
|
||||
ནི་
|
||||
དང་
|
||||
སོགས
|
||||
ཅིང་
|
||||
ར
|
||||
དུ
|
||||
མི་
|
||||
སུ་
|
||||
བཅས་
|
||||
ཡོངས་
|
||||
ལས
|
||||
ཙམ་
|
||||
གྱིས་
|
||||
དེ་
|
||||
ཡང་
|
||||
མཐའ་དག་
|
||||
ཏུ་
|
||||
ཉིད་
|
||||
ས
|
||||
ཏེ་
|
||||
གྱི་
|
||||
སྤྱི
|
||||
དེ
|
||||
ཀ་
|
||||
ཡིན་
|
||||
ཞིང་
|
||||
འདི་
|
||||
རུང་
|
||||
རང་
|
||||
ཞིག་
|
||||
སྟེ
|
||||
སྟེ་
|
||||
ན་རེ
|
||||
ངམ
|
||||
ཤིང་
|
||||
དག་
|
||||
ཏོ
|
||||
རེ་
|
||||
འང་
|
||||
ཀྱང་
|
||||
ལགས་པ
|
||||
ཚུ
|
||||
དོ
|
||||
ཡིན་པ
|
||||
རེ
|
||||
ན་རེ་
|
||||
ཨེ་
|
||||
ཚང་མ
|
||||
ཐམས་ཅད་
|
||||
དམ་
|
||||
འོ་
|
||||
ཅིག་
|
||||
གྱིན་
|
||||
ཡིན
|
||||
ན
|
||||
ཁོ་ན་
|
||||
འམ་
|
||||
ཀྱིན་
|
||||
ལོ
|
||||
ཀྱིས
|
||||
བས་
|
||||
ལགས་
|
||||
ཤིག
|
||||
གིས
|
||||
ཀི་
|
||||
སྣ་ཚོགས་
|
||||
རྣམས
|
||||
སྙེད་པ
|
||||
ཡིས་
|
||||
གྱི
|
||||
གི
|
||||
བམ་
|
||||
ཤིག་
|
||||
རེ་རེ་
|
||||
ནམ
|
||||
མིན་
|
||||
ནམ་
|
||||
ངམ་
|
||||
རུ་
|
||||
འགའ་
|
||||
ཀུན
|
||||
ཤས་
|
||||
ཏུ
|
||||
ཡིས
|
||||
གིན་
|
||||
གམ་
|
||||
འོ
|
||||
ཡིན་པ་
|
||||
མིན
|
||||
ལགས
|
||||
གྱིས
|
||||
ཅང་
|
||||
འགའ
|
||||
སམ་
|
||||
ཞིག
|
||||
འང
|
||||
ལས་ཆེ་
|
||||
འཕྲལ་
|
||||
བར་
|
||||
རུ
|
||||
དང
|
||||
ཡ
|
||||
འག
|
||||
སམ
|
||||
ཀ
|
||||
ཅུང་ཟད་
|
||||
ཅིག
|
||||
ཉིད
|
||||
དུ་མ
|
||||
མ
|
||||
ཡིན་བ
|
||||
འམ
|
||||
མམ
|
||||
དམ
|
||||
དག
|
||||
ཁོ་ན
|
||||
ཀྱི
|
||||
ལམ
|
||||
ཕྱི་
|
||||
ནང་
|
||||
ཙམ
|
||||
ནོ་
|
||||
སོ་
|
||||
རམ་
|
||||
བོ་
|
||||
ཨང་
|
||||
ཕྱི
|
||||
ཏོ་
|
||||
ཚོ
|
||||
ལ་ལ་
|
||||
ཚོ་
|
||||
ཅིང
|
||||
མ་གི་
|
||||
གེ
|
||||
གོ
|
||||
ཡིན་ལུགས་
|
||||
རོ་
|
||||
བོ
|
||||
ལགས་པ་
|
||||
པས
|
||||
རབ་
|
||||
འི
|
||||
རམ
|
||||
བས
|
||||
གཞན
|
||||
སྙེད་པ་
|
||||
འབའ་
|
||||
མཾ་
|
||||
པོ
|
||||
ག་
|
||||
ག
|
||||
གམ
|
||||
སྤྱི་
|
||||
བམ
|
||||
མོ་
|
||||
ཙམ་པ་
|
||||
ཤ་སྟག་
|
||||
མམ་
|
||||
རེ་རེ
|
||||
སྙེད
|
||||
ཏམ་
|
||||
ངོ
|
||||
གྲང་
|
||||
ཏ་རེ
|
||||
ཏམ
|
||||
ཁ་
|
||||
ངེ་
|
||||
ཅོག་
|
||||
རིལ་
|
||||
ཉུང་ཤས་
|
||||
གིང་
|
||||
ཚ་
|
||||
ཀྱང
|
||||
""".split()
|
||||
)
|
18
spacy/lang/gd/__init__.py
Normal file
18
spacy/lang/gd/__init__.py
Normal file
|
@ -0,0 +1,18 @@
|
|||
from typing import Optional
|
||||
|
||||
from ...language import BaseDefaults, Language
|
||||
from .stop_words import STOP_WORDS
|
||||
from .tokenizer_exceptions import TOKENIZER_EXCEPTIONS
|
||||
|
||||
|
||||
class ScottishDefaults(BaseDefaults):
|
||||
tokenizer_exceptions = TOKENIZER_EXCEPTIONS
|
||||
stop_words = STOP_WORDS
|
||||
|
||||
|
||||
class Scottish(Language):
|
||||
lang = "gd"
|
||||
Defaults = ScottishDefaults
|
||||
|
||||
|
||||
__all__ = ["Scottish"]
|
388
spacy/lang/gd/stop_words.py
Normal file
388
spacy/lang/gd/stop_words.py
Normal file
|
@ -0,0 +1,388 @@
|
|||
STOP_WORDS = set(
|
||||
"""
|
||||
'ad
|
||||
'ar
|
||||
'd # iad
|
||||
'g # ag
|
||||
'ga
|
||||
'gam
|
||||
'gan
|
||||
'gar
|
||||
'gur
|
||||
'm # am
|
||||
'n # an
|
||||
'n seo
|
||||
'na
|
||||
'nad
|
||||
'nam
|
||||
'nan
|
||||
'nar
|
||||
'nuair
|
||||
'nur
|
||||
's
|
||||
'sa
|
||||
'san
|
||||
'sann
|
||||
'se
|
||||
'sna
|
||||
a
|
||||
a'
|
||||
a'd # agad
|
||||
a'm # agam
|
||||
a-chèile
|
||||
a-seo
|
||||
a-sin
|
||||
a-siud
|
||||
a chionn
|
||||
a chionn 's
|
||||
a chèile
|
||||
a chéile
|
||||
a dh'
|
||||
a h-uile
|
||||
a seo
|
||||
ac' # aca
|
||||
aca
|
||||
aca-san
|
||||
acasan
|
||||
ach
|
||||
ag
|
||||
agad
|
||||
agad-sa
|
||||
agads'
|
||||
agadsa
|
||||
agaibh
|
||||
agaibhse
|
||||
againn
|
||||
againne
|
||||
agam
|
||||
agam-sa
|
||||
agams'
|
||||
agamsa
|
||||
agus
|
||||
aice
|
||||
aice-se
|
||||
aicese
|
||||
aig
|
||||
aig' # aige
|
||||
aige
|
||||
aige-san
|
||||
aigesan
|
||||
air
|
||||
air-san
|
||||
air neo
|
||||
airsan
|
||||
am
|
||||
an
|
||||
an seo
|
||||
an sin
|
||||
an siud
|
||||
an uair
|
||||
ann
|
||||
ann a
|
||||
ann a'
|
||||
ann a shin
|
||||
ann am
|
||||
ann an
|
||||
annad
|
||||
annam
|
||||
annam-s'
|
||||
annamsa
|
||||
anns
|
||||
anns an
|
||||
annta
|
||||
aon
|
||||
ar
|
||||
as
|
||||
asad
|
||||
asda
|
||||
asta
|
||||
b'
|
||||
bho
|
||||
bhon
|
||||
bhuaidhe # bhuaithe
|
||||
bhuainn
|
||||
bhuaipe
|
||||
bhuaithe
|
||||
bhuapa
|
||||
bhur
|
||||
brì
|
||||
bu
|
||||
c'à
|
||||
car son
|
||||
carson
|
||||
cha
|
||||
chan
|
||||
chionn
|
||||
choir
|
||||
chon
|
||||
chun
|
||||
chèile
|
||||
chéile
|
||||
chòir
|
||||
cia mheud
|
||||
ciamar
|
||||
co-dhiubh
|
||||
cuide
|
||||
cuin
|
||||
cuin'
|
||||
cuine
|
||||
cà
|
||||
cà'
|
||||
càil
|
||||
càit
|
||||
càit'
|
||||
càite
|
||||
cò
|
||||
cò mheud
|
||||
có
|
||||
d'
|
||||
da
|
||||
de
|
||||
dh'
|
||||
dha
|
||||
dhaibh
|
||||
dhaibh-san
|
||||
dhaibhsan
|
||||
dhan
|
||||
dhasan
|
||||
dhe
|
||||
dhen
|
||||
dheth
|
||||
dhi
|
||||
dhiom
|
||||
dhiot
|
||||
dhith
|
||||
dhiubh
|
||||
dhomh
|
||||
dhomh-s'
|
||||
dhomhsa
|
||||
dhu'sa # dhut-sa
|
||||
dhuibh
|
||||
dhuibhse
|
||||
dhuinn
|
||||
dhuinne
|
||||
dhuit
|
||||
dhut
|
||||
dhutsa
|
||||
dhut-sa
|
||||
dhà
|
||||
dhà-san
|
||||
dhàsan
|
||||
dhòmhsa
|
||||
diubh
|
||||
do
|
||||
docha
|
||||
don
|
||||
dà
|
||||
dè
|
||||
dè mar
|
||||
dé
|
||||
dé mar
|
||||
dòch'
|
||||
dòcha
|
||||
e
|
||||
eadar
|
||||
eatarra
|
||||
eatorra
|
||||
eile
|
||||
esan
|
||||
fa
|
||||
far
|
||||
feud
|
||||
fhad
|
||||
fheudar
|
||||
fhearr
|
||||
fhein
|
||||
fheudar
|
||||
fheàrr
|
||||
fhèin
|
||||
fhéin
|
||||
fhìn
|
||||
fo
|
||||
fodha
|
||||
fodhainn
|
||||
foipe
|
||||
fon
|
||||
fèin
|
||||
ga
|
||||
gach
|
||||
gam
|
||||
gan
|
||||
ge brith
|
||||
ged
|
||||
gu
|
||||
gu dè
|
||||
gu ruige
|
||||
gun
|
||||
gur
|
||||
gus
|
||||
i
|
||||
iad
|
||||
iadsan
|
||||
innte
|
||||
is
|
||||
ise
|
||||
le
|
||||
leam
|
||||
leam-sa
|
||||
leamsa
|
||||
leat
|
||||
leat-sa
|
||||
leatha
|
||||
leatsa
|
||||
leibh
|
||||
leis
|
||||
leis-san
|
||||
leoth'
|
||||
leotha
|
||||
leotha-san
|
||||
linn
|
||||
m'
|
||||
m'a
|
||||
ma
|
||||
mac
|
||||
man
|
||||
mar
|
||||
mas
|
||||
mathaid
|
||||
mi
|
||||
mis'
|
||||
mise
|
||||
mo
|
||||
mu
|
||||
mu 'n
|
||||
mun
|
||||
mur
|
||||
mura
|
||||
mus
|
||||
na
|
||||
na b'
|
||||
na bu
|
||||
na iad
|
||||
nach
|
||||
nad
|
||||
nam
|
||||
nan
|
||||
nar
|
||||
nas
|
||||
neo
|
||||
no
|
||||
nuair
|
||||
o
|
||||
o'n
|
||||
oir
|
||||
oirbh
|
||||
oirbh-se
|
||||
oirnn
|
||||
oirnne
|
||||
oirre
|
||||
on
|
||||
orm
|
||||
orm-sa
|
||||
ormsa
|
||||
orra
|
||||
orra-san
|
||||
orrasan
|
||||
ort
|
||||
os
|
||||
r'
|
||||
ri
|
||||
ribh
|
||||
rinn
|
||||
ris
|
||||
rithe
|
||||
rithe-se
|
||||
rium
|
||||
rium-sa
|
||||
riums'
|
||||
riumsa
|
||||
riut
|
||||
riuth'
|
||||
riutha
|
||||
riuthasan
|
||||
ro
|
||||
ro'n
|
||||
roimh
|
||||
roimhe
|
||||
romhainn
|
||||
romham
|
||||
romhpa
|
||||
ron
|
||||
ruibh
|
||||
ruinn
|
||||
ruinne
|
||||
sa
|
||||
san
|
||||
sann
|
||||
se
|
||||
seach
|
||||
seo
|
||||
seothach
|
||||
shin
|
||||
sibh
|
||||
sibh-se
|
||||
sibhse
|
||||
sin
|
||||
sineach
|
||||
sinn
|
||||
sinne
|
||||
siod
|
||||
siodach
|
||||
siud
|
||||
siudach
|
||||
sna # ann an
|
||||
sè
|
||||
t'
|
||||
tarsaing
|
||||
tarsainn
|
||||
tarsuinn
|
||||
thar
|
||||
thoigh
|
||||
thro
|
||||
thu
|
||||
thuc'
|
||||
thuca
|
||||
thugad
|
||||
thugaibh
|
||||
thugainn
|
||||
thugam
|
||||
thugamsa
|
||||
thuice
|
||||
thuige
|
||||
thus'
|
||||
thusa
|
||||
timcheall
|
||||
toigh
|
||||
toil
|
||||
tro
|
||||
tro' # troimh
|
||||
troimh
|
||||
troimhe
|
||||
tron
|
||||
tu
|
||||
tusa
|
||||
uair
|
||||
ud
|
||||
ugaibh
|
||||
ugam-s'
|
||||
ugam-sa
|
||||
uice
|
||||
uige
|
||||
uige-san
|
||||
umad
|
||||
unnta # ann an
|
||||
ur
|
||||
urrainn
|
||||
à
|
||||
às
|
||||
àsan
|
||||
á
|
||||
ás
|
||||
è
|
||||
ì
|
||||
ò
|
||||
ó
|
||||
""".split(
|
||||
"\n"
|
||||
)
|
||||
)
|
1983
spacy/lang/gd/tokenizer_exceptions.py
Normal file
1983
spacy/lang/gd/tokenizer_exceptions.py
Normal file
File diff suppressed because it is too large
Load Diff
|
@ -1,5 +1,5 @@
|
|||
The list of Croatian lemmas was extracted from the reldi-tagger repository (https://github.com/clarinsi/reldi-tagger).
|
||||
Reldi-tagger is licesned under the Apache 2.0 licence.
|
||||
Reldi-tagger is licensed under the Apache 2.0 licence.
|
||||
|
||||
@InProceedings{ljubesic16-new,
|
||||
author = {Nikola Ljubešić and Filip Klubička and Željko Agić and Ivo-Pavao Jazbec},
|
||||
|
@ -12,4 +12,4 @@ Reldi-tagger is licesned under the Apache 2.0 licence.
|
|||
publisher = {European Language Resources Association (ELRA)},
|
||||
address = {Paris, France},
|
||||
isbn = {978-2-9517408-9-1}
|
||||
}
|
||||
}
|
||||
|
|
52
spacy/lang/ht/__init__.py
Normal file
52
spacy/lang/ht/__init__.py
Normal file
|
@ -0,0 +1,52 @@
|
|||
from typing import Callable, Optional
|
||||
|
||||
from thinc.api import Model
|
||||
|
||||
from ...language import BaseDefaults, Language
|
||||
from .lemmatizer import HaitianCreoleLemmatizer
|
||||
from .lex_attrs import LEX_ATTRS
|
||||
from .punctuation import TOKENIZER_PREFIXES, TOKENIZER_INFIXES, TOKENIZER_SUFFIXES
|
||||
from .stop_words import STOP_WORDS
|
||||
from .syntax_iterators import SYNTAX_ITERATORS
|
||||
from .tokenizer_exceptions import TOKENIZER_EXCEPTIONS
|
||||
from .tag_map import TAG_MAP
|
||||
|
||||
|
||||
class HaitianCreoleDefaults(BaseDefaults):
|
||||
tokenizer_exceptions = TOKENIZER_EXCEPTIONS
|
||||
prefixes = TOKENIZER_PREFIXES
|
||||
infixes = TOKENIZER_INFIXES
|
||||
suffixes = TOKENIZER_SUFFIXES
|
||||
lex_attr_getters = LEX_ATTRS
|
||||
syntax_iterators = SYNTAX_ITERATORS
|
||||
stop_words = STOP_WORDS
|
||||
tag_map = TAG_MAP
|
||||
|
||||
class HaitianCreole(Language):
|
||||
lang = "ht"
|
||||
Defaults = HaitianCreoleDefaults
|
||||
|
||||
@HaitianCreole.factory(
|
||||
"lemmatizer",
|
||||
assigns=["token.lemma"],
|
||||
default_config={
|
||||
"model": None,
|
||||
"mode": "rule",
|
||||
"overwrite": False,
|
||||
"scorer": {"@scorers": "spacy.lemmatizer_scorer.v1"},
|
||||
},
|
||||
default_score_weights={"lemma_acc": 1.0},
|
||||
)
|
||||
def make_lemmatizer(
|
||||
nlp: Language,
|
||||
model: Optional[Model],
|
||||
name: str,
|
||||
mode: str,
|
||||
overwrite: bool,
|
||||
scorer: Optional[Callable],
|
||||
):
|
||||
return HaitianCreoleLemmatizer(
|
||||
nlp.vocab, model, name, mode=mode, overwrite=overwrite, scorer=scorer
|
||||
)
|
||||
|
||||
__all__ = ["HaitianCreole"]
|
18
spacy/lang/ht/examples.py
Normal file
18
spacy/lang/ht/examples.py
Normal file
|
@ -0,0 +1,18 @@
|
|||
"""
|
||||
Example sentences to test spaCy and its language models.
|
||||
|
||||
>>> from spacy.lang.ht.examples import sentences
|
||||
>>> docs = nlp.pipe(sentences)
|
||||
"""
|
||||
|
||||
|
||||
sentences = [
|
||||
"Apple ap panse achte yon demaraj nan Wayòm Ini pou $1 milya dola",
|
||||
"Machin otonòm fè responsablite asirans lan ale sou men fabrikan yo",
|
||||
"San Francisco ap konsidere entèdi robo ki livre sou twotwa yo",
|
||||
"Lond se yon gwo vil nan Wayòm Ini",
|
||||
"Kote ou ye?",
|
||||
"Kilès ki prezidan Lafrans?",
|
||||
"Ki kapital Etazini?",
|
||||
"Kile Barack Obama te fèt?",
|
||||
]
|
51
spacy/lang/ht/lemmatizer.py
Normal file
51
spacy/lang/ht/lemmatizer.py
Normal file
|
@ -0,0 +1,51 @@
|
|||
from typing import List, Tuple
|
||||
|
||||
from ...pipeline import Lemmatizer
|
||||
from ...tokens import Token
|
||||
from ...lookups import Lookups
|
||||
|
||||
|
||||
class HaitianCreoleLemmatizer(Lemmatizer):
|
||||
"""
|
||||
Minimal Haitian Creole lemmatizer.
|
||||
Returns a word's base form based on rules and lookup,
|
||||
or defaults to the original form.
|
||||
"""
|
||||
|
||||
def is_base_form(self, token: Token) -> bool:
|
||||
morph = token.morph.to_dict()
|
||||
upos = token.pos_.lower()
|
||||
|
||||
# Consider unmarked forms to be base
|
||||
if upos in {"noun", "verb", "adj", "adv"}:
|
||||
if not morph:
|
||||
return True
|
||||
if upos == "noun" and morph.get("Number") == "Sing":
|
||||
return True
|
||||
if upos == "verb" and morph.get("VerbForm") == "Inf":
|
||||
return True
|
||||
if upos == "adj" and morph.get("Degree") == "Pos":
|
||||
return True
|
||||
return False
|
||||
|
||||
def rule_lemmatize(self, token: Token) -> List[str]:
|
||||
string = token.text.lower()
|
||||
pos = token.pos_.lower()
|
||||
cache_key = (token.orth, token.pos)
|
||||
if cache_key in self.cache:
|
||||
return self.cache[cache_key]
|
||||
|
||||
forms = []
|
||||
|
||||
# fallback rule: just return lowercased form
|
||||
forms.append(string)
|
||||
|
||||
self.cache[cache_key] = forms
|
||||
return forms
|
||||
|
||||
@classmethod
|
||||
def get_lookups_config(cls, mode: str) -> Tuple[List[str], List[str]]:
|
||||
if mode == "rule":
|
||||
required = ["lemma_lookup", "lemma_rules", "lemma_exc", "lemma_index"]
|
||||
return (required, [])
|
||||
return super().get_lookups_config(mode)
|
78
spacy/lang/ht/lex_attrs.py
Normal file
78
spacy/lang/ht/lex_attrs.py
Normal file
|
@ -0,0 +1,78 @@
|
|||
from ...attrs import LIKE_NUM, NORM
|
||||
|
||||
# Cardinal numbers in Creole
|
||||
_num_words = set(
|
||||
"""
|
||||
zewo youn en de twa kat senk sis sèt uit nèf dis
|
||||
onz douz trèz katoz kenz sèz disèt dizwit diznèf
|
||||
vent trant karant sinkant swasant swasann-dis
|
||||
san mil milyon milya
|
||||
""".split()
|
||||
)
|
||||
|
||||
# Ordinal numbers in Creole (some are French-influenced, some simplified)
|
||||
_ordinal_words = set(
|
||||
"""
|
||||
premye dezyèm twazyèm katryèm senkyèm sizyèm sètvyèm uitvyèm nèvyèm dizyèm
|
||||
onzèm douzyèm trèzyèm katozyèm kenzèm sèzyèm disetyèm dizwityèm diznèvyèm
|
||||
ventyèm trantyèm karantyèm sinkantyèm swasantyèm
|
||||
swasann-disyèm santyèm milyèm milyonnyèm milyadyèm
|
||||
""".split()
|
||||
)
|
||||
|
||||
NORM_MAP = {
|
||||
"'m": "mwen",
|
||||
"'w": "ou",
|
||||
"'l": "li",
|
||||
"'n": "nou",
|
||||
"'y": "yo",
|
||||
"’m": "mwen",
|
||||
"’w": "ou",
|
||||
"’l": "li",
|
||||
"’n": "nou",
|
||||
"’y": "yo",
|
||||
"m": "mwen",
|
||||
"n": "nou",
|
||||
"l": "li",
|
||||
"y": "yo",
|
||||
"w": "ou",
|
||||
"t": "te",
|
||||
"k": "ki",
|
||||
"p": "pa",
|
||||
"M": "Mwen",
|
||||
"N": "Nou",
|
||||
"L": "Li",
|
||||
"Y": "Yo",
|
||||
"W": "Ou",
|
||||
"T": "Te",
|
||||
"K": "Ki",
|
||||
"P": "Pa",
|
||||
}
|
||||
|
||||
def like_num(text):
|
||||
text = text.strip().lower()
|
||||
if text.startswith(("+", "-", "±", "~")):
|
||||
text = text[1:]
|
||||
text = text.replace(",", "").replace(".", "")
|
||||
if text.isdigit():
|
||||
return True
|
||||
if text.count("/") == 1:
|
||||
num, denom = text.split("/")
|
||||
if num.isdigit() and denom.isdigit():
|
||||
return True
|
||||
if text in _num_words:
|
||||
return True
|
||||
if text in _ordinal_words:
|
||||
return True
|
||||
# Handle things like "3yèm", "10yèm", "25yèm", etc.
|
||||
if text.endswith("yèm") and text[:-3].isdigit():
|
||||
return True
|
||||
return False
|
||||
|
||||
def norm_custom(text):
|
||||
return NORM_MAP.get(text, text.lower())
|
||||
|
||||
LEX_ATTRS = {
|
||||
LIKE_NUM: like_num,
|
||||
NORM: norm_custom,
|
||||
}
|
43
spacy/lang/ht/punctuation.py
Normal file
43
spacy/lang/ht/punctuation.py
Normal file
|
@ -0,0 +1,43 @@
|
|||
from ..char_classes import (
|
||||
ALPHA,
|
||||
ALPHA_LOWER,
|
||||
ALPHA_UPPER,
|
||||
CONCAT_QUOTES,
|
||||
HYPHENS,
|
||||
LIST_PUNCT,
|
||||
LIST_QUOTES,
|
||||
LIST_ELLIPSES,
|
||||
LIST_ICONS,
|
||||
merge_chars,
|
||||
)
|
||||
|
||||
ELISION = "'’".replace(" ", "")
|
||||
|
||||
_prefixes_elision = "m n l y t k w"
|
||||
_prefixes_elision += " " + _prefixes_elision.upper()
|
||||
|
||||
TOKENIZER_PREFIXES = LIST_PUNCT + LIST_QUOTES + [
|
||||
r"(?:({pe})[{el}])(?=[{a}])".format(
|
||||
a=ALPHA, el=ELISION, pe=merge_chars(_prefixes_elision)
|
||||
)
|
||||
]
|
||||
|
||||
TOKENIZER_SUFFIXES = LIST_PUNCT + LIST_QUOTES + LIST_ELLIPSES + [
|
||||
r"(?<=[0-9])%", # numbers like 10%
|
||||
r"(?<=[0-9])(?:{h})".format(h=HYPHENS), # hyphens after numbers
|
||||
r"(?<=[{a}])['’]".format(a=ALPHA), # apostrophes after letters
|
||||
r"(?<=[{a}])['’][mwlnytk](?=\s|$)".format(a=ALPHA), # contractions
|
||||
r"(?<=[{a}0-9])\)", # right parenthesis after letter/number
|
||||
r"(?<=[{a}])\.(?=\s|$)".format(a=ALPHA), # period after letter if space or end of string
|
||||
r"(?<=\))[\.\?!]", # punctuation immediately after right parenthesis
|
||||
]
|
||||
|
||||
TOKENIZER_INFIXES = LIST_ELLIPSES + LIST_ICONS + [
|
||||
r"(?<=[0-9])[+\-\*^](?=[0-9-])",
|
||||
r"(?<=[{al}{q}])\.(?=[{au}{q}])".format(
|
||||
al=ALPHA_LOWER, au=ALPHA_UPPER, q=CONCAT_QUOTES
|
||||
),
|
||||
r"(?<=[{a}]),(?=[{a}])".format(a=ALPHA),
|
||||
r"(?<=[{a}0-9])(?:{h})(?=[{a}])".format(a=ALPHA, h=HYPHENS),
|
||||
r"(?<=[{a}][{el}])(?=[{a}])".format(a=ALPHA, el=ELISION),
|
||||
]
|
50
spacy/lang/ht/stop_words.py
Normal file
50
spacy/lang/ht/stop_words.py
Normal file
|
@ -0,0 +1,50 @@
|
|||
STOP_WORDS = set(
|
||||
"""
|
||||
a ak an ankò ant apre ap atò avan avanlè
|
||||
byen bò byenke
|
||||
|
||||
chak
|
||||
|
||||
de depi deja deja
|
||||
|
||||
e en epi èske
|
||||
|
||||
fò fòk
|
||||
|
||||
gen genyen
|
||||
|
||||
ki kisa kilès kote koukou konsa konbyen konn konnen kounye kouman
|
||||
|
||||
la l laa le lè li lye lò
|
||||
|
||||
m m' mwen
|
||||
|
||||
nan nap nou n'
|
||||
|
||||
ou oumenm
|
||||
|
||||
pa paske pami pandan pito pou pral preske pwiske
|
||||
|
||||
se selman si sou sòt
|
||||
|
||||
ta tap tankou te toujou tou tan tout toutotan twòp tèl
|
||||
|
||||
w w' wi wè
|
||||
|
||||
y y' yo yon yonn
|
||||
|
||||
non o oh eh
|
||||
|
||||
sa san si swa si
|
||||
|
||||
men mèsi oswa osinon
|
||||
|
||||
"""
|
||||
.split()
|
||||
)
|
||||
|
||||
# Add common contractions, with and without apostrophe variants
|
||||
contractions = ["m'", "n'", "w'", "y'", "l'", "t'", "k'"]
|
||||
for apostrophe in ["'", "’", "‘"]:
|
||||
for word in contractions:
|
||||
STOP_WORDS.add(word.replace("'", apostrophe))
|
74
spacy/lang/ht/syntax_iterators.py
Normal file
74
spacy/lang/ht/syntax_iterators.py
Normal file
|
@ -0,0 +1,74 @@
|
|||
from typing import Iterator, Tuple, Union
|
||||
|
||||
from ...errors import Errors
|
||||
from ...symbols import NOUN, PRON, PROPN
|
||||
from ...tokens import Doc, Span
|
||||
|
||||
|
||||
def noun_chunks(doclike: Union[Doc, Span]) -> Iterator[Tuple[int, int, int]]:
|
||||
"""
|
||||
Detect base noun phrases from a dependency parse for Haitian Creole.
|
||||
Works on both Doc and Span objects.
|
||||
"""
|
||||
|
||||
# Core nominal dependencies common in Haitian Creole
|
||||
labels = [
|
||||
"nsubj",
|
||||
"obj",
|
||||
"obl",
|
||||
"nmod",
|
||||
"appos",
|
||||
"ROOT",
|
||||
]
|
||||
|
||||
# Modifiers to optionally include in chunk (to the right)
|
||||
post_modifiers = ["compound", "flat", "flat:name", "fixed"]
|
||||
|
||||
doc = doclike.doc
|
||||
if not doc.has_annotation("DEP"):
|
||||
raise ValueError(Errors.E029)
|
||||
|
||||
np_deps = {doc.vocab.strings.add(label) for label in labels}
|
||||
np_mods = {doc.vocab.strings.add(mod) for mod in post_modifiers}
|
||||
conj_label = doc.vocab.strings.add("conj")
|
||||
np_label = doc.vocab.strings.add("NP")
|
||||
adp_pos = doc.vocab.strings.add("ADP")
|
||||
cc_pos = doc.vocab.strings.add("CCONJ")
|
||||
|
||||
prev_end = -1
|
||||
for i, word in enumerate(doclike):
|
||||
if word.pos not in (NOUN, PROPN, PRON):
|
||||
continue
|
||||
if word.left_edge.i <= prev_end:
|
||||
continue
|
||||
|
||||
if word.dep in np_deps:
|
||||
right_end = word
|
||||
# expand to include known modifiers to the right
|
||||
for child in word.rights:
|
||||
if child.dep in np_mods:
|
||||
right_end = child.right_edge
|
||||
elif child.pos == NOUN:
|
||||
right_end = child.right_edge
|
||||
|
||||
left_index = word.left_edge.i
|
||||
# Skip prepositions at the start
|
||||
if word.left_edge.pos == adp_pos:
|
||||
left_index += 1
|
||||
|
||||
prev_end = right_end.i
|
||||
yield left_index, right_end.i + 1, np_label
|
||||
|
||||
elif word.dep == conj_label:
|
||||
head = word.head
|
||||
while head.dep == conj_label and head.head.i < head.i:
|
||||
head = head.head
|
||||
if head.dep in np_deps:
|
||||
left_index = word.left_edge.i
|
||||
if word.left_edge.pos == cc_pos:
|
||||
left_index += 1
|
||||
prev_end = word.i
|
||||
yield left_index, word.i + 1, np_label
|
||||
|
||||
|
||||
SYNTAX_ITERATORS = {"noun_chunks": noun_chunks}
|
21
spacy/lang/ht/tag_map.py
Normal file
21
spacy/lang/ht/tag_map.py
Normal file
|
@ -0,0 +1,21 @@
|
|||
from spacy.symbols import NOUN, VERB, AUX, ADJ, ADV, PRON, DET, ADP, SCONJ, CCONJ, PART, INTJ, NUM, PROPN, PUNCT, SYM, X
|
||||
|
||||
TAG_MAP = {
|
||||
"NOUN": {"pos": NOUN},
|
||||
"VERB": {"pos": VERB},
|
||||
"AUX": {"pos": AUX},
|
||||
"ADJ": {"pos": ADJ},
|
||||
"ADV": {"pos": ADV},
|
||||
"PRON": {"pos": PRON},
|
||||
"DET": {"pos": DET},
|
||||
"ADP": {"pos": ADP},
|
||||
"SCONJ": {"pos": SCONJ},
|
||||
"CCONJ": {"pos": CCONJ},
|
||||
"PART": {"pos": PART},
|
||||
"INTJ": {"pos": INTJ},
|
||||
"NUM": {"pos": NUM},
|
||||
"PROPN": {"pos": PROPN},
|
||||
"PUNCT": {"pos": PUNCT},
|
||||
"SYM": {"pos": SYM},
|
||||
"X": {"pos": X},
|
||||
}
|
121
spacy/lang/ht/tokenizer_exceptions.py
Normal file
121
spacy/lang/ht/tokenizer_exceptions.py
Normal file
|
@ -0,0 +1,121 @@
|
|||
from spacy.symbols import ORTH, NORM
|
||||
|
||||
def make_variants(base, first_norm, second_orth, second_norm):
|
||||
return {
|
||||
base: [
|
||||
{ORTH: base.split("'")[0] + "'", NORM: first_norm},
|
||||
{ORTH: second_orth, NORM: second_norm},
|
||||
],
|
||||
base.capitalize(): [
|
||||
{ORTH: base.split("'")[0].capitalize() + "'", NORM: first_norm.capitalize()},
|
||||
{ORTH: second_orth, NORM: second_norm},
|
||||
]
|
||||
}
|
||||
|
||||
TOKENIZER_EXCEPTIONS = {
|
||||
"Dr.": [{ORTH: "Dr."}]
|
||||
}
|
||||
|
||||
# Apostrophe forms
|
||||
TOKENIZER_EXCEPTIONS.update(make_variants("m'ap", "mwen", "ap", "ap"))
|
||||
TOKENIZER_EXCEPTIONS.update(make_variants("n'ap", "nou", "ap", "ap"))
|
||||
TOKENIZER_EXCEPTIONS.update(make_variants("l'ap", "li", "ap", "ap"))
|
||||
TOKENIZER_EXCEPTIONS.update(make_variants("y'ap", "yo", "ap", "ap"))
|
||||
TOKENIZER_EXCEPTIONS.update(make_variants("m'te", "mwen", "te", "te"))
|
||||
TOKENIZER_EXCEPTIONS.update(make_variants("m'pral", "mwen", "pral", "pral"))
|
||||
TOKENIZER_EXCEPTIONS.update(make_variants("w'ap", "ou", "ap", "ap"))
|
||||
TOKENIZER_EXCEPTIONS.update(make_variants("k'ap", "ki", "ap", "ap"))
|
||||
TOKENIZER_EXCEPTIONS.update(make_variants("p'ap", "pa", "ap", "ap"))
|
||||
TOKENIZER_EXCEPTIONS.update(make_variants("t'ap", "te", "ap", "ap"))
|
||||
|
||||
# Non-apostrophe contractions (with capitalized variants)
|
||||
TOKENIZER_EXCEPTIONS.update({
|
||||
"map": [
|
||||
{ORTH: "m", NORM: "mwen"},
|
||||
{ORTH: "ap", NORM: "ap"},
|
||||
],
|
||||
"Map": [
|
||||
{ORTH: "M", NORM: "Mwen"},
|
||||
{ORTH: "ap", NORM: "ap"},
|
||||
],
|
||||
"lem": [
|
||||
{ORTH: "le", NORM: "le"},
|
||||
{ORTH: "m", NORM: "mwen"},
|
||||
],
|
||||
"Lem": [
|
||||
{ORTH: "Le", NORM: "Le"},
|
||||
{ORTH: "m", NORM: "mwen"},
|
||||
],
|
||||
"lew": [
|
||||
{ORTH: "le", NORM: "le"},
|
||||
{ORTH: "w", NORM: "ou"},
|
||||
],
|
||||
"Lew": [
|
||||
{ORTH: "Le", NORM: "Le"},
|
||||
{ORTH: "w", NORM: "ou"},
|
||||
],
|
||||
"nap": [
|
||||
{ORTH: "n", NORM: "nou"},
|
||||
{ORTH: "ap", NORM: "ap"},
|
||||
],
|
||||
"Nap": [
|
||||
{ORTH: "N", NORM: "Nou"},
|
||||
{ORTH: "ap", NORM: "ap"},
|
||||
],
|
||||
"lap": [
|
||||
{ORTH: "l", NORM: "li"},
|
||||
{ORTH: "ap", NORM: "ap"},
|
||||
],
|
||||
"Lap": [
|
||||
{ORTH: "L", NORM: "Li"},
|
||||
{ORTH: "ap", NORM: "ap"},
|
||||
],
|
||||
"yap": [
|
||||
{ORTH: "y", NORM: "yo"},
|
||||
{ORTH: "ap", NORM: "ap"},
|
||||
],
|
||||
"Yap": [
|
||||
{ORTH: "Y", NORM: "Yo"},
|
||||
{ORTH: "ap", NORM: "ap"},
|
||||
],
|
||||
"mte": [
|
||||
{ORTH: "m", NORM: "mwen"},
|
||||
{ORTH: "te", NORM: "te"},
|
||||
],
|
||||
"Mte": [
|
||||
{ORTH: "M", NORM: "Mwen"},
|
||||
{ORTH: "te", NORM: "te"},
|
||||
],
|
||||
"mpral": [
|
||||
{ORTH: "m", NORM: "mwen"},
|
||||
{ORTH: "pral", NORM: "pral"},
|
||||
],
|
||||
"Mpral": [
|
||||
{ORTH: "M", NORM: "Mwen"},
|
||||
{ORTH: "pral", NORM: "pral"},
|
||||
],
|
||||
"wap": [
|
||||
{ORTH: "w", NORM: "ou"},
|
||||
{ORTH: "ap", NORM: "ap"},
|
||||
],
|
||||
"Wap": [
|
||||
{ORTH: "W", NORM: "Ou"},
|
||||
{ORTH: "ap", NORM: "ap"},
|
||||
],
|
||||
"kap": [
|
||||
{ORTH: "k", NORM: "ki"},
|
||||
{ORTH: "ap", NORM: "ap"},
|
||||
],
|
||||
"Kap": [
|
||||
{ORTH: "K", NORM: "Ki"},
|
||||
{ORTH: "ap", NORM: "ap"},
|
||||
],
|
||||
"tap": [
|
||||
{ORTH: "t", NORM: "te"},
|
||||
{ORTH: "ap", NORM: "ap"},
|
||||
],
|
||||
"Tap": [
|
||||
{ORTH: "T", NORM: "Te"},
|
||||
{ORTH: "ap", NORM: "ap"},
|
||||
],
|
||||
})
|
|
@ -32,7 +32,6 @@ split_mode = null
|
|||
"""
|
||||
|
||||
|
||||
@registry.tokenizers("spacy.ja.JapaneseTokenizer")
|
||||
def create_tokenizer(split_mode: Optional[str] = None):
|
||||
def japanese_tokenizer_factory(nlp):
|
||||
return JapaneseTokenizer(nlp.vocab, split_mode=split_mode)
|
||||
|
|
16
spacy/lang/kmr/__init__.py
Normal file
16
spacy/lang/kmr/__init__.py
Normal file
|
@ -0,0 +1,16 @@
|
|||
from ...language import BaseDefaults, Language
|
||||
from .lex_attrs import LEX_ATTRS
|
||||
from .stop_words import STOP_WORDS
|
||||
|
||||
|
||||
class KurmanjiDefaults(BaseDefaults):
|
||||
stop_words = STOP_WORDS
|
||||
lex_attr_getters = LEX_ATTRS
|
||||
|
||||
|
||||
class Kurmanji(Language):
|
||||
lang = "kmr"
|
||||
Defaults = KurmanjiDefaults
|
||||
|
||||
|
||||
__all__ = ["Kurmanji"]
|
17
spacy/lang/kmr/examples.py
Normal file
17
spacy/lang/kmr/examples.py
Normal file
|
@ -0,0 +1,17 @@
|
|||
"""
|
||||
Example sentences to test spaCy and its language models.
|
||||
|
||||
>>> from spacy.lang.kmr.examples import sentences
|
||||
>>> docs = nlp.pipe(sentences)
|
||||
"""
|
||||
|
||||
sentences = [
|
||||
"Berê mirovan her tim li geşedana pêşerojê ye", # People's gaze is always on the development of the future
|
||||
"Kawa Nemir di 14 salan de Ulysses wergerand Kurmancî.", # Kawa Nemir translated Ulysses into Kurmanji in 14 years.
|
||||
"Mem Ararat hunermendekî Kurd yê bi nav û deng e.", # Mem Ararat is a famous Kurdish artist
|
||||
"Firat Cewerî 40 sal e pirtûkên Kurdî dinivîsîne.", # Firat Ceweri has been writing Kurdish books for 40 years
|
||||
"Rojnamegerê ciwan nûçeyeke balkêş li ser rewşa aborî nivîsand", # The young journalist wrote an interesting news article about the economic situation
|
||||
"Sektora çandiniyê beşeke giring a belavkirina gaza serayê li seranserê cîhanê pêk tîne", # The agricultural sector constitutes an important part of greenhouse gas emissions worldwide
|
||||
"Xwendekarên jêhatî di pêşbaziya matematîkê de serkeftî bûn", # Talented students succeeded in the mathematics competition
|
||||
"Ji ber ji tunebûnê bavê min xwişkeke min nedan xwendin ew ji min re bû derd û kulek.", # Because of poverty, my father didn't send my sister to school, which became a pain and sorrow for me
|
||||
]
|
138
spacy/lang/kmr/lex_attrs.py
Normal file
138
spacy/lang/kmr/lex_attrs.py
Normal file
|
@ -0,0 +1,138 @@
|
|||
from ...attrs import LIKE_NUM
|
||||
|
||||
_num_words = [
|
||||
"sifir",
|
||||
"yek",
|
||||
"du",
|
||||
"sê",
|
||||
"çar",
|
||||
"pênc",
|
||||
"şeş",
|
||||
"heft",
|
||||
"heşt",
|
||||
"neh",
|
||||
"deh",
|
||||
"yazde",
|
||||
"dazde",
|
||||
"sêzde",
|
||||
"çarde",
|
||||
"pazde",
|
||||
"şazde",
|
||||
"hevde",
|
||||
"hejde",
|
||||
"nozde",
|
||||
"bîst",
|
||||
"sî",
|
||||
"çil",
|
||||
"pêncî",
|
||||
"şêst",
|
||||
"heftê",
|
||||
"heştê",
|
||||
"nod",
|
||||
"sed",
|
||||
"hezar",
|
||||
"milyon",
|
||||
"milyar",
|
||||
]
|
||||
|
||||
_ordinal_words = [
|
||||
"yekem",
|
||||
"yekemîn",
|
||||
"duyem",
|
||||
"duyemîn",
|
||||
"sêyem",
|
||||
"sêyemîn",
|
||||
"çarem",
|
||||
"çaremîn",
|
||||
"pêncem",
|
||||
"pêncemîn",
|
||||
"şeşem",
|
||||
"şeşemîn",
|
||||
"heftem",
|
||||
"heftemîn",
|
||||
"heştem",
|
||||
"heştemîn",
|
||||
"nehem",
|
||||
"nehemîn",
|
||||
"dehem",
|
||||
"dehemîn",
|
||||
"yazdehem",
|
||||
"yazdehemîn",
|
||||
"dazdehem",
|
||||
"dazdehemîn",
|
||||
"sêzdehem",
|
||||
"sêzdehemîn",
|
||||
"çardehem",
|
||||
"çardehemîn",
|
||||
"pazdehem",
|
||||
"pazdehemîn",
|
||||
"şanzdehem",
|
||||
"şanzdehemîn",
|
||||
"hevdehem",
|
||||
"hevdehemîn",
|
||||
"hejdehem",
|
||||
"hejdehemîn",
|
||||
"nozdehem",
|
||||
"nozdehemîn",
|
||||
"bîstem",
|
||||
"bîstemîn",
|
||||
"sîyem",
|
||||
"sîyemîn",
|
||||
"çilem",
|
||||
"çilemîn",
|
||||
"pêncîyem",
|
||||
"pênciyemîn",
|
||||
"şêstem",
|
||||
"şêstemîn",
|
||||
"heftêyem",
|
||||
"heftêyemîn",
|
||||
"heştêyem",
|
||||
"heştêyemîn",
|
||||
"notem",
|
||||
"notemîn",
|
||||
"sedem",
|
||||
"sedemîn",
|
||||
"hezarem",
|
||||
"hezaremîn",
|
||||
"milyonem",
|
||||
"milyonemîn",
|
||||
"milyarem",
|
||||
"milyaremîn",
|
||||
]
|
||||
|
||||
|
||||
def like_num(text):
|
||||
if text.startswith(("+", "-", "±", "~")):
|
||||
text = text[1:]
|
||||
text = text.replace(",", "").replace(".", "")
|
||||
if text.isdigit():
|
||||
return True
|
||||
if text.count("/") == 1:
|
||||
num, denom = text.split("/")
|
||||
if num.isdigit() and denom.isdigit():
|
||||
return True
|
||||
text_lower = text.lower()
|
||||
if text_lower in _num_words:
|
||||
return True
|
||||
|
||||
# Check ordinal number
|
||||
if text_lower in _ordinal_words:
|
||||
return True
|
||||
|
||||
if is_digit(text_lower):
|
||||
return True
|
||||
|
||||
return False
|
||||
|
||||
|
||||
def is_digit(text):
|
||||
endings = ("em", "yem", "emîn", "yemîn")
|
||||
for ending in endings:
|
||||
to = len(ending)
|
||||
if text.endswith(ending) and text[:-to].isdigit():
|
||||
return True
|
||||
|
||||
return False
|
||||
|
||||
|
||||
LEX_ATTRS = {LIKE_NUM: like_num}
|
44
spacy/lang/kmr/stop_words.py
Normal file
44
spacy/lang/kmr/stop_words.py
Normal file
|
@ -0,0 +1,44 @@
|
|||
STOP_WORDS = set(
|
||||
"""
|
||||
û
|
||||
li
|
||||
bi
|
||||
di
|
||||
da
|
||||
de
|
||||
ji
|
||||
ku
|
||||
ew
|
||||
ez
|
||||
tu
|
||||
em
|
||||
hûn
|
||||
ew
|
||||
ev
|
||||
min
|
||||
te
|
||||
wî
|
||||
wê
|
||||
me
|
||||
we
|
||||
wan
|
||||
vê
|
||||
vî
|
||||
va
|
||||
çi
|
||||
kî
|
||||
kê
|
||||
çawa
|
||||
çima
|
||||
kengî
|
||||
li ku
|
||||
çend
|
||||
çiqas
|
||||
her
|
||||
hin
|
||||
gelek
|
||||
hemû
|
||||
kes
|
||||
tişt
|
||||
""".split()
|
||||
)
|
|
@ -20,7 +20,6 @@ DEFAULT_CONFIG = """
|
|||
"""
|
||||
|
||||
|
||||
@registry.tokenizers("spacy.ko.KoreanTokenizer")
|
||||
def create_tokenizer():
|
||||
def korean_tokenizer_factory(nlp):
|
||||
return KoreanTokenizer(nlp.vocab)
|
||||
|
|
|
@ -24,12 +24,6 @@ class MacedonianDefaults(BaseDefaults):
|
|||
tokenizer_exceptions = update_exc(BASE_EXCEPTIONS, TOKENIZER_EXCEPTIONS)
|
||||
stop_words = STOP_WORDS
|
||||
|
||||
@classmethod
|
||||
def create_lemmatizer(cls, nlp=None, lookups=None):
|
||||
if lookups is None:
|
||||
lookups = Lookups()
|
||||
return MacedonianLemmatizer(lookups)
|
||||
|
||||
|
||||
class Macedonian(Language):
|
||||
lang = "mk"
|
||||
|
|
|
@ -13,7 +13,6 @@ DEFAULT_CONFIG = """
|
|||
"""
|
||||
|
||||
|
||||
@registry.tokenizers("spacy.th.ThaiTokenizer")
|
||||
def create_thai_tokenizer():
|
||||
def thai_tokenizer_factory(nlp):
|
||||
return ThaiTokenizer(nlp.vocab)
|
||||
|
|
|
@ -22,7 +22,6 @@ use_pyvi = true
|
|||
"""
|
||||
|
||||
|
||||
@registry.tokenizers("spacy.vi.VietnameseTokenizer")
|
||||
def create_vietnamese_tokenizer(use_pyvi: bool = True):
|
||||
def vietnamese_tokenizer_factory(nlp):
|
||||
return VietnameseTokenizer(nlp.vocab, use_pyvi=use_pyvi)
|
||||
|
|
|
@ -46,7 +46,6 @@ class Segmenter(str, Enum):
|
|||
return list(cls.__members__.keys())
|
||||
|
||||
|
||||
@registry.tokenizers("spacy.zh.ChineseTokenizer")
|
||||
def create_chinese_tokenizer(segmenter: Segmenter = Segmenter.char):
|
||||
def chinese_tokenizer_factory(nlp):
|
||||
return ChineseTokenizer(nlp.vocab, segmenter=segmenter)
|
||||
|
|
|
@ -5,7 +5,7 @@ import multiprocessing as mp
|
|||
import random
|
||||
import traceback
|
||||
import warnings
|
||||
from contextlib import contextmanager
|
||||
from contextlib import ExitStack, contextmanager
|
||||
from copy import deepcopy
|
||||
from dataclasses import dataclass
|
||||
from itertools import chain, cycle
|
||||
|
@ -30,8 +30,11 @@ from typing import (
|
|||
overload,
|
||||
)
|
||||
|
||||
import numpy
|
||||
import srsly
|
||||
from cymem.cymem import Pool
|
||||
from thinc.api import Config, CupyOps, Optimizer, get_current_ops
|
||||
from thinc.util import convert_recursive
|
||||
|
||||
from . import about, ty, util
|
||||
from .compat import Literal
|
||||
|
@ -101,7 +104,6 @@ class BaseDefaults:
|
|||
writing_system = {"direction": "ltr", "has_case": True, "has_letters": True}
|
||||
|
||||
|
||||
@registry.tokenizers("spacy.Tokenizer.v1")
|
||||
def create_tokenizer() -> Callable[["Language"], Tokenizer]:
|
||||
"""Registered function to create a tokenizer. Returns a factory that takes
|
||||
the nlp object and returns a Tokenizer instance using the language detaults.
|
||||
|
@ -127,7 +129,6 @@ def create_tokenizer() -> Callable[["Language"], Tokenizer]:
|
|||
return tokenizer_factory
|
||||
|
||||
|
||||
@registry.misc("spacy.LookupsDataLoader.v1")
|
||||
def load_lookups_data(lang, tables):
|
||||
util.logger.debug("Loading lookups from spacy-lookups-data: %s", tables)
|
||||
lookups = load_lookups(lang=lang, tables=tables)
|
||||
|
@ -140,7 +141,7 @@ class Language:
|
|||
|
||||
Defaults (class): Settings, data and factory methods for creating the `nlp`
|
||||
object and processing pipeline.
|
||||
lang (str): IETF language code, such as 'en'.
|
||||
lang (str): Two-letter ISO 639-1 or three-letter ISO 639-3 language codes, such as 'en' and 'eng'.
|
||||
|
||||
DOCS: https://spacy.io/api/language
|
||||
"""
|
||||
|
@ -182,6 +183,9 @@ class Language:
|
|||
|
||||
DOCS: https://spacy.io/api/language#init
|
||||
"""
|
||||
from .pipeline.factories import register_factories
|
||||
|
||||
register_factories()
|
||||
# We're only calling this to import all factories provided via entry
|
||||
# points. The factory decorator applied to these functions takes care
|
||||
# of the rest.
|
||||
|
@ -1211,7 +1215,7 @@ class Language:
|
|||
examples,
|
||||
):
|
||||
eg.predicted = doc
|
||||
return losses
|
||||
return _replace_numpy_floats(losses)
|
||||
|
||||
def rehearse(
|
||||
self,
|
||||
|
@ -1462,7 +1466,7 @@ class Language:
|
|||
results = scorer.score(examples, per_component=per_component)
|
||||
n_words = sum(len(eg.predicted) for eg in examples)
|
||||
results["speed"] = n_words / (end_time - start_time)
|
||||
return results
|
||||
return _replace_numpy_floats(results)
|
||||
|
||||
def create_optimizer(self):
|
||||
"""Create an optimizer, usually using the [training.optimizer] config."""
|
||||
|
@ -2091,6 +2095,38 @@ class Language:
|
|||
util.replace_model_node(pipe.model, listener, new_model) # type: ignore[attr-defined]
|
||||
tok2vec.remove_listener(listener, pipe_name)
|
||||
|
||||
@contextmanager
|
||||
def memory_zone(self, mem: Optional[Pool] = None) -> Iterator[Pool]:
|
||||
"""Begin a block where all resources allocated during the block will
|
||||
be freed at the end of it. If a resources was created within the
|
||||
memory zone block, accessing it outside the block is invalid.
|
||||
Behaviour of this invalid access is undefined. Memory zones should
|
||||
not be nested.
|
||||
|
||||
The memory zone is helpful for services that need to process large
|
||||
volumes of text with a defined memory budget.
|
||||
|
||||
Example
|
||||
-------
|
||||
>>> with nlp.memory_zone():
|
||||
... for doc in nlp.pipe(texts):
|
||||
... process_my_doc(doc)
|
||||
>>> # use_doc(doc) <-- Invalid: doc was allocated in the memory zone
|
||||
"""
|
||||
if mem is None:
|
||||
mem = Pool()
|
||||
# The ExitStack allows programmatic nested context managers.
|
||||
# We don't know how many we need, so it would be awkward to have
|
||||
# them as nested blocks.
|
||||
with ExitStack() as stack:
|
||||
contexts = [stack.enter_context(self.vocab.memory_zone(mem))]
|
||||
if hasattr(self.tokenizer, "memory_zone"):
|
||||
contexts.append(stack.enter_context(self.tokenizer.memory_zone(mem)))
|
||||
for _, pipe in self.pipeline:
|
||||
if hasattr(pipe, "memory_zone"):
|
||||
contexts.append(stack.enter_context(pipe.memory_zone(mem)))
|
||||
yield mem
|
||||
|
||||
def to_disk(
|
||||
self, path: Union[str, Path], *, exclude: Iterable[str] = SimpleFrozenList()
|
||||
) -> None:
|
||||
|
@ -2108,7 +2144,9 @@ class Language:
|
|||
serializers["tokenizer"] = lambda p: self.tokenizer.to_disk( # type: ignore[union-attr]
|
||||
p, exclude=["vocab"]
|
||||
)
|
||||
serializers["meta.json"] = lambda p: srsly.write_json(p, self.meta)
|
||||
serializers["meta.json"] = lambda p: srsly.write_json(
|
||||
p, _replace_numpy_floats(self.meta)
|
||||
)
|
||||
serializers["config.cfg"] = lambda p: self.config.to_disk(p)
|
||||
for name, proc in self._components:
|
||||
if name in exclude:
|
||||
|
@ -2222,7 +2260,9 @@ class Language:
|
|||
serializers: Dict[str, Callable[[], bytes]] = {}
|
||||
serializers["vocab"] = lambda: self.vocab.to_bytes(exclude=exclude)
|
||||
serializers["tokenizer"] = lambda: self.tokenizer.to_bytes(exclude=["vocab"]) # type: ignore[union-attr]
|
||||
serializers["meta.json"] = lambda: srsly.json_dumps(self.meta)
|
||||
serializers["meta.json"] = lambda: srsly.json_dumps(
|
||||
_replace_numpy_floats(self.meta)
|
||||
)
|
||||
serializers["config.cfg"] = lambda: self.config.to_bytes()
|
||||
for name, proc in self._components:
|
||||
if name in exclude:
|
||||
|
@ -2273,6 +2313,12 @@ class Language:
|
|||
return self
|
||||
|
||||
|
||||
def _replace_numpy_floats(meta_dict: dict) -> dict:
|
||||
return convert_recursive(
|
||||
lambda v: isinstance(v, numpy.floating), lambda v: float(v), dict(meta_dict)
|
||||
)
|
||||
|
||||
|
||||
@dataclass
|
||||
class FactoryMeta:
|
||||
"""Dataclass containing information about a component and its defaults
|
||||
|
|
|
@ -35,7 +35,7 @@ cdef class Lexeme:
|
|||
return self
|
||||
|
||||
@staticmethod
|
||||
cdef inline void set_struct_attr(LexemeC* lex, attr_id_t name, attr_t value) nogil:
|
||||
cdef inline void set_struct_attr(LexemeC* lex, attr_id_t name, attr_t value) noexcept nogil:
|
||||
if name < (sizeof(flags_t) * 8):
|
||||
Lexeme.c_set_flag(lex, name, value)
|
||||
elif name == ID:
|
||||
|
@ -54,7 +54,7 @@ cdef class Lexeme:
|
|||
lex.lang = value
|
||||
|
||||
@staticmethod
|
||||
cdef inline attr_t get_struct_attr(const LexemeC* lex, attr_id_t feat_name) nogil:
|
||||
cdef inline attr_t get_struct_attr(const LexemeC* lex, attr_id_t feat_name) noexcept nogil:
|
||||
if feat_name < (sizeof(flags_t) * 8):
|
||||
if Lexeme.c_check_flag(lex, feat_name):
|
||||
return 1
|
||||
|
@ -82,7 +82,7 @@ cdef class Lexeme:
|
|||
return 0
|
||||
|
||||
@staticmethod
|
||||
cdef inline bint c_check_flag(const LexemeC* lexeme, attr_id_t flag_id) nogil:
|
||||
cdef inline bint c_check_flag(const LexemeC* lexeme, attr_id_t flag_id) noexcept nogil:
|
||||
cdef flags_t one = 1
|
||||
if lexeme.flags & (one << flag_id):
|
||||
return True
|
||||
|
@ -90,7 +90,7 @@ cdef class Lexeme:
|
|||
return False
|
||||
|
||||
@staticmethod
|
||||
cdef inline bint c_set_flag(LexemeC* lex, attr_id_t flag_id, bint value) nogil:
|
||||
cdef inline bint c_set_flag(LexemeC* lex, attr_id_t flag_id, bint value) noexcept nogil:
|
||||
cdef flags_t one = 1
|
||||
if value:
|
||||
lex.flags |= one << flag_id
|
||||
|
|
|
@ -70,7 +70,7 @@ cdef class Lexeme:
|
|||
if isinstance(other, Lexeme):
|
||||
a = self.orth
|
||||
b = other.orth
|
||||
elif isinstance(other, long):
|
||||
elif isinstance(other, int):
|
||||
a = self.orth
|
||||
b = other
|
||||
elif isinstance(other, str):
|
||||
|
@ -104,7 +104,7 @@ cdef class Lexeme:
|
|||
# skip PROB, e.g. from lexemes.jsonl
|
||||
if isinstance(value, float):
|
||||
continue
|
||||
elif isinstance(value, (int, long)):
|
||||
elif isinstance(value, int):
|
||||
Lexeme.set_struct_attr(self.c, attr, value)
|
||||
else:
|
||||
Lexeme.set_struct_attr(self.c, attr, self.vocab.strings.add(value))
|
||||
|
|
|
@ -1,4 +1,4 @@
|
|||
# cython: binding=True, infer_types=True
|
||||
# cython: binding=True, infer_types=True, language_level=3
|
||||
from cpython.object cimport PyObject
|
||||
from libc.stdint cimport int64_t
|
||||
|
||||
|
@ -27,6 +27,5 @@ cpdef bint levenshtein_compare(input_text: str, pattern_text: str, fuzzy: int =
|
|||
return levenshtein(input_text, pattern_text, max_edits) <= max_edits
|
||||
|
||||
|
||||
@registry.misc("spacy.levenshtein_compare.v1")
|
||||
def make_levenshtein_compare():
|
||||
return levenshtein_compare
|
||||
|
|
|
@ -625,7 +625,7 @@ cdef action_t get_action(
|
|||
const TokenC * token,
|
||||
const attr_t * extra_attrs,
|
||||
const int8_t * predicate_matches
|
||||
) nogil:
|
||||
) noexcept nogil:
|
||||
"""We need to consider:
|
||||
a) Does the token match the specification? [Yes, No]
|
||||
b) What's the quantifier? [1, 0+, ?]
|
||||
|
@ -740,7 +740,7 @@ cdef int8_t get_is_match(
|
|||
const TokenC* token,
|
||||
const attr_t* extra_attrs,
|
||||
const int8_t* predicate_matches
|
||||
) nogil:
|
||||
) noexcept nogil:
|
||||
for i in range(state.pattern.nr_py):
|
||||
if predicate_matches[state.pattern.py_predicates[i]] == -1:
|
||||
return 0
|
||||
|
@ -755,14 +755,14 @@ cdef int8_t get_is_match(
|
|||
return True
|
||||
|
||||
|
||||
cdef inline int8_t get_is_final(PatternStateC state) nogil:
|
||||
cdef inline int8_t get_is_final(PatternStateC state) noexcept nogil:
|
||||
if state.pattern[1].quantifier == FINAL_ID:
|
||||
return 1
|
||||
else:
|
||||
return 0
|
||||
|
||||
|
||||
cdef inline int8_t get_quantifier(PatternStateC state) nogil:
|
||||
cdef inline int8_t get_quantifier(PatternStateC state) noexcept nogil:
|
||||
return state.pattern.quantifier
|
||||
|
||||
|
||||
|
@ -805,7 +805,7 @@ cdef TokenPatternC* init_pattern(Pool mem, attr_t entity_id, object token_specs)
|
|||
return pattern
|
||||
|
||||
|
||||
cdef attr_t get_ent_id(const TokenPatternC* pattern) nogil:
|
||||
cdef attr_t get_ent_id(const TokenPatternC* pattern) noexcept nogil:
|
||||
while pattern.quantifier != FINAL_ID:
|
||||
pattern += 1
|
||||
id_attr = pattern[0].attrs[0]
|
||||
|
|
|
@ -47,7 +47,7 @@ cdef class PhraseMatcher:
|
|||
self._terminal_hash = 826361138722620965
|
||||
map_init(self.mem, self.c_map, 8)
|
||||
|
||||
if isinstance(attr, (int, long)):
|
||||
if isinstance(attr, int):
|
||||
self.attr = attr
|
||||
else:
|
||||
if attr is None:
|
||||
|
|
|
@ -7,7 +7,6 @@ from ..tokens import Doc
|
|||
from ..util import registry
|
||||
|
||||
|
||||
@registry.layers("spacy.CharEmbed.v1")
|
||||
def CharacterEmbed(nM: int, nC: int) -> Model[List[Doc], List[Floats2d]]:
|
||||
# nM: Number of dimensions per character. nC: Number of characters.
|
||||
return Model(
|
||||
|
|
|
@ -3,7 +3,6 @@ from thinc.api import Model, normal_init
|
|||
from ..util import registry
|
||||
|
||||
|
||||
@registry.layers("spacy.PrecomputableAffine.v1")
|
||||
def PrecomputableAffine(nO, nI, nF, nP, dropout=0.1):
|
||||
model = Model(
|
||||
"precomputable_affine",
|
||||
|
|
|
@ -50,7 +50,6 @@ def models_with_nvtx_range(nlp, forward_color: int, backprop_color: int):
|
|||
return nlp
|
||||
|
||||
|
||||
@registry.callbacks("spacy.models_with_nvtx_range.v1")
|
||||
def create_models_with_nvtx_range(
|
||||
forward_color: int = -1, backprop_color: int = -1
|
||||
) -> Callable[["Language"], "Language"]:
|
||||
|
@ -110,7 +109,6 @@ def pipes_with_nvtx_range(
|
|||
return nlp
|
||||
|
||||
|
||||
@registry.callbacks("spacy.models_and_pipes_with_nvtx_range.v1")
|
||||
def create_models_and_pipes_with_nvtx_range(
|
||||
forward_color: int = -1,
|
||||
backprop_color: int = -1,
|
||||
|
|
|
@ -4,7 +4,6 @@ from ..attrs import LOWER
|
|||
from ..util import registry
|
||||
|
||||
|
||||
@registry.layers("spacy.extract_ngrams.v1")
|
||||
def extract_ngrams(ngram_size: int, attr: int = LOWER) -> Model:
|
||||
model: Model = Model("extract_ngrams", forward)
|
||||
model.attrs["ngram_size"] = ngram_size
|
||||
|
|
|
@ -6,7 +6,6 @@ from thinc.types import Ints1d, Ragged
|
|||
from ..util import registry
|
||||
|
||||
|
||||
@registry.layers("spacy.extract_spans.v1")
|
||||
def extract_spans() -> Model[Tuple[Ragged, Ragged], Ragged]:
|
||||
"""Extract spans from a sequence of source arrays, as specified by an array
|
||||
of (start, end) indices. The output is a ragged array of the
|
||||
|
|
|
@ -6,8 +6,9 @@ from thinc.types import Ints2d
|
|||
from ..tokens import Doc
|
||||
|
||||
|
||||
@registry.layers("spacy.FeatureExtractor.v1")
|
||||
def FeatureExtractor(columns: List[Union[int, str]]) -> Model[List[Doc], List[Ints2d]]:
|
||||
def FeatureExtractor(
|
||||
columns: Union[List[str], List[int], List[Union[int, str]]]
|
||||
) -> Model[List[Doc], List[Ints2d]]:
|
||||
return Model("extract_features", forward, attrs={"columns": columns})
|
||||
|
||||
|
||||
|
|
|
@ -28,7 +28,6 @@ from ...vocab import Vocab
|
|||
from ..extract_spans import extract_spans
|
||||
|
||||
|
||||
@registry.architectures("spacy.EntityLinker.v2")
|
||||
def build_nel_encoder(
|
||||
tok2vec: Model, nO: Optional[int] = None
|
||||
) -> Model[List[Doc], Floats2d]:
|
||||
|
@ -92,7 +91,6 @@ def span_maker_forward(model, docs: List[Doc], is_train) -> Tuple[Ragged, Callab
|
|||
return out, lambda x: []
|
||||
|
||||
|
||||
@registry.misc("spacy.KBFromFile.v1")
|
||||
def load_kb(
|
||||
kb_path: Path,
|
||||
) -> Callable[[Vocab], KnowledgeBase]:
|
||||
|
@ -104,7 +102,6 @@ def load_kb(
|
|||
return kb_from_file
|
||||
|
||||
|
||||
@registry.misc("spacy.EmptyKB.v2")
|
||||
def empty_kb_for_config() -> Callable[[Vocab, int], KnowledgeBase]:
|
||||
def empty_kb_factory(vocab: Vocab, entity_vector_length: int):
|
||||
return InMemoryLookupKB(vocab=vocab, entity_vector_length=entity_vector_length)
|
||||
|
@ -112,7 +109,6 @@ def empty_kb_for_config() -> Callable[[Vocab, int], KnowledgeBase]:
|
|||
return empty_kb_factory
|
||||
|
||||
|
||||
@registry.misc("spacy.EmptyKB.v1")
|
||||
def empty_kb(
|
||||
entity_vector_length: int,
|
||||
) -> Callable[[Vocab], KnowledgeBase]:
|
||||
|
@ -122,12 +118,10 @@ def empty_kb(
|
|||
return empty_kb_factory
|
||||
|
||||
|
||||
@registry.misc("spacy.CandidateGenerator.v1")
|
||||
def create_candidates() -> Callable[[KnowledgeBase, Span], Iterable[Candidate]]:
|
||||
return get_candidates
|
||||
|
||||
|
||||
@registry.misc("spacy.CandidateBatchGenerator.v1")
|
||||
def create_candidates_batch() -> Callable[
|
||||
[KnowledgeBase, Iterable[Span]], Iterable[Iterable[Candidate]]
|
||||
]:
|
||||
|
|
|
@ -30,7 +30,6 @@ if TYPE_CHECKING:
|
|||
from ...vocab import Vocab # noqa: F401
|
||||
|
||||
|
||||
@registry.architectures("spacy.PretrainVectors.v1")
|
||||
def create_pretrain_vectors(
|
||||
maxout_pieces: int, hidden_size: int, loss: str
|
||||
) -> Callable[["Vocab", Model], Model]:
|
||||
|
@ -57,7 +56,6 @@ def create_pretrain_vectors(
|
|||
return create_vectors_objective
|
||||
|
||||
|
||||
@registry.architectures("spacy.PretrainCharacters.v1")
|
||||
def create_pretrain_characters(
|
||||
maxout_pieces: int, hidden_size: int, n_characters: int
|
||||
) -> Callable[["Vocab", Model], Model]:
|
||||
|
|
|
@ -11,7 +11,6 @@ from .._precomputable_affine import PrecomputableAffine
|
|||
from ..tb_framework import TransitionModel
|
||||
|
||||
|
||||
@registry.architectures("spacy.TransitionBasedParser.v2")
|
||||
def build_tb_parser_model(
|
||||
tok2vec: Model[List[Doc], List[Floats2d]],
|
||||
state_type: Literal["parser", "ner"],
|
||||
|
|
|
@ -10,7 +10,6 @@ InT = List[Doc]
|
|||
OutT = Floats2d
|
||||
|
||||
|
||||
@registry.architectures("spacy.SpanFinder.v1")
|
||||
def build_finder_model(
|
||||
tok2vec: Model[InT, List[Floats2d]], scorer: Model[OutT, OutT]
|
||||
) -> Model[InT, OutT]:
|
||||
|
|
|
@ -22,7 +22,6 @@ from ...util import registry
|
|||
from ..extract_spans import extract_spans
|
||||
|
||||
|
||||
@registry.layers("spacy.LinearLogistic.v1")
|
||||
def build_linear_logistic(nO=None, nI=None) -> Model[Floats2d, Floats2d]:
|
||||
"""An output layer for multi-label classification. It uses a linear layer
|
||||
followed by a logistic activation.
|
||||
|
@ -30,7 +29,6 @@ def build_linear_logistic(nO=None, nI=None) -> Model[Floats2d, Floats2d]:
|
|||
return chain(Linear(nO=nO, nI=nI, init_W=glorot_uniform_init), Logistic())
|
||||
|
||||
|
||||
@registry.layers("spacy.mean_max_reducer.v1")
|
||||
def build_mean_max_reducer(hidden_size: int) -> Model[Ragged, Floats2d]:
|
||||
"""Reduce sequences by concatenating their mean and max pooled vectors,
|
||||
and then combine the concatenated vectors with a hidden layer.
|
||||
|
@ -46,7 +44,6 @@ def build_mean_max_reducer(hidden_size: int) -> Model[Ragged, Floats2d]:
|
|||
)
|
||||
|
||||
|
||||
@registry.architectures("spacy.SpanCategorizer.v1")
|
||||
def build_spancat_model(
|
||||
tok2vec: Model[List[Doc], List[Floats2d]],
|
||||
reducer: Model[Ragged, Floats2d],
|
||||
|
|
|
@ -7,7 +7,6 @@ from ...tokens import Doc
|
|||
from ...util import registry
|
||||
|
||||
|
||||
@registry.architectures("spacy.Tagger.v2")
|
||||
def build_tagger_model(
|
||||
tok2vec: Model[List[Doc], List[Floats2d]], nO: Optional[int] = None, normalize=False
|
||||
) -> Model[List[Doc], List[Floats2d]]:
|
||||
|
|
|
@ -44,7 +44,6 @@ from .tok2vec import get_tok2vec_width
|
|||
NEG_VALUE = -5000
|
||||
|
||||
|
||||
@registry.architectures("spacy.TextCatCNN.v2")
|
||||
def build_simple_cnn_text_classifier(
|
||||
tok2vec: Model, exclusive_classes: bool, nO: Optional[int] = None
|
||||
) -> Model[List[Doc], Floats2d]:
|
||||
|
@ -72,7 +71,6 @@ def resize_and_set_ref(model, new_nO, resizable_layer):
|
|||
return model
|
||||
|
||||
|
||||
@registry.architectures("spacy.TextCatBOW.v2")
|
||||
def build_bow_text_classifier(
|
||||
exclusive_classes: bool,
|
||||
ngram_size: int,
|
||||
|
@ -88,7 +86,6 @@ def build_bow_text_classifier(
|
|||
)
|
||||
|
||||
|
||||
@registry.architectures("spacy.TextCatBOW.v3")
|
||||
def build_bow_text_classifier_v3(
|
||||
exclusive_classes: bool,
|
||||
ngram_size: int,
|
||||
|
@ -142,7 +139,6 @@ def _build_bow_text_classifier(
|
|||
return model
|
||||
|
||||
|
||||
@registry.architectures("spacy.TextCatEnsemble.v2")
|
||||
def build_text_classifier_v2(
|
||||
tok2vec: Model[List[Doc], List[Floats2d]],
|
||||
linear_model: Model[List[Doc], Floats2d],
|
||||
|
@ -200,7 +196,6 @@ def init_ensemble_textcat(model, X, Y) -> Model:
|
|||
return model
|
||||
|
||||
|
||||
@registry.architectures("spacy.TextCatLowData.v1")
|
||||
def build_text_classifier_lowdata(
|
||||
width: int, dropout: Optional[float], nO: Optional[int] = None
|
||||
) -> Model[List[Doc], Floats2d]:
|
||||
|
@ -221,7 +216,6 @@ def build_text_classifier_lowdata(
|
|||
return model
|
||||
|
||||
|
||||
@registry.architectures("spacy.TextCatParametricAttention.v1")
|
||||
def build_textcat_parametric_attention_v1(
|
||||
tok2vec: Model[List[Doc], List[Floats2d]],
|
||||
exclusive_classes: bool,
|
||||
|
@ -294,7 +288,6 @@ def _init_parametric_attention_with_residual_nonlinear(model, X, Y) -> Model:
|
|||
return model
|
||||
|
||||
|
||||
@registry.architectures("spacy.TextCatReduce.v1")
|
||||
def build_reduce_text_classifier(
|
||||
tok2vec: Model,
|
||||
exclusive_classes: bool,
|
||||
|
|
|
@ -29,7 +29,6 @@ from ..featureextractor import FeatureExtractor
|
|||
from ..staticvectors import StaticVectors
|
||||
|
||||
|
||||
@registry.architectures("spacy.Tok2VecListener.v1")
|
||||
def tok2vec_listener_v1(width: int, upstream: str = "*"):
|
||||
tok2vec = Tok2VecListener(upstream_name=upstream, width=width)
|
||||
return tok2vec
|
||||
|
@ -46,7 +45,6 @@ def get_tok2vec_width(model: Model):
|
|||
return nO
|
||||
|
||||
|
||||
@registry.architectures("spacy.HashEmbedCNN.v2")
|
||||
def build_hash_embed_cnn_tok2vec(
|
||||
*,
|
||||
width: int,
|
||||
|
@ -102,7 +100,6 @@ def build_hash_embed_cnn_tok2vec(
|
|||
)
|
||||
|
||||
|
||||
@registry.architectures("spacy.Tok2Vec.v2")
|
||||
def build_Tok2Vec_model(
|
||||
embed: Model[List[Doc], List[Floats2d]],
|
||||
encode: Model[List[Floats2d], List[Floats2d]],
|
||||
|
@ -123,10 +120,9 @@ def build_Tok2Vec_model(
|
|||
return tok2vec
|
||||
|
||||
|
||||
@registry.architectures("spacy.MultiHashEmbed.v2")
|
||||
def MultiHashEmbed(
|
||||
width: int,
|
||||
attrs: List[Union[str, int]],
|
||||
attrs: Union[List[str], List[int], List[Union[str, int]]],
|
||||
rows: List[int],
|
||||
include_static_vectors: bool,
|
||||
) -> Model[List[Doc], List[Floats2d]]:
|
||||
|
@ -192,7 +188,7 @@ def MultiHashEmbed(
|
|||
)
|
||||
else:
|
||||
model = chain(
|
||||
FeatureExtractor(list(attrs)),
|
||||
FeatureExtractor(attrs),
|
||||
cast(Model[List[Ints2d], Ragged], list2ragged()),
|
||||
with_array(concatenate(*embeddings)),
|
||||
max_out,
|
||||
|
@ -201,7 +197,6 @@ def MultiHashEmbed(
|
|||
return model
|
||||
|
||||
|
||||
@registry.architectures("spacy.CharacterEmbed.v2")
|
||||
def CharacterEmbed(
|
||||
width: int,
|
||||
rows: int,
|
||||
|
@ -278,7 +273,6 @@ def CharacterEmbed(
|
|||
return model
|
||||
|
||||
|
||||
@registry.architectures("spacy.MaxoutWindowEncoder.v2")
|
||||
def MaxoutWindowEncoder(
|
||||
width: int, window_size: int, maxout_pieces: int, depth: int
|
||||
) -> Model[List[Floats2d], List[Floats2d]]:
|
||||
|
@ -310,7 +304,6 @@ def MaxoutWindowEncoder(
|
|||
return with_array(model, pad=receptive_field)
|
||||
|
||||
|
||||
@registry.architectures("spacy.MishWindowEncoder.v2")
|
||||
def MishWindowEncoder(
|
||||
width: int, window_size: int, depth: int
|
||||
) -> Model[List[Floats2d], List[Floats2d]]:
|
||||
|
@ -333,7 +326,6 @@ def MishWindowEncoder(
|
|||
return with_array(model)
|
||||
|
||||
|
||||
@registry.architectures("spacy.TorchBiLSTMEncoder.v1")
|
||||
def BiLSTMEncoder(
|
||||
width: int, depth: int, dropout: float
|
||||
) -> Model[List[Floats2d], List[Floats2d]]:
|
||||
|
|
|
@ -52,14 +52,14 @@ cdef SizesC get_c_sizes(model, int batch_size) except *:
|
|||
return output
|
||||
|
||||
|
||||
cdef ActivationsC alloc_activations(SizesC n) nogil:
|
||||
cdef ActivationsC alloc_activations(SizesC n) noexcept nogil:
|
||||
cdef ActivationsC A
|
||||
memset(&A, 0, sizeof(A))
|
||||
resize_activations(&A, n)
|
||||
return A
|
||||
|
||||
|
||||
cdef void free_activations(const ActivationsC* A) nogil:
|
||||
cdef void free_activations(const ActivationsC* A) noexcept nogil:
|
||||
free(A.token_ids)
|
||||
free(A.scores)
|
||||
free(A.unmaxed)
|
||||
|
@ -67,7 +67,7 @@ cdef void free_activations(const ActivationsC* A) nogil:
|
|||
free(A.is_valid)
|
||||
|
||||
|
||||
cdef void resize_activations(ActivationsC* A, SizesC n) nogil:
|
||||
cdef void resize_activations(ActivationsC* A, SizesC n) noexcept nogil:
|
||||
if n.states <= A._max_size:
|
||||
A._curr_size = n.states
|
||||
return
|
||||
|
@ -100,7 +100,7 @@ cdef void resize_activations(ActivationsC* A, SizesC n) nogil:
|
|||
|
||||
cdef void predict_states(
|
||||
CBlas cblas, ActivationsC* A, StateC** states, const WeightsC* W, SizesC n
|
||||
) nogil:
|
||||
) noexcept nogil:
|
||||
resize_activations(A, n)
|
||||
for i in range(n.states):
|
||||
states[i].set_context_tokens(&A.token_ids[i*n.feats], n.feats)
|
||||
|
@ -159,7 +159,7 @@ cdef void sum_state_features(
|
|||
int B,
|
||||
int F,
|
||||
int O
|
||||
) nogil:
|
||||
) noexcept nogil:
|
||||
cdef int idx, b, f
|
||||
cdef const float* feature
|
||||
padding = cached
|
||||
|
@ -183,7 +183,7 @@ cdef void cpu_log_loss(
|
|||
const int* is_valid,
|
||||
const float* scores,
|
||||
int O
|
||||
) nogil:
|
||||
) noexcept nogil:
|
||||
"""Do multi-label log loss"""
|
||||
cdef double max_, gmax, Z, gZ
|
||||
best = arg_max_if_gold(scores, costs, is_valid, O)
|
||||
|
@ -209,7 +209,7 @@ cdef void cpu_log_loss(
|
|||
|
||||
cdef int arg_max_if_gold(
|
||||
const weight_t* scores, const weight_t* costs, const int* is_valid, int n
|
||||
) nogil:
|
||||
) noexcept nogil:
|
||||
# Find minimum cost
|
||||
cdef float cost = 1
|
||||
for i in range(n):
|
||||
|
@ -224,7 +224,7 @@ cdef int arg_max_if_gold(
|
|||
return best
|
||||
|
||||
|
||||
cdef int arg_max_if_valid(const weight_t* scores, const int* is_valid, int n) nogil:
|
||||
cdef int arg_max_if_valid(const weight_t* scores, const int* is_valid, int n) noexcept nogil:
|
||||
cdef int best = -1
|
||||
for i in range(n):
|
||||
if is_valid[i] >= 1:
|
||||
|
|
|
@ -13,7 +13,6 @@ from ..vectors import Mode, Vectors
|
|||
from ..vocab import Vocab
|
||||
|
||||
|
||||
@registry.layers("spacy.StaticVectors.v2")
|
||||
def StaticVectors(
|
||||
nO: Optional[int] = None,
|
||||
nM: Optional[int] = None,
|
||||
|
|
|
@ -4,7 +4,6 @@ from ..util import registry
|
|||
from .parser_model import ParserStepModel
|
||||
|
||||
|
||||
@registry.layers("spacy.TransitionModel.v1")
|
||||
def TransitionModel(
|
||||
tok2vec, lower, upper, resize_output, dropout=0.2, unseen_classes=set()
|
||||
):
|
||||
|
|
|
@ -57,16 +57,20 @@ cdef class Morphology:
|
|||
field_feature_pairs = []
|
||||
for field in sorted(string_features):
|
||||
values = string_features[field]
|
||||
self.strings.add(field, allow_transient=False),
|
||||
field_id = self.strings[field]
|
||||
for value in values.split(self.VALUE_SEP):
|
||||
field_sep_value = field + self.FIELD_SEP + value
|
||||
self.strings.add(field_sep_value, allow_transient=False),
|
||||
field_feature_pairs.append((
|
||||
self.strings.add(field),
|
||||
self.strings.add(field + self.FIELD_SEP + value),
|
||||
field_id,
|
||||
self.strings[field_sep_value]
|
||||
))
|
||||
cdef MorphAnalysisC tag = self.create_morph_tag(field_feature_pairs)
|
||||
# the hash key for the tag is either the hash of the normalized UFEATS
|
||||
# string or the hash of an empty placeholder
|
||||
norm_feats_string = self.normalize_features(features)
|
||||
tag.key = self.strings.add(norm_feats_string)
|
||||
tag.key = self.strings.add(norm_feats_string, allow_transient=False)
|
||||
self.insert(tag)
|
||||
return tag.key
|
||||
|
||||
|
|
|
@ -25,3 +25,8 @@ IDS = {
|
|||
|
||||
|
||||
NAMES = {value: key for key, value in IDS.items()}
|
||||
|
||||
# As of Cython 3.1, the global Python namespace no longer has the enum
|
||||
# contents by default.
|
||||
globals().update(IDS)
|
||||
|
||||
|
|
|
@ -17,7 +17,7 @@ from ...typedefs cimport attr_t
|
|||
from ...vocab cimport EMPTY_LEXEME
|
||||
|
||||
|
||||
cdef inline bint is_space_token(const TokenC* token) nogil:
|
||||
cdef inline bint is_space_token(const TokenC* token) noexcept nogil:
|
||||
return Lexeme.c_check_flag(token.lex, IS_SPACE)
|
||||
|
||||
cdef struct ArcC:
|
||||
|
@ -41,7 +41,7 @@ cdef cppclass StateC:
|
|||
int offset
|
||||
int _b_i
|
||||
|
||||
__init__(const TokenC* sent, int length) nogil:
|
||||
inline __init__(const TokenC* sent, int length) noexcept nogil:
|
||||
this._sent = sent
|
||||
this._heads = <int*>calloc(length, sizeof(int))
|
||||
if not (this._sent and this._heads):
|
||||
|
@ -57,10 +57,10 @@ cdef cppclass StateC:
|
|||
memset(&this._empty_token, 0, sizeof(TokenC))
|
||||
this._empty_token.lex = &EMPTY_LEXEME
|
||||
|
||||
__dealloc__():
|
||||
inline __dealloc__():
|
||||
free(this._heads)
|
||||
|
||||
void set_context_tokens(int* ids, int n) nogil:
|
||||
inline void set_context_tokens(int* ids, int n) noexcept nogil:
|
||||
cdef int i, j
|
||||
if n == 1:
|
||||
if this.B(0) >= 0:
|
||||
|
@ -131,14 +131,14 @@ cdef cppclass StateC:
|
|||
else:
|
||||
ids[i] = -1
|
||||
|
||||
int S(int i) nogil const:
|
||||
inline int S(int i) noexcept nogil const:
|
||||
if i >= this._stack.size():
|
||||
return -1
|
||||
elif i < 0:
|
||||
return -1
|
||||
return this._stack.at(this._stack.size() - (i+1))
|
||||
|
||||
int B(int i) nogil const:
|
||||
inline int B(int i) noexcept nogil const:
|
||||
if i < 0:
|
||||
return -1
|
||||
elif i < this._rebuffer.size():
|
||||
|
@ -150,19 +150,19 @@ cdef cppclass StateC:
|
|||
else:
|
||||
return b_i
|
||||
|
||||
const TokenC* B_(int i) nogil const:
|
||||
inline const TokenC* B_(int i) noexcept nogil const:
|
||||
return this.safe_get(this.B(i))
|
||||
|
||||
const TokenC* E_(int i) nogil const:
|
||||
inline const TokenC* E_(int i) noexcept nogil const:
|
||||
return this.safe_get(this.E(i))
|
||||
|
||||
const TokenC* safe_get(int i) nogil const:
|
||||
inline const TokenC* safe_get(int i) noexcept nogil const:
|
||||
if i < 0 or i >= this.length:
|
||||
return &this._empty_token
|
||||
else:
|
||||
return &this._sent[i]
|
||||
|
||||
void map_get_arcs(const unordered_map[int, vector[ArcC]] &heads_arcs, vector[ArcC]* out) nogil const:
|
||||
inline void map_get_arcs(const unordered_map[int, vector[ArcC]] &heads_arcs, vector[ArcC]* out) noexcept nogil const:
|
||||
cdef const vector[ArcC]* arcs
|
||||
head_arcs_it = heads_arcs.const_begin()
|
||||
while head_arcs_it != heads_arcs.const_end():
|
||||
|
@ -175,23 +175,23 @@ cdef cppclass StateC:
|
|||
incr(arcs_it)
|
||||
incr(head_arcs_it)
|
||||
|
||||
void get_arcs(vector[ArcC]* out) nogil const:
|
||||
inline void get_arcs(vector[ArcC]* out) noexcept nogil const:
|
||||
this.map_get_arcs(this._left_arcs, out)
|
||||
this.map_get_arcs(this._right_arcs, out)
|
||||
|
||||
int H(int child) nogil const:
|
||||
inline int H(int child) noexcept nogil const:
|
||||
if child >= this.length or child < 0:
|
||||
return -1
|
||||
else:
|
||||
return this._heads[child]
|
||||
|
||||
int E(int i) nogil const:
|
||||
inline int E(int i) noexcept nogil const:
|
||||
if this._ents.size() == 0:
|
||||
return -1
|
||||
else:
|
||||
return this._ents.back().start
|
||||
|
||||
int nth_child(const unordered_map[int, vector[ArcC]]& heads_arcs, int head, int idx) nogil const:
|
||||
inline int nth_child(const unordered_map[int, vector[ArcC]]& heads_arcs, int head, int idx) noexcept nogil const:
|
||||
if idx < 1:
|
||||
return -1
|
||||
|
||||
|
@ -215,22 +215,22 @@ cdef cppclass StateC:
|
|||
|
||||
return -1
|
||||
|
||||
int L(int head, int idx) nogil const:
|
||||
inline int L(int head, int idx) noexcept nogil const:
|
||||
return this.nth_child(this._left_arcs, head, idx)
|
||||
|
||||
int R(int head, int idx) nogil const:
|
||||
inline int R(int head, int idx) noexcept nogil const:
|
||||
return this.nth_child(this._right_arcs, head, idx)
|
||||
|
||||
bint empty() nogil const:
|
||||
inline bint empty() noexcept nogil const:
|
||||
return this._stack.size() == 0
|
||||
|
||||
bint eol() nogil const:
|
||||
inline bint eol() noexcept nogil const:
|
||||
return this.buffer_length() == 0
|
||||
|
||||
bint is_final() nogil const:
|
||||
inline bint is_final() noexcept nogil const:
|
||||
return this.stack_depth() <= 0 and this.eol()
|
||||
|
||||
int cannot_sent_start(int word) nogil const:
|
||||
inline int cannot_sent_start(int word) noexcept nogil const:
|
||||
if word < 0 or word >= this.length:
|
||||
return 0
|
||||
elif this._sent[word].sent_start == -1:
|
||||
|
@ -238,7 +238,7 @@ cdef cppclass StateC:
|
|||
else:
|
||||
return 0
|
||||
|
||||
int is_sent_start(int word) nogil const:
|
||||
inline int is_sent_start(int word) noexcept nogil const:
|
||||
if word < 0 or word >= this.length:
|
||||
return 0
|
||||
elif this._sent[word].sent_start == 1:
|
||||
|
@ -248,20 +248,20 @@ cdef cppclass StateC:
|
|||
else:
|
||||
return 0
|
||||
|
||||
void set_sent_start(int word, int value) nogil:
|
||||
inline void set_sent_start(int word, int value) noexcept nogil:
|
||||
if value >= 1:
|
||||
this._sent_starts.insert(word)
|
||||
|
||||
bint has_head(int child) nogil const:
|
||||
inline bint has_head(int child) noexcept nogil const:
|
||||
return this._heads[child] >= 0
|
||||
|
||||
int l_edge(int word) nogil const:
|
||||
inline int l_edge(int word) noexcept nogil const:
|
||||
return word
|
||||
|
||||
int r_edge(int word) nogil const:
|
||||
inline int r_edge(int word) noexcept nogil const:
|
||||
return word
|
||||
|
||||
int n_arcs(const unordered_map[int, vector[ArcC]] &heads_arcs, int head) nogil const:
|
||||
inline int n_arcs(const unordered_map[int, vector[ArcC]] &heads_arcs, int head) noexcept nogil const:
|
||||
cdef int n = 0
|
||||
head_arcs_it = heads_arcs.const_find(head)
|
||||
if head_arcs_it == heads_arcs.const_end():
|
||||
|
@ -277,28 +277,28 @@ cdef cppclass StateC:
|
|||
|
||||
return n
|
||||
|
||||
int n_L(int head) nogil const:
|
||||
inline int n_L(int head) noexcept nogil const:
|
||||
return n_arcs(this._left_arcs, head)
|
||||
|
||||
int n_R(int head) nogil const:
|
||||
inline int n_R(int head) noexcept nogil const:
|
||||
return n_arcs(this._right_arcs, head)
|
||||
|
||||
bint stack_is_connected() nogil const:
|
||||
inline bint stack_is_connected() noexcept nogil const:
|
||||
return False
|
||||
|
||||
bint entity_is_open() nogil const:
|
||||
inline bint entity_is_open() noexcept nogil const:
|
||||
if this._ents.size() == 0:
|
||||
return False
|
||||
else:
|
||||
return this._ents.back().end == -1
|
||||
|
||||
int stack_depth() nogil const:
|
||||
inline int stack_depth() noexcept nogil const:
|
||||
return this._stack.size()
|
||||
|
||||
int buffer_length() nogil const:
|
||||
inline int buffer_length() noexcept nogil const:
|
||||
return (this.length - this._b_i) + this._rebuffer.size()
|
||||
|
||||
void push() nogil:
|
||||
inline void push() noexcept nogil:
|
||||
b0 = this.B(0)
|
||||
if this._rebuffer.size():
|
||||
b0 = this._rebuffer.back()
|
||||
|
@ -308,32 +308,32 @@ cdef cppclass StateC:
|
|||
this._b_i += 1
|
||||
this._stack.push_back(b0)
|
||||
|
||||
void pop() nogil:
|
||||
inline void pop() noexcept nogil:
|
||||
this._stack.pop_back()
|
||||
|
||||
void force_final() nogil:
|
||||
inline void force_final() noexcept nogil:
|
||||
# This should only be used in desperate situations, as it may leave
|
||||
# the analysis in an unexpected state.
|
||||
this._stack.clear()
|
||||
this._b_i = this.length
|
||||
|
||||
void unshift() nogil:
|
||||
inline void unshift() noexcept nogil:
|
||||
s0 = this._stack.back()
|
||||
this._unshiftable[s0] = 1
|
||||
this._rebuffer.push_back(s0)
|
||||
this._stack.pop_back()
|
||||
|
||||
int is_unshiftable(int item) nogil const:
|
||||
inline int is_unshiftable(int item) noexcept nogil const:
|
||||
if item >= this._unshiftable.size():
|
||||
return 0
|
||||
else:
|
||||
return this._unshiftable.at(item)
|
||||
|
||||
void set_reshiftable(int item) nogil:
|
||||
inline void set_reshiftable(int item) noexcept nogil:
|
||||
if item < this._unshiftable.size():
|
||||
this._unshiftable[item] = 0
|
||||
|
||||
void add_arc(int head, int child, attr_t label) nogil:
|
||||
inline void add_arc(int head, int child, attr_t label) noexcept nogil:
|
||||
if this.has_head(child):
|
||||
this.del_arc(this.H(child), child)
|
||||
cdef ArcC arc
|
||||
|
@ -346,7 +346,7 @@ cdef cppclass StateC:
|
|||
this._right_arcs[arc.head].push_back(arc)
|
||||
this._heads[child] = head
|
||||
|
||||
void map_del_arc(unordered_map[int, vector[ArcC]]* heads_arcs, int h_i, int c_i) nogil:
|
||||
inline void map_del_arc(unordered_map[int, vector[ArcC]]* heads_arcs, int h_i, int c_i) noexcept nogil:
|
||||
arcs_it = heads_arcs.find(h_i)
|
||||
if arcs_it == heads_arcs.end():
|
||||
return
|
||||
|
@ -367,13 +367,13 @@ cdef cppclass StateC:
|
|||
arc.label = 0
|
||||
break
|
||||
|
||||
void del_arc(int h_i, int c_i) nogil:
|
||||
inline void del_arc(int h_i, int c_i) noexcept nogil:
|
||||
if h_i > c_i:
|
||||
this.map_del_arc(&this._left_arcs, h_i, c_i)
|
||||
else:
|
||||
this.map_del_arc(&this._right_arcs, h_i, c_i)
|
||||
|
||||
SpanC get_ent() nogil const:
|
||||
inline SpanC get_ent() noexcept nogil const:
|
||||
cdef SpanC ent
|
||||
if this._ents.size() == 0:
|
||||
ent.start = 0
|
||||
|
@ -383,17 +383,17 @@ cdef cppclass StateC:
|
|||
else:
|
||||
return this._ents.back()
|
||||
|
||||
void open_ent(attr_t label) nogil:
|
||||
inline void open_ent(attr_t label) noexcept nogil:
|
||||
cdef SpanC ent
|
||||
ent.start = this.B(0)
|
||||
ent.label = label
|
||||
ent.end = -1
|
||||
this._ents.push_back(ent)
|
||||
|
||||
void close_ent() nogil:
|
||||
inline void close_ent() noexcept nogil:
|
||||
this._ents.back().end = this.B(0)+1
|
||||
|
||||
void clone(const StateC* src) nogil:
|
||||
inline void clone(const StateC* src) noexcept nogil:
|
||||
this.length = src.length
|
||||
this._sent = src._sent
|
||||
this._stack = src._stack
|
||||
|
|
|
@ -155,7 +155,7 @@ cdef GoldParseStateC create_gold_state(
|
|||
return gs
|
||||
|
||||
|
||||
cdef void update_gold_state(GoldParseStateC* gs, const StateC* s) nogil:
|
||||
cdef void update_gold_state(GoldParseStateC* gs, const StateC* s) noexcept nogil:
|
||||
for i in range(gs.length):
|
||||
gs.state_bits[i] = set_state_flag(
|
||||
gs.state_bits[i],
|
||||
|
@ -203,7 +203,7 @@ cdef class ArcEagerGold:
|
|||
def __init__(self, ArcEager moves, StateClass stcls, Example example):
|
||||
self.mem = Pool()
|
||||
heads, labels = example.get_aligned_parse(projectivize=True)
|
||||
labels = [example.x.vocab.strings.add(label) if label is not None else MISSING_DEP for label in labels]
|
||||
labels = [example.x.vocab.strings.add(label, allow_transient=False) if label is not None else MISSING_DEP for label in labels]
|
||||
sent_starts = _get_aligned_sent_starts(example)
|
||||
assert len(heads) == len(labels) == len(sent_starts), (len(heads), len(labels), len(sent_starts))
|
||||
self.c = create_gold_state(self.mem, stcls.c, heads, labels, sent_starts)
|
||||
|
@ -239,12 +239,12 @@ def _get_aligned_sent_starts(example):
|
|||
return [None] * len(example.x)
|
||||
|
||||
|
||||
cdef int check_state_gold(char state_bits, char flag) nogil:
|
||||
cdef int check_state_gold(char state_bits, char flag) noexcept nogil:
|
||||
cdef char one = 1
|
||||
return 1 if (state_bits & (one << flag)) else 0
|
||||
|
||||
|
||||
cdef int set_state_flag(char state_bits, char flag, int value) nogil:
|
||||
cdef int set_state_flag(char state_bits, char flag, int value) noexcept nogil:
|
||||
cdef char one = 1
|
||||
if value:
|
||||
return state_bits | (one << flag)
|
||||
|
@ -252,27 +252,27 @@ cdef int set_state_flag(char state_bits, char flag, int value) nogil:
|
|||
return state_bits & ~(one << flag)
|
||||
|
||||
|
||||
cdef int is_head_in_stack(const GoldParseStateC* gold, int i) nogil:
|
||||
cdef int is_head_in_stack(const GoldParseStateC* gold, int i) noexcept nogil:
|
||||
return check_state_gold(gold.state_bits[i], HEAD_IN_STACK)
|
||||
|
||||
|
||||
cdef int is_head_in_buffer(const GoldParseStateC* gold, int i) nogil:
|
||||
cdef int is_head_in_buffer(const GoldParseStateC* gold, int i) noexcept nogil:
|
||||
return check_state_gold(gold.state_bits[i], HEAD_IN_BUFFER)
|
||||
|
||||
|
||||
cdef int is_head_unknown(const GoldParseStateC* gold, int i) nogil:
|
||||
cdef int is_head_unknown(const GoldParseStateC* gold, int i) noexcept nogil:
|
||||
return check_state_gold(gold.state_bits[i], HEAD_UNKNOWN)
|
||||
|
||||
cdef int is_sent_start(const GoldParseStateC* gold, int i) nogil:
|
||||
cdef int is_sent_start(const GoldParseStateC* gold, int i) noexcept nogil:
|
||||
return check_state_gold(gold.state_bits[i], IS_SENT_START)
|
||||
|
||||
cdef int is_sent_start_unknown(const GoldParseStateC* gold, int i) nogil:
|
||||
cdef int is_sent_start_unknown(const GoldParseStateC* gold, int i) noexcept nogil:
|
||||
return check_state_gold(gold.state_bits[i], SENT_START_UNKNOWN)
|
||||
|
||||
|
||||
# Helper functions for the arc-eager oracle
|
||||
|
||||
cdef weight_t push_cost(const StateC* state, const GoldParseStateC* gold) nogil:
|
||||
cdef weight_t push_cost(const StateC* state, const GoldParseStateC* gold) noexcept nogil:
|
||||
cdef weight_t cost = 0
|
||||
b0 = state.B(0)
|
||||
if b0 < 0:
|
||||
|
@ -285,7 +285,7 @@ cdef weight_t push_cost(const StateC* state, const GoldParseStateC* gold) nogil:
|
|||
return cost
|
||||
|
||||
|
||||
cdef weight_t pop_cost(const StateC* state, const GoldParseStateC* gold) nogil:
|
||||
cdef weight_t pop_cost(const StateC* state, const GoldParseStateC* gold) noexcept nogil:
|
||||
cdef weight_t cost = 0
|
||||
s0 = state.S(0)
|
||||
if s0 < 0:
|
||||
|
@ -296,7 +296,7 @@ cdef weight_t pop_cost(const StateC* state, const GoldParseStateC* gold) nogil:
|
|||
return cost
|
||||
|
||||
|
||||
cdef bint arc_is_gold(const GoldParseStateC* gold, int head, int child) nogil:
|
||||
cdef bint arc_is_gold(const GoldParseStateC* gold, int head, int child) noexcept nogil:
|
||||
if is_head_unknown(gold, child):
|
||||
return True
|
||||
elif gold.heads[child] == head:
|
||||
|
@ -305,7 +305,7 @@ cdef bint arc_is_gold(const GoldParseStateC* gold, int head, int child) nogil:
|
|||
return False
|
||||
|
||||
|
||||
cdef bint label_is_gold(const GoldParseStateC* gold, int child, attr_t label) nogil:
|
||||
cdef bint label_is_gold(const GoldParseStateC* gold, int child, attr_t label) noexcept nogil:
|
||||
if is_head_unknown(gold, child):
|
||||
return True
|
||||
elif label == 0:
|
||||
|
@ -316,7 +316,7 @@ cdef bint label_is_gold(const GoldParseStateC* gold, int child, attr_t label) no
|
|||
return False
|
||||
|
||||
|
||||
cdef bint _is_gold_root(const GoldParseStateC* gold, int word) nogil:
|
||||
cdef bint _is_gold_root(const GoldParseStateC* gold, int word) noexcept nogil:
|
||||
return gold.heads[word] == word or is_head_unknown(gold, word)
|
||||
|
||||
|
||||
|
@ -336,7 +336,7 @@ cdef class Shift:
|
|||
* Advance buffer
|
||||
"""
|
||||
@staticmethod
|
||||
cdef bint is_valid(const StateC* st, attr_t label) nogil:
|
||||
cdef bint is_valid(const StateC* st, attr_t label) noexcept nogil:
|
||||
if st.stack_depth() == 0:
|
||||
return 1
|
||||
elif st.buffer_length() < 2:
|
||||
|
@ -349,11 +349,11 @@ cdef class Shift:
|
|||
return 1
|
||||
|
||||
@staticmethod
|
||||
cdef int transition(StateC* st, attr_t label) nogil:
|
||||
cdef int transition(StateC* st, attr_t label) noexcept nogil:
|
||||
st.push()
|
||||
|
||||
@staticmethod
|
||||
cdef weight_t cost(const StateC* state, const void* _gold, attr_t label) nogil:
|
||||
cdef weight_t cost(const StateC* state, const void* _gold, attr_t label) noexcept nogil:
|
||||
gold = <const GoldParseStateC*>_gold
|
||||
return gold.push_cost
|
||||
|
||||
|
@ -375,7 +375,7 @@ cdef class Reduce:
|
|||
cost by those arcs.
|
||||
"""
|
||||
@staticmethod
|
||||
cdef bint is_valid(const StateC* st, attr_t label) nogil:
|
||||
cdef bint is_valid(const StateC* st, attr_t label) noexcept nogil:
|
||||
if st.stack_depth() == 0:
|
||||
return False
|
||||
elif st.buffer_length() == 0:
|
||||
|
@ -386,14 +386,14 @@ cdef class Reduce:
|
|||
return True
|
||||
|
||||
@staticmethod
|
||||
cdef int transition(StateC* st, attr_t label) nogil:
|
||||
cdef int transition(StateC* st, attr_t label) noexcept nogil:
|
||||
if st.has_head(st.S(0)) or st.stack_depth() == 1:
|
||||
st.pop()
|
||||
else:
|
||||
st.unshift()
|
||||
|
||||
@staticmethod
|
||||
cdef weight_t cost(const StateC* state, const void* _gold, attr_t label) nogil:
|
||||
cdef weight_t cost(const StateC* state, const void* _gold, attr_t label) noexcept nogil:
|
||||
gold = <const GoldParseStateC*>_gold
|
||||
if state.is_sent_start(state.B(0)):
|
||||
return 0
|
||||
|
@ -421,7 +421,7 @@ cdef class LeftArc:
|
|||
pop_cost - Arc(B[0], S[0], label) + (Arc(S[1], S[0]) if H(S[0]) else Arcs(S, S[0]))
|
||||
"""
|
||||
@staticmethod
|
||||
cdef bint is_valid(const StateC* st, attr_t label) nogil:
|
||||
cdef bint is_valid(const StateC* st, attr_t label) noexcept nogil:
|
||||
if st.stack_depth() == 0:
|
||||
return 0
|
||||
elif st.buffer_length() == 0:
|
||||
|
@ -434,7 +434,7 @@ cdef class LeftArc:
|
|||
return 1
|
||||
|
||||
@staticmethod
|
||||
cdef int transition(StateC* st, attr_t label) nogil:
|
||||
cdef int transition(StateC* st, attr_t label) noexcept nogil:
|
||||
st.add_arc(st.B(0), st.S(0), label)
|
||||
# If we change the stack, it's okay to remove the shifted mark, as
|
||||
# we can't get in an infinite loop this way.
|
||||
|
@ -442,7 +442,7 @@ cdef class LeftArc:
|
|||
st.pop()
|
||||
|
||||
@staticmethod
|
||||
cdef inline weight_t cost(const StateC* state, const void* _gold, attr_t label) nogil:
|
||||
cdef inline weight_t cost(const StateC* state, const void* _gold, attr_t label) noexcept nogil:
|
||||
gold = <const GoldParseStateC*>_gold
|
||||
cdef weight_t cost = gold.pop_cost
|
||||
s0 = state.S(0)
|
||||
|
@ -474,7 +474,7 @@ cdef class RightArc:
|
|||
push_cost + (not shifted[b0] and Arc(B[1:], B[0])) - Arc(S[0], B[0], label)
|
||||
"""
|
||||
@staticmethod
|
||||
cdef bint is_valid(const StateC* st, attr_t label) nogil:
|
||||
cdef bint is_valid(const StateC* st, attr_t label) noexcept nogil:
|
||||
if st.stack_depth() == 0:
|
||||
return 0
|
||||
elif st.buffer_length() == 0:
|
||||
|
@ -488,12 +488,12 @@ cdef class RightArc:
|
|||
return 1
|
||||
|
||||
@staticmethod
|
||||
cdef int transition(StateC* st, attr_t label) nogil:
|
||||
cdef int transition(StateC* st, attr_t label) noexcept nogil:
|
||||
st.add_arc(st.S(0), st.B(0), label)
|
||||
st.push()
|
||||
|
||||
@staticmethod
|
||||
cdef inline weight_t cost(const StateC* state, const void* _gold, attr_t label) nogil:
|
||||
cdef inline weight_t cost(const StateC* state, const void* _gold, attr_t label) noexcept nogil:
|
||||
gold = <const GoldParseStateC*>_gold
|
||||
cost = gold.push_cost
|
||||
s0 = state.S(0)
|
||||
|
@ -525,7 +525,7 @@ cdef class Break:
|
|||
* Arcs between S and B[1]
|
||||
"""
|
||||
@staticmethod
|
||||
cdef bint is_valid(const StateC* st, attr_t label) nogil:
|
||||
cdef bint is_valid(const StateC* st, attr_t label) noexcept nogil:
|
||||
if st.buffer_length() < 2:
|
||||
return False
|
||||
elif st.B(1) != st.B(0) + 1:
|
||||
|
@ -538,11 +538,11 @@ cdef class Break:
|
|||
return True
|
||||
|
||||
@staticmethod
|
||||
cdef int transition(StateC* st, attr_t label) nogil:
|
||||
cdef int transition(StateC* st, attr_t label) noexcept nogil:
|
||||
st.set_sent_start(st.B(1), 1)
|
||||
|
||||
@staticmethod
|
||||
cdef weight_t cost(const StateC* state, const void* _gold, attr_t label) nogil:
|
||||
cdef weight_t cost(const StateC* state, const void* _gold, attr_t label) noexcept nogil:
|
||||
gold = <const GoldParseStateC*>_gold
|
||||
cdef int b0 = state.B(0)
|
||||
cdef int cost = 0
|
||||
|
@ -785,7 +785,7 @@ cdef class ArcEager(TransitionSystem):
|
|||
else:
|
||||
return False
|
||||
|
||||
cdef int set_valid(self, int* output, const StateC* st) nogil:
|
||||
cdef int set_valid(self, int* output, const StateC* st) noexcept nogil:
|
||||
cdef int[N_MOVES] is_valid
|
||||
is_valid[SHIFT] = Shift.is_valid(st, 0)
|
||||
is_valid[REDUCE] = Reduce.is_valid(st, 0)
|
||||
|
|
|
@ -110,7 +110,7 @@ cdef void update_gold_state(GoldNERStateC* gs, const StateC* state) except *:
|
|||
cdef do_func_t[N_MOVES] do_funcs
|
||||
|
||||
|
||||
cdef bint _entity_is_sunk(const StateC* state, Transition* golds) nogil:
|
||||
cdef bint _entity_is_sunk(const StateC* state, Transition* golds) noexcept nogil:
|
||||
if not state.entity_is_open():
|
||||
return False
|
||||
|
||||
|
@ -238,7 +238,7 @@ cdef class BiluoPushDown(TransitionSystem):
|
|||
|
||||
def add_action(self, int action, label_name, freq=None):
|
||||
cdef attr_t label_id
|
||||
if not isinstance(label_name, (int, long)):
|
||||
if not isinstance(label_name, int):
|
||||
label_id = self.strings.add(label_name)
|
||||
else:
|
||||
label_id = label_name
|
||||
|
@ -347,21 +347,21 @@ cdef class BiluoPushDown(TransitionSystem):
|
|||
|
||||
cdef class Missing:
|
||||
@staticmethod
|
||||
cdef bint is_valid(const StateC* st, attr_t label) nogil:
|
||||
cdef bint is_valid(const StateC* st, attr_t label) noexcept nogil:
|
||||
return False
|
||||
|
||||
@staticmethod
|
||||
cdef int transition(StateC* s, attr_t label) nogil:
|
||||
cdef int transition(StateC* s, attr_t label) noexcept nogil:
|
||||
pass
|
||||
|
||||
@staticmethod
|
||||
cdef weight_t cost(const StateC* s, const void* _gold, attr_t label) nogil:
|
||||
cdef weight_t cost(const StateC* s, const void* _gold, attr_t label) noexcept nogil:
|
||||
return 9000
|
||||
|
||||
|
||||
cdef class Begin:
|
||||
@staticmethod
|
||||
cdef bint is_valid(const StateC* st, attr_t label) nogil:
|
||||
cdef bint is_valid(const StateC* st, attr_t label) noexcept nogil:
|
||||
cdef int preset_ent_iob = st.B_(0).ent_iob
|
||||
cdef attr_t preset_ent_label = st.B_(0).ent_type
|
||||
if st.entity_is_open():
|
||||
|
@ -400,13 +400,13 @@ cdef class Begin:
|
|||
return True
|
||||
|
||||
@staticmethod
|
||||
cdef int transition(StateC* st, attr_t label) nogil:
|
||||
cdef int transition(StateC* st, attr_t label) noexcept nogil:
|
||||
st.open_ent(label)
|
||||
st.push()
|
||||
st.pop()
|
||||
|
||||
@staticmethod
|
||||
cdef weight_t cost(const StateC* s, const void* _gold, attr_t label) nogil:
|
||||
cdef weight_t cost(const StateC* s, const void* _gold, attr_t label) noexcept nogil:
|
||||
gold = <GoldNERStateC*>_gold
|
||||
b0 = s.B(0)
|
||||
cdef int cost = 0
|
||||
|
@ -439,7 +439,7 @@ cdef class Begin:
|
|||
|
||||
cdef class In:
|
||||
@staticmethod
|
||||
cdef bint is_valid(const StateC* st, attr_t label) nogil:
|
||||
cdef bint is_valid(const StateC* st, attr_t label) noexcept nogil:
|
||||
if not st.entity_is_open():
|
||||
return False
|
||||
if st.buffer_length() < 2:
|
||||
|
@ -475,12 +475,12 @@ cdef class In:
|
|||
return True
|
||||
|
||||
@staticmethod
|
||||
cdef int transition(StateC* st, attr_t label) nogil:
|
||||
cdef int transition(StateC* st, attr_t label) noexcept nogil:
|
||||
st.push()
|
||||
st.pop()
|
||||
|
||||
@staticmethod
|
||||
cdef weight_t cost(const StateC* s, const void* _gold, attr_t label) nogil:
|
||||
cdef weight_t cost(const StateC* s, const void* _gold, attr_t label) noexcept nogil:
|
||||
gold = <GoldNERStateC*>_gold
|
||||
cdef int next_act = gold.ner[s.B(1)].move if s.B(1) >= 0 else OUT
|
||||
cdef int g_act = gold.ner[s.B(0)].move
|
||||
|
@ -510,7 +510,7 @@ cdef class In:
|
|||
|
||||
cdef class Last:
|
||||
@staticmethod
|
||||
cdef bint is_valid(const StateC* st, attr_t label) nogil:
|
||||
cdef bint is_valid(const StateC* st, attr_t label) noexcept nogil:
|
||||
cdef int preset_ent_iob = st.B_(0).ent_iob
|
||||
cdef attr_t preset_ent_label = st.B_(0).ent_type
|
||||
if label == 0:
|
||||
|
@ -535,13 +535,13 @@ cdef class Last:
|
|||
return True
|
||||
|
||||
@staticmethod
|
||||
cdef int transition(StateC* st, attr_t label) nogil:
|
||||
cdef int transition(StateC* st, attr_t label) noexcept nogil:
|
||||
st.close_ent()
|
||||
st.push()
|
||||
st.pop()
|
||||
|
||||
@staticmethod
|
||||
cdef weight_t cost(const StateC* s, const void* _gold, attr_t label) nogil:
|
||||
cdef weight_t cost(const StateC* s, const void* _gold, attr_t label) noexcept nogil:
|
||||
gold = <GoldNERStateC*>_gold
|
||||
b0 = s.B(0)
|
||||
ent_start = s.E(0)
|
||||
|
@ -581,7 +581,7 @@ cdef class Last:
|
|||
|
||||
cdef class Unit:
|
||||
@staticmethod
|
||||
cdef bint is_valid(const StateC* st, attr_t label) nogil:
|
||||
cdef bint is_valid(const StateC* st, attr_t label) noexcept nogil:
|
||||
cdef int preset_ent_iob = st.B_(0).ent_iob
|
||||
cdef attr_t preset_ent_label = st.B_(0).ent_type
|
||||
if label == 0:
|
||||
|
@ -609,14 +609,14 @@ cdef class Unit:
|
|||
return True
|
||||
|
||||
@staticmethod
|
||||
cdef int transition(StateC* st, attr_t label) nogil:
|
||||
cdef int transition(StateC* st, attr_t label) noexcept nogil:
|
||||
st.open_ent(label)
|
||||
st.close_ent()
|
||||
st.push()
|
||||
st.pop()
|
||||
|
||||
@staticmethod
|
||||
cdef weight_t cost(const StateC* s, const void* _gold, attr_t label) nogil:
|
||||
cdef weight_t cost(const StateC* s, const void* _gold, attr_t label) noexcept nogil:
|
||||
gold = <GoldNERStateC*>_gold
|
||||
cdef int g_act = gold.ner[s.B(0)].move
|
||||
cdef attr_t g_tag = gold.ner[s.B(0)].label
|
||||
|
@ -646,7 +646,7 @@ cdef class Unit:
|
|||
|
||||
cdef class Out:
|
||||
@staticmethod
|
||||
cdef bint is_valid(const StateC* st, attr_t label) nogil:
|
||||
cdef bint is_valid(const StateC* st, attr_t label) noexcept nogil:
|
||||
cdef int preset_ent_iob = st.B_(0).ent_iob
|
||||
if st.entity_is_open():
|
||||
return False
|
||||
|
@ -658,12 +658,12 @@ cdef class Out:
|
|||
return True
|
||||
|
||||
@staticmethod
|
||||
cdef int transition(StateC* st, attr_t label) nogil:
|
||||
cdef int transition(StateC* st, attr_t label) noexcept nogil:
|
||||
st.push()
|
||||
st.pop()
|
||||
|
||||
@staticmethod
|
||||
cdef weight_t cost(const StateC* s, const void* _gold, attr_t label) nogil:
|
||||
cdef weight_t cost(const StateC* s, const void* _gold, attr_t label) noexcept nogil:
|
||||
gold = <GoldNERStateC*>_gold
|
||||
cdef int g_act = gold.ner[s.B(0)].move
|
||||
cdef weight_t cost = 0
|
||||
|
|
|
@ -94,7 +94,7 @@ cdef bool _has_head_as_ancestor(int tokenid, int head, const vector[int]& heads)
|
|||
return False
|
||||
|
||||
|
||||
cdef string heads_to_string(const vector[int]& heads) nogil:
|
||||
cdef string heads_to_string(const vector[int]& heads) noexcept nogil:
|
||||
cdef vector[int].const_iterator citer
|
||||
cdef string cycle_str
|
||||
|
||||
|
@ -183,7 +183,7 @@ cpdef deprojectivize(Doc doc):
|
|||
new_label, head_label = label.split(DELIMITER)
|
||||
new_head = _find_new_head(doc[i], head_label)
|
||||
doc.c[i].head = new_head.i - i
|
||||
doc.c[i].dep = doc.vocab.strings.add(new_label)
|
||||
doc.c[i].dep = doc.vocab.strings.add(new_label, allow_transient=False)
|
||||
set_children_from_heads(doc.c, 0, doc.length)
|
||||
return doc
|
||||
|
||||
|
|
|
@ -15,22 +15,22 @@ cdef struct Transition:
|
|||
|
||||
weight_t score
|
||||
|
||||
bint (*is_valid)(const StateC* state, attr_t label) nogil
|
||||
weight_t (*get_cost)(const StateC* state, const void* gold, attr_t label) nogil
|
||||
int (*do)(StateC* state, attr_t label) nogil
|
||||
bint (*is_valid)(const StateC* state, attr_t label) noexcept nogil
|
||||
weight_t (*get_cost)(const StateC* state, const void* gold, attr_t label) noexcept nogil
|
||||
int (*do)(StateC* state, attr_t label) noexcept nogil
|
||||
|
||||
|
||||
ctypedef weight_t (*get_cost_func_t)(
|
||||
const StateC* state, const void* gold, attr_tlabel
|
||||
) nogil
|
||||
) noexcept nogil
|
||||
ctypedef weight_t (*move_cost_func_t)(
|
||||
const StateC* state, const void* gold
|
||||
) nogil
|
||||
) noexcept nogil
|
||||
ctypedef weight_t (*label_cost_func_t)(
|
||||
const StateC* state, const void* gold, attr_t label
|
||||
) nogil
|
||||
) noexcept nogil
|
||||
|
||||
ctypedef int (*do_func_t)(StateC* state, attr_t label) nogil
|
||||
ctypedef int (*do_func_t)(StateC* state, attr_t label) noexcept nogil
|
||||
|
||||
ctypedef void* (*init_state_t)(Pool mem, int length, void* tokens) except NULL
|
||||
|
||||
|
@ -53,7 +53,7 @@ cdef class TransitionSystem:
|
|||
|
||||
cdef Transition init_transition(self, int clas, int move, attr_t label) except *
|
||||
|
||||
cdef int set_valid(self, int* output, const StateC* st) nogil
|
||||
cdef int set_valid(self, int* output, const StateC* st) noexcept nogil
|
||||
|
||||
cdef int set_costs(self, int* is_valid, weight_t* costs,
|
||||
const StateC* state, gold) except -1
|
||||
|
|
|
@ -149,7 +149,7 @@ cdef class TransitionSystem:
|
|||
action = self.lookup_transition(move_name)
|
||||
return action.is_valid(stcls.c, action.label)
|
||||
|
||||
cdef int set_valid(self, int* is_valid, const StateC* st) nogil:
|
||||
cdef int set_valid(self, int* is_valid, const StateC* st) noexcept nogil:
|
||||
cdef int i
|
||||
for i in range(self.n_moves):
|
||||
is_valid[i] = self.c[i].is_valid(st, self.c[i].label)
|
||||
|
@ -191,8 +191,7 @@ cdef class TransitionSystem:
|
|||
|
||||
def add_action(self, int action, label_name):
|
||||
cdef attr_t label_id
|
||||
if not isinstance(label_name, int) and \
|
||||
not isinstance(label_name, long):
|
||||
if not isinstance(label_name, int):
|
||||
label_id = self.strings.add(label_name)
|
||||
else:
|
||||
label_id = label_name
|
||||
|
|
|
@ -1,3 +1,5 @@
|
|||
import importlib
|
||||
import sys
|
||||
from pathlib import Path
|
||||
from typing import Any, Callable, Dict, Iterable, List, Optional, Tuple, Union
|
||||
|
||||
|
@ -22,19 +24,6 @@ TagMapType = Dict[str, Dict[Union[int, str], Union[int, str]]]
|
|||
MorphRulesType = Dict[str, Dict[str, Dict[Union[int, str], Union[int, str]]]]
|
||||
|
||||
|
||||
@Language.factory(
|
||||
"attribute_ruler",
|
||||
default_config={
|
||||
"validate": False,
|
||||
"scorer": {"@scorers": "spacy.attribute_ruler_scorer.v1"},
|
||||
},
|
||||
)
|
||||
def make_attribute_ruler(
|
||||
nlp: Language, name: str, validate: bool, scorer: Optional[Callable]
|
||||
):
|
||||
return AttributeRuler(nlp.vocab, name, validate=validate, scorer=scorer)
|
||||
|
||||
|
||||
def attribute_ruler_score(examples: Iterable[Example], **kwargs) -> Dict[str, Any]:
|
||||
def morph_key_getter(token, attr):
|
||||
return getattr(token, attr).key
|
||||
|
@ -54,7 +43,6 @@ def attribute_ruler_score(examples: Iterable[Example], **kwargs) -> Dict[str, An
|
|||
return results
|
||||
|
||||
|
||||
@registry.scorers("spacy.attribute_ruler_scorer.v1")
|
||||
def make_attribute_ruler_scorer():
|
||||
return attribute_ruler_score
|
||||
|
||||
|
@ -355,3 +343,11 @@ def _split_morph_attrs(attrs: dict) -> Tuple[dict, dict]:
|
|||
else:
|
||||
morph_attrs[k] = v
|
||||
return other_attrs, morph_attrs
|
||||
|
||||
|
||||
# Setup backwards compatibility hook for factories
|
||||
def __getattr__(name):
|
||||
if name == "make_attribute_ruler":
|
||||
module = importlib.import_module("spacy.pipeline.factories")
|
||||
return module.make_attribute_ruler
|
||||
raise AttributeError(f"module {__name__} has no attribute {name}")
|
||||
|
|
|
@ -1,4 +1,6 @@
|
|||
# cython: infer_types=True, binding=True
|
||||
import importlib
|
||||
import sys
|
||||
from collections import defaultdict
|
||||
from typing import Callable, Optional
|
||||
|
||||
|
@ -39,188 +41,6 @@ subword_features = true
|
|||
DEFAULT_PARSER_MODEL = Config().from_str(default_model_config)["model"]
|
||||
|
||||
|
||||
@Language.factory(
|
||||
"parser",
|
||||
assigns=["token.dep", "token.head", "token.is_sent_start", "doc.sents"],
|
||||
default_config={
|
||||
"moves": None,
|
||||
"update_with_oracle_cut_size": 100,
|
||||
"learn_tokens": False,
|
||||
"min_action_freq": 30,
|
||||
"model": DEFAULT_PARSER_MODEL,
|
||||
"scorer": {"@scorers": "spacy.parser_scorer.v1"},
|
||||
},
|
||||
default_score_weights={
|
||||
"dep_uas": 0.5,
|
||||
"dep_las": 0.5,
|
||||
"dep_las_per_type": None,
|
||||
"sents_p": None,
|
||||
"sents_r": None,
|
||||
"sents_f": 0.0,
|
||||
},
|
||||
)
|
||||
def make_parser(
|
||||
nlp: Language,
|
||||
name: str,
|
||||
model: Model,
|
||||
moves: Optional[TransitionSystem],
|
||||
update_with_oracle_cut_size: int,
|
||||
learn_tokens: bool,
|
||||
min_action_freq: int,
|
||||
scorer: Optional[Callable],
|
||||
):
|
||||
"""Create a transition-based DependencyParser component. The dependency parser
|
||||
jointly learns sentence segmentation and labelled dependency parsing, and can
|
||||
optionally learn to merge tokens that had been over-segmented by the tokenizer.
|
||||
|
||||
The parser uses a variant of the non-monotonic arc-eager transition-system
|
||||
described by Honnibal and Johnson (2014), with the addition of a "break"
|
||||
transition to perform the sentence segmentation. Nivre's pseudo-projective
|
||||
dependency transformation is used to allow the parser to predict
|
||||
non-projective parses.
|
||||
|
||||
The parser is trained using an imitation learning objective. The parser follows
|
||||
the actions predicted by the current weights, and at each state, determines
|
||||
which actions are compatible with the optimal parse that could be reached
|
||||
from the current state. The weights such that the scores assigned to the
|
||||
set of optimal actions is increased, while scores assigned to other
|
||||
actions are decreased. Note that more than one action may be optimal for
|
||||
a given state.
|
||||
|
||||
model (Model): The model for the transition-based parser. The model needs
|
||||
to have a specific substructure of named components --- see the
|
||||
spacy.ml.tb_framework.TransitionModel for details.
|
||||
moves (Optional[TransitionSystem]): This defines how the parse-state is created,
|
||||
updated and evaluated. If 'moves' is None, a new instance is
|
||||
created with `self.TransitionSystem()`. Defaults to `None`.
|
||||
update_with_oracle_cut_size (int): During training, cut long sequences into
|
||||
shorter segments by creating intermediate states based on the gold-standard
|
||||
history. The model is not very sensitive to this parameter, so you usually
|
||||
won't need to change it. 100 is a good default.
|
||||
learn_tokens (bool): Whether to learn to merge subtokens that are split
|
||||
relative to the gold standard. Experimental.
|
||||
min_action_freq (int): The minimum frequency of labelled actions to retain.
|
||||
Rarer labelled actions have their label backed-off to "dep". While this
|
||||
primarily affects the label accuracy, it can also affect the attachment
|
||||
structure, as the labels are used to represent the pseudo-projectivity
|
||||
transformation.
|
||||
scorer (Optional[Callable]): The scoring method.
|
||||
"""
|
||||
return DependencyParser(
|
||||
nlp.vocab,
|
||||
model,
|
||||
name,
|
||||
moves=moves,
|
||||
update_with_oracle_cut_size=update_with_oracle_cut_size,
|
||||
multitasks=[],
|
||||
learn_tokens=learn_tokens,
|
||||
min_action_freq=min_action_freq,
|
||||
beam_width=1,
|
||||
beam_density=0.0,
|
||||
beam_update_prob=0.0,
|
||||
# At some point in the future we can try to implement support for
|
||||
# partial annotations, perhaps only in the beam objective.
|
||||
incorrect_spans_key=None,
|
||||
scorer=scorer,
|
||||
)
|
||||
|
||||
|
||||
@Language.factory(
|
||||
"beam_parser",
|
||||
assigns=["token.dep", "token.head", "token.is_sent_start", "doc.sents"],
|
||||
default_config={
|
||||
"beam_width": 8,
|
||||
"beam_density": 0.01,
|
||||
"beam_update_prob": 0.5,
|
||||
"moves": None,
|
||||
"update_with_oracle_cut_size": 100,
|
||||
"learn_tokens": False,
|
||||
"min_action_freq": 30,
|
||||
"model": DEFAULT_PARSER_MODEL,
|
||||
"scorer": {"@scorers": "spacy.parser_scorer.v1"},
|
||||
},
|
||||
default_score_weights={
|
||||
"dep_uas": 0.5,
|
||||
"dep_las": 0.5,
|
||||
"dep_las_per_type": None,
|
||||
"sents_p": None,
|
||||
"sents_r": None,
|
||||
"sents_f": 0.0,
|
||||
},
|
||||
)
|
||||
def make_beam_parser(
|
||||
nlp: Language,
|
||||
name: str,
|
||||
model: Model,
|
||||
moves: Optional[TransitionSystem],
|
||||
update_with_oracle_cut_size: int,
|
||||
learn_tokens: bool,
|
||||
min_action_freq: int,
|
||||
beam_width: int,
|
||||
beam_density: float,
|
||||
beam_update_prob: float,
|
||||
scorer: Optional[Callable],
|
||||
):
|
||||
"""Create a transition-based DependencyParser component that uses beam-search.
|
||||
The dependency parser jointly learns sentence segmentation and labelled
|
||||
dependency parsing, and can optionally learn to merge tokens that had been
|
||||
over-segmented by the tokenizer.
|
||||
|
||||
The parser uses a variant of the non-monotonic arc-eager transition-system
|
||||
described by Honnibal and Johnson (2014), with the addition of a "break"
|
||||
transition to perform the sentence segmentation. Nivre's pseudo-projective
|
||||
dependency transformation is used to allow the parser to predict
|
||||
non-projective parses.
|
||||
|
||||
The parser is trained using a global objective. That is, it learns to assign
|
||||
probabilities to whole parses.
|
||||
|
||||
model (Model): The model for the transition-based parser. The model needs
|
||||
to have a specific substructure of named components --- see the
|
||||
spacy.ml.tb_framework.TransitionModel for details.
|
||||
moves (Optional[TransitionSystem]): This defines how the parse-state is created,
|
||||
updated and evaluated. If 'moves' is None, a new instance is
|
||||
created with `self.TransitionSystem()`. Defaults to `None`.
|
||||
update_with_oracle_cut_size (int): During training, cut long sequences into
|
||||
shorter segments by creating intermediate states based on the gold-standard
|
||||
history. The model is not very sensitive to this parameter, so you usually
|
||||
won't need to change it. 100 is a good default.
|
||||
beam_width (int): The number of candidate analyses to maintain.
|
||||
beam_density (float): The minimum ratio between the scores of the first and
|
||||
last candidates in the beam. This allows the parser to avoid exploring
|
||||
candidates that are too far behind. This is mostly intended to improve
|
||||
efficiency, but it can also improve accuracy as deeper search is not
|
||||
always better.
|
||||
beam_update_prob (float): The chance of making a beam update, instead of a
|
||||
greedy update. Greedy updates are an approximation for the beam updates,
|
||||
and are faster to compute.
|
||||
learn_tokens (bool): Whether to learn to merge subtokens that are split
|
||||
relative to the gold standard. Experimental.
|
||||
min_action_freq (int): The minimum frequency of labelled actions to retain.
|
||||
Rarer labelled actions have their label backed-off to "dep". While this
|
||||
primarily affects the label accuracy, it can also affect the attachment
|
||||
structure, as the labels are used to represent the pseudo-projectivity
|
||||
transformation.
|
||||
"""
|
||||
return DependencyParser(
|
||||
nlp.vocab,
|
||||
model,
|
||||
name,
|
||||
moves=moves,
|
||||
update_with_oracle_cut_size=update_with_oracle_cut_size,
|
||||
beam_width=beam_width,
|
||||
beam_density=beam_density,
|
||||
beam_update_prob=beam_update_prob,
|
||||
multitasks=[],
|
||||
learn_tokens=learn_tokens,
|
||||
min_action_freq=min_action_freq,
|
||||
# At some point in the future we can try to implement support for
|
||||
# partial annotations, perhaps only in the beam objective.
|
||||
incorrect_spans_key=None,
|
||||
scorer=scorer,
|
||||
)
|
||||
|
||||
|
||||
def parser_score(examples, **kwargs):
|
||||
"""Score a batch of examples.
|
||||
|
||||
|
@ -246,7 +66,6 @@ def parser_score(examples, **kwargs):
|
|||
return results
|
||||
|
||||
|
||||
@registry.scorers("spacy.parser_scorer.v1")
|
||||
def make_parser_scorer():
|
||||
return parser_score
|
||||
|
||||
|
@ -346,3 +165,14 @@ cdef class DependencyParser(Parser):
|
|||
# because we instead have a label frequency cut-off and back off rare
|
||||
# labels to 'dep'.
|
||||
pass
|
||||
|
||||
|
||||
# Setup backwards compatibility hook for factories
|
||||
def __getattr__(name):
|
||||
if name == "make_parser":
|
||||
module = importlib.import_module("spacy.pipeline.factories")
|
||||
return module.make_parser
|
||||
elif name == "make_beam_parser":
|
||||
module = importlib.import_module("spacy.pipeline.factories")
|
||||
return module.make_beam_parser
|
||||
raise AttributeError(f"module {__name__} has no attribute {name}")
|
||||
|
|
|
@ -1,3 +1,5 @@
|
|||
import importlib
|
||||
import sys
|
||||
from collections import Counter
|
||||
from itertools import islice
|
||||
from typing import Any, Callable, Dict, Iterable, List, Optional, Tuple, cast
|
||||
|
@ -39,43 +41,6 @@ subword_features = true
|
|||
DEFAULT_EDIT_TREE_LEMMATIZER_MODEL = Config().from_str(default_model_config)["model"]
|
||||
|
||||
|
||||
@Language.factory(
|
||||
"trainable_lemmatizer",
|
||||
assigns=["token.lemma"],
|
||||
requires=[],
|
||||
default_config={
|
||||
"model": DEFAULT_EDIT_TREE_LEMMATIZER_MODEL,
|
||||
"backoff": "orth",
|
||||
"min_tree_freq": 3,
|
||||
"overwrite": False,
|
||||
"top_k": 1,
|
||||
"scorer": {"@scorers": "spacy.lemmatizer_scorer.v1"},
|
||||
},
|
||||
default_score_weights={"lemma_acc": 1.0},
|
||||
)
|
||||
def make_edit_tree_lemmatizer(
|
||||
nlp: Language,
|
||||
name: str,
|
||||
model: Model,
|
||||
backoff: Optional[str],
|
||||
min_tree_freq: int,
|
||||
overwrite: bool,
|
||||
top_k: int,
|
||||
scorer: Optional[Callable],
|
||||
):
|
||||
"""Construct an EditTreeLemmatizer component."""
|
||||
return EditTreeLemmatizer(
|
||||
nlp.vocab,
|
||||
model,
|
||||
name,
|
||||
backoff=backoff,
|
||||
min_tree_freq=min_tree_freq,
|
||||
overwrite=overwrite,
|
||||
top_k=top_k,
|
||||
scorer=scorer,
|
||||
)
|
||||
|
||||
|
||||
class EditTreeLemmatizer(TrainablePipe):
|
||||
"""
|
||||
Lemmatizer that lemmatizes each word using a predicted edit tree.
|
||||
|
@ -421,3 +386,11 @@ class EditTreeLemmatizer(TrainablePipe):
|
|||
self.tree2label[tree_id] = len(self.cfg["labels"])
|
||||
self.cfg["labels"].append(tree_id)
|
||||
return self.tree2label[tree_id]
|
||||
|
||||
|
||||
# Setup backwards compatibility hook for factories
|
||||
def __getattr__(name):
|
||||
if name == "make_edit_tree_lemmatizer":
|
||||
module = importlib.import_module("spacy.pipeline.factories")
|
||||
return module.make_edit_tree_lemmatizer
|
||||
raise AttributeError(f"module {__name__} has no attribute {name}")
|
||||
|
|
|
@ -1,4 +1,6 @@
|
|||
import importlib
|
||||
import random
|
||||
import sys
|
||||
from itertools import islice
|
||||
from pathlib import Path
|
||||
from typing import Any, Callable, Dict, Iterable, List, Optional, Union
|
||||
|
@ -40,117 +42,10 @@ subword_features = true
|
|||
DEFAULT_NEL_MODEL = Config().from_str(default_model_config)["model"]
|
||||
|
||||
|
||||
@Language.factory(
|
||||
"entity_linker",
|
||||
requires=["doc.ents", "doc.sents", "token.ent_iob", "token.ent_type"],
|
||||
assigns=["token.ent_kb_id"],
|
||||
default_config={
|
||||
"model": DEFAULT_NEL_MODEL,
|
||||
"labels_discard": [],
|
||||
"n_sents": 0,
|
||||
"incl_prior": True,
|
||||
"incl_context": True,
|
||||
"entity_vector_length": 64,
|
||||
"get_candidates": {"@misc": "spacy.CandidateGenerator.v1"},
|
||||
"get_candidates_batch": {"@misc": "spacy.CandidateBatchGenerator.v1"},
|
||||
"generate_empty_kb": {"@misc": "spacy.EmptyKB.v2"},
|
||||
"overwrite": True,
|
||||
"scorer": {"@scorers": "spacy.entity_linker_scorer.v1"},
|
||||
"use_gold_ents": True,
|
||||
"candidates_batch_size": 1,
|
||||
"threshold": None,
|
||||
},
|
||||
default_score_weights={
|
||||
"nel_micro_f": 1.0,
|
||||
"nel_micro_r": None,
|
||||
"nel_micro_p": None,
|
||||
},
|
||||
)
|
||||
def make_entity_linker(
|
||||
nlp: Language,
|
||||
name: str,
|
||||
model: Model,
|
||||
*,
|
||||
labels_discard: Iterable[str],
|
||||
n_sents: int,
|
||||
incl_prior: bool,
|
||||
incl_context: bool,
|
||||
entity_vector_length: int,
|
||||
get_candidates: Callable[[KnowledgeBase, Span], Iterable[Candidate]],
|
||||
get_candidates_batch: Callable[
|
||||
[KnowledgeBase, Iterable[Span]], Iterable[Iterable[Candidate]]
|
||||
],
|
||||
generate_empty_kb: Callable[[Vocab, int], KnowledgeBase],
|
||||
overwrite: bool,
|
||||
scorer: Optional[Callable],
|
||||
use_gold_ents: bool,
|
||||
candidates_batch_size: int,
|
||||
threshold: Optional[float] = None,
|
||||
):
|
||||
"""Construct an EntityLinker component.
|
||||
|
||||
model (Model[List[Doc], Floats2d]): A model that learns document vector
|
||||
representations. Given a batch of Doc objects, it should return a single
|
||||
array, with one row per item in the batch.
|
||||
labels_discard (Iterable[str]): NER labels that will automatically get a "NIL" prediction.
|
||||
n_sents (int): The number of neighbouring sentences to take into account.
|
||||
incl_prior (bool): Whether or not to include prior probabilities from the KB in the model.
|
||||
incl_context (bool): Whether or not to include the local context in the model.
|
||||
entity_vector_length (int): Size of encoding vectors in the KB.
|
||||
get_candidates (Callable[[KnowledgeBase, Span], Iterable[Candidate]]): Function that
|
||||
produces a list of candidates, given a certain knowledge base and a textual mention.
|
||||
get_candidates_batch (
|
||||
Callable[[KnowledgeBase, Iterable[Span]], Iterable[Iterable[Candidate]]], Iterable[Candidate]]
|
||||
): Function that produces a list of candidates, given a certain knowledge base and several textual mentions.
|
||||
generate_empty_kb (Callable[[Vocab, int], KnowledgeBase]): Callable returning empty KnowledgeBase.
|
||||
scorer (Optional[Callable]): The scoring method.
|
||||
use_gold_ents (bool): Whether to copy entities from gold docs during training or not. If false, another
|
||||
component must provide entity annotations.
|
||||
candidates_batch_size (int): Size of batches for entity candidate generation.
|
||||
threshold (Optional[float]): Confidence threshold for entity predictions. If confidence is below the threshold,
|
||||
prediction is discarded. If None, predictions are not filtered by any threshold.
|
||||
"""
|
||||
|
||||
if not model.attrs.get("include_span_maker", False):
|
||||
# The only difference in arguments here is that use_gold_ents and threshold aren't available.
|
||||
return EntityLinker_v1(
|
||||
nlp.vocab,
|
||||
model,
|
||||
name,
|
||||
labels_discard=labels_discard,
|
||||
n_sents=n_sents,
|
||||
incl_prior=incl_prior,
|
||||
incl_context=incl_context,
|
||||
entity_vector_length=entity_vector_length,
|
||||
get_candidates=get_candidates,
|
||||
overwrite=overwrite,
|
||||
scorer=scorer,
|
||||
)
|
||||
return EntityLinker(
|
||||
nlp.vocab,
|
||||
model,
|
||||
name,
|
||||
labels_discard=labels_discard,
|
||||
n_sents=n_sents,
|
||||
incl_prior=incl_prior,
|
||||
incl_context=incl_context,
|
||||
entity_vector_length=entity_vector_length,
|
||||
get_candidates=get_candidates,
|
||||
get_candidates_batch=get_candidates_batch,
|
||||
generate_empty_kb=generate_empty_kb,
|
||||
overwrite=overwrite,
|
||||
scorer=scorer,
|
||||
use_gold_ents=use_gold_ents,
|
||||
candidates_batch_size=candidates_batch_size,
|
||||
threshold=threshold,
|
||||
)
|
||||
|
||||
|
||||
def entity_linker_score(examples, **kwargs):
|
||||
return Scorer.score_links(examples, negative_labels=[EntityLinker.NIL], **kwargs)
|
||||
|
||||
|
||||
@registry.scorers("spacy.entity_linker_scorer.v1")
|
||||
def make_entity_linker_scorer():
|
||||
return entity_linker_score
|
||||
|
||||
|
@ -676,3 +571,11 @@ class EntityLinker(TrainablePipe):
|
|||
|
||||
def add_label(self, label):
|
||||
raise NotImplementedError
|
||||
|
||||
|
||||
# Setup backwards compatibility hook for factories
|
||||
def __getattr__(name):
|
||||
if name == "make_entity_linker":
|
||||
module = importlib.import_module("spacy.pipeline.factories")
|
||||
return module.make_entity_linker
|
||||
raise AttributeError(f"module {__name__} has no attribute {name}")
|
||||
|
|
|
@ -1,3 +1,5 @@
|
|||
import importlib
|
||||
import sys
|
||||
import warnings
|
||||
from collections import defaultdict
|
||||
from pathlib import Path
|
||||
|
@ -19,51 +21,10 @@ DEFAULT_ENT_ID_SEP = "||"
|
|||
PatternType = Dict[str, Union[str, List[Dict[str, Any]]]]
|
||||
|
||||
|
||||
@Language.factory(
|
||||
"entity_ruler",
|
||||
assigns=["doc.ents", "token.ent_type", "token.ent_iob"],
|
||||
default_config={
|
||||
"phrase_matcher_attr": None,
|
||||
"matcher_fuzzy_compare": {"@misc": "spacy.levenshtein_compare.v1"},
|
||||
"validate": False,
|
||||
"overwrite_ents": False,
|
||||
"ent_id_sep": DEFAULT_ENT_ID_SEP,
|
||||
"scorer": {"@scorers": "spacy.entity_ruler_scorer.v1"},
|
||||
},
|
||||
default_score_weights={
|
||||
"ents_f": 1.0,
|
||||
"ents_p": 0.0,
|
||||
"ents_r": 0.0,
|
||||
"ents_per_type": None,
|
||||
},
|
||||
)
|
||||
def make_entity_ruler(
|
||||
nlp: Language,
|
||||
name: str,
|
||||
phrase_matcher_attr: Optional[Union[int, str]],
|
||||
matcher_fuzzy_compare: Callable,
|
||||
validate: bool,
|
||||
overwrite_ents: bool,
|
||||
ent_id_sep: str,
|
||||
scorer: Optional[Callable],
|
||||
):
|
||||
return EntityRuler(
|
||||
nlp,
|
||||
name,
|
||||
phrase_matcher_attr=phrase_matcher_attr,
|
||||
matcher_fuzzy_compare=matcher_fuzzy_compare,
|
||||
validate=validate,
|
||||
overwrite_ents=overwrite_ents,
|
||||
ent_id_sep=ent_id_sep,
|
||||
scorer=scorer,
|
||||
)
|
||||
|
||||
|
||||
def entity_ruler_score(examples, **kwargs):
|
||||
return get_ner_prf(examples)
|
||||
|
||||
|
||||
@registry.scorers("spacy.entity_ruler_scorer.v1")
|
||||
def make_entity_ruler_scorer():
|
||||
return entity_ruler_score
|
||||
|
||||
|
@ -539,3 +500,11 @@ class EntityRuler(Pipe):
|
|||
srsly.write_jsonl(path, self.patterns)
|
||||
else:
|
||||
to_disk(path, serializers, {})
|
||||
|
||||
|
||||
# Setup backwards compatibility hook for factories
|
||||
def __getattr__(name):
|
||||
if name == "make_entity_ruler":
|
||||
module = importlib.import_module("spacy.pipeline.factories")
|
||||
return module.make_entity_ruler
|
||||
raise AttributeError(f"module {__name__} has no attribute {name}")
|
||||
|
|
929
spacy/pipeline/factories.py
Normal file
929
spacy/pipeline/factories.py
Normal file
|
@ -0,0 +1,929 @@
|
|||
from typing import Any, Callable, Dict, Iterable, List, Optional, Tuple, Union
|
||||
|
||||
from thinc.api import Model
|
||||
from thinc.types import Floats2d, Ragged
|
||||
|
||||
from ..kb import Candidate, KnowledgeBase
|
||||
from ..language import Language
|
||||
from ..pipeline._parser_internals.transition_system import TransitionSystem
|
||||
from ..pipeline.attributeruler import AttributeRuler
|
||||
from ..pipeline.dep_parser import DEFAULT_PARSER_MODEL, DependencyParser
|
||||
from ..pipeline.edit_tree_lemmatizer import (
|
||||
DEFAULT_EDIT_TREE_LEMMATIZER_MODEL,
|
||||
EditTreeLemmatizer,
|
||||
)
|
||||
|
||||
# Import factory default configurations
|
||||
from ..pipeline.entity_linker import DEFAULT_NEL_MODEL, EntityLinker, EntityLinker_v1
|
||||
from ..pipeline.entityruler import DEFAULT_ENT_ID_SEP, EntityRuler
|
||||
from ..pipeline.functions import DocCleaner, TokenSplitter
|
||||
from ..pipeline.lemmatizer import Lemmatizer
|
||||
from ..pipeline.morphologizer import DEFAULT_MORPH_MODEL, Morphologizer
|
||||
from ..pipeline.multitask import DEFAULT_MT_MODEL, MultitaskObjective
|
||||
from ..pipeline.ner import DEFAULT_NER_MODEL, EntityRecognizer
|
||||
from ..pipeline.sentencizer import Sentencizer
|
||||
from ..pipeline.senter import DEFAULT_SENTER_MODEL, SentenceRecognizer
|
||||
from ..pipeline.span_finder import DEFAULT_SPAN_FINDER_MODEL, SpanFinder
|
||||
from ..pipeline.span_ruler import DEFAULT_SPANS_KEY as SPAN_RULER_DEFAULT_SPANS_KEY
|
||||
from ..pipeline.span_ruler import (
|
||||
SpanRuler,
|
||||
prioritize_existing_ents_filter,
|
||||
prioritize_new_ents_filter,
|
||||
)
|
||||
from ..pipeline.spancat import (
|
||||
DEFAULT_SPANCAT_MODEL,
|
||||
DEFAULT_SPANCAT_SINGLELABEL_MODEL,
|
||||
DEFAULT_SPANS_KEY,
|
||||
SpanCategorizer,
|
||||
Suggester,
|
||||
)
|
||||
from ..pipeline.tagger import DEFAULT_TAGGER_MODEL, Tagger
|
||||
from ..pipeline.textcat import DEFAULT_SINGLE_TEXTCAT_MODEL, TextCategorizer
|
||||
from ..pipeline.textcat_multilabel import (
|
||||
DEFAULT_MULTI_TEXTCAT_MODEL,
|
||||
MultiLabel_TextCategorizer,
|
||||
)
|
||||
from ..pipeline.tok2vec import DEFAULT_TOK2VEC_MODEL, Tok2Vec
|
||||
from ..tokens.doc import Doc
|
||||
from ..tokens.span import Span
|
||||
from ..vocab import Vocab
|
||||
|
||||
# Global flag to track if factories have been registered
|
||||
FACTORIES_REGISTERED = False
|
||||
|
||||
|
||||
def register_factories() -> None:
|
||||
"""Register all factories with the registry.
|
||||
|
||||
This function registers all pipeline component factories, centralizing
|
||||
the registrations that were previously done with @Language.factory decorators.
|
||||
"""
|
||||
global FACTORIES_REGISTERED
|
||||
|
||||
if FACTORIES_REGISTERED:
|
||||
return
|
||||
|
||||
# Register factories using the same pattern as Language.factory decorator
|
||||
# We use Language.factory()() pattern which exactly mimics the decorator
|
||||
|
||||
# attributeruler
|
||||
Language.factory(
|
||||
"attribute_ruler",
|
||||
default_config={
|
||||
"validate": False,
|
||||
"scorer": {"@scorers": "spacy.attribute_ruler_scorer.v1"},
|
||||
},
|
||||
)(make_attribute_ruler)
|
||||
|
||||
# entity_linker
|
||||
Language.factory(
|
||||
"entity_linker",
|
||||
requires=["doc.ents", "doc.sents", "token.ent_iob", "token.ent_type"],
|
||||
assigns=["token.ent_kb_id"],
|
||||
default_config={
|
||||
"model": DEFAULT_NEL_MODEL,
|
||||
"labels_discard": [],
|
||||
"n_sents": 0,
|
||||
"incl_prior": True,
|
||||
"incl_context": True,
|
||||
"entity_vector_length": 64,
|
||||
"get_candidates": {"@misc": "spacy.CandidateGenerator.v1"},
|
||||
"get_candidates_batch": {"@misc": "spacy.CandidateBatchGenerator.v1"},
|
||||
"generate_empty_kb": {"@misc": "spacy.EmptyKB.v2"},
|
||||
"overwrite": True,
|
||||
"scorer": {"@scorers": "spacy.entity_linker_scorer.v1"},
|
||||
"use_gold_ents": True,
|
||||
"candidates_batch_size": 1,
|
||||
"threshold": None,
|
||||
},
|
||||
default_score_weights={
|
||||
"nel_micro_f": 1.0,
|
||||
"nel_micro_r": None,
|
||||
"nel_micro_p": None,
|
||||
},
|
||||
)(make_entity_linker)
|
||||
|
||||
# entity_ruler
|
||||
Language.factory(
|
||||
"entity_ruler",
|
||||
assigns=["doc.ents", "token.ent_type", "token.ent_iob"],
|
||||
default_config={
|
||||
"phrase_matcher_attr": None,
|
||||
"matcher_fuzzy_compare": {"@misc": "spacy.levenshtein_compare.v1"},
|
||||
"validate": False,
|
||||
"overwrite_ents": False,
|
||||
"ent_id_sep": DEFAULT_ENT_ID_SEP,
|
||||
"scorer": {"@scorers": "spacy.entity_ruler_scorer.v1"},
|
||||
},
|
||||
default_score_weights={
|
||||
"ents_f": 1.0,
|
||||
"ents_p": 0.0,
|
||||
"ents_r": 0.0,
|
||||
"ents_per_type": None,
|
||||
},
|
||||
)(make_entity_ruler)
|
||||
|
||||
# lemmatizer
|
||||
Language.factory(
|
||||
"lemmatizer",
|
||||
assigns=["token.lemma"],
|
||||
default_config={
|
||||
"model": None,
|
||||
"mode": "lookup",
|
||||
"overwrite": False,
|
||||
"scorer": {"@scorers": "spacy.lemmatizer_scorer.v1"},
|
||||
},
|
||||
default_score_weights={"lemma_acc": 1.0},
|
||||
)(make_lemmatizer)
|
||||
|
||||
# textcat
|
||||
Language.factory(
|
||||
"textcat",
|
||||
assigns=["doc.cats"],
|
||||
default_config={
|
||||
"threshold": 0.0,
|
||||
"model": DEFAULT_SINGLE_TEXTCAT_MODEL,
|
||||
"scorer": {"@scorers": "spacy.textcat_scorer.v2"},
|
||||
},
|
||||
default_score_weights={
|
||||
"cats_score": 1.0,
|
||||
"cats_score_desc": None,
|
||||
"cats_micro_p": None,
|
||||
"cats_micro_r": None,
|
||||
"cats_micro_f": None,
|
||||
"cats_macro_p": None,
|
||||
"cats_macro_r": None,
|
||||
"cats_macro_f": None,
|
||||
"cats_macro_auc": None,
|
||||
"cats_f_per_type": None,
|
||||
},
|
||||
)(make_textcat)
|
||||
|
||||
# token_splitter
|
||||
Language.factory(
|
||||
"token_splitter",
|
||||
default_config={"min_length": 25, "split_length": 10},
|
||||
retokenizes=True,
|
||||
)(make_token_splitter)
|
||||
|
||||
# doc_cleaner
|
||||
Language.factory(
|
||||
"doc_cleaner",
|
||||
default_config={"attrs": {"tensor": None, "_.trf_data": None}, "silent": True},
|
||||
)(make_doc_cleaner)
|
||||
|
||||
# tok2vec
|
||||
Language.factory(
|
||||
"tok2vec",
|
||||
assigns=["doc.tensor"],
|
||||
default_config={"model": DEFAULT_TOK2VEC_MODEL},
|
||||
)(make_tok2vec)
|
||||
|
||||
# senter
|
||||
Language.factory(
|
||||
"senter",
|
||||
assigns=["token.is_sent_start"],
|
||||
default_config={
|
||||
"model": DEFAULT_SENTER_MODEL,
|
||||
"overwrite": False,
|
||||
"scorer": {"@scorers": "spacy.senter_scorer.v1"},
|
||||
},
|
||||
default_score_weights={"sents_f": 1.0, "sents_p": 0.0, "sents_r": 0.0},
|
||||
)(make_senter)
|
||||
|
||||
# morphologizer
|
||||
Language.factory(
|
||||
"morphologizer",
|
||||
assigns=["token.morph", "token.pos"],
|
||||
default_config={
|
||||
"model": DEFAULT_MORPH_MODEL,
|
||||
"overwrite": True,
|
||||
"extend": False,
|
||||
"scorer": {"@scorers": "spacy.morphologizer_scorer.v1"},
|
||||
"label_smoothing": 0.0,
|
||||
},
|
||||
default_score_weights={
|
||||
"pos_acc": 0.5,
|
||||
"morph_acc": 0.5,
|
||||
"morph_per_feat": None,
|
||||
},
|
||||
)(make_morphologizer)
|
||||
|
||||
# spancat
|
||||
Language.factory(
|
||||
"spancat",
|
||||
assigns=["doc.spans"],
|
||||
default_config={
|
||||
"threshold": 0.5,
|
||||
"spans_key": DEFAULT_SPANS_KEY,
|
||||
"max_positive": None,
|
||||
"model": DEFAULT_SPANCAT_MODEL,
|
||||
"suggester": {"@misc": "spacy.ngram_suggester.v1", "sizes": [1, 2, 3]},
|
||||
"scorer": {"@scorers": "spacy.spancat_scorer.v1"},
|
||||
},
|
||||
default_score_weights={"spans_sc_f": 1.0, "spans_sc_p": 0.0, "spans_sc_r": 0.0},
|
||||
)(make_spancat)
|
||||
|
||||
# spancat_singlelabel
|
||||
Language.factory(
|
||||
"spancat_singlelabel",
|
||||
assigns=["doc.spans"],
|
||||
default_config={
|
||||
"spans_key": DEFAULT_SPANS_KEY,
|
||||
"model": DEFAULT_SPANCAT_SINGLELABEL_MODEL,
|
||||
"negative_weight": 1.0,
|
||||
"suggester": {"@misc": "spacy.ngram_suggester.v1", "sizes": [1, 2, 3]},
|
||||
"scorer": {"@scorers": "spacy.spancat_scorer.v1"},
|
||||
"allow_overlap": True,
|
||||
},
|
||||
default_score_weights={"spans_sc_f": 1.0, "spans_sc_p": 0.0, "spans_sc_r": 0.0},
|
||||
)(make_spancat_singlelabel)
|
||||
|
||||
# future_entity_ruler
|
||||
Language.factory(
|
||||
"future_entity_ruler",
|
||||
assigns=["doc.ents"],
|
||||
default_config={
|
||||
"phrase_matcher_attr": None,
|
||||
"validate": False,
|
||||
"overwrite_ents": False,
|
||||
"scorer": {"@scorers": "spacy.entity_ruler_scorer.v1"},
|
||||
"ent_id_sep": "__unused__",
|
||||
"matcher_fuzzy_compare": {"@misc": "spacy.levenshtein_compare.v1"},
|
||||
},
|
||||
default_score_weights={
|
||||
"ents_f": 1.0,
|
||||
"ents_p": 0.0,
|
||||
"ents_r": 0.0,
|
||||
"ents_per_type": None,
|
||||
},
|
||||
)(make_future_entity_ruler)
|
||||
|
||||
# span_ruler
|
||||
Language.factory(
|
||||
"span_ruler",
|
||||
assigns=["doc.spans"],
|
||||
default_config={
|
||||
"spans_key": SPAN_RULER_DEFAULT_SPANS_KEY,
|
||||
"spans_filter": None,
|
||||
"annotate_ents": False,
|
||||
"ents_filter": {"@misc": "spacy.first_longest_spans_filter.v1"},
|
||||
"phrase_matcher_attr": None,
|
||||
"matcher_fuzzy_compare": {"@misc": "spacy.levenshtein_compare.v1"},
|
||||
"validate": False,
|
||||
"overwrite": True,
|
||||
"scorer": {
|
||||
"@scorers": "spacy.overlapping_labeled_spans_scorer.v1",
|
||||
"spans_key": SPAN_RULER_DEFAULT_SPANS_KEY,
|
||||
},
|
||||
},
|
||||
default_score_weights={
|
||||
f"spans_{SPAN_RULER_DEFAULT_SPANS_KEY}_f": 1.0,
|
||||
f"spans_{SPAN_RULER_DEFAULT_SPANS_KEY}_p": 0.0,
|
||||
f"spans_{SPAN_RULER_DEFAULT_SPANS_KEY}_r": 0.0,
|
||||
f"spans_{SPAN_RULER_DEFAULT_SPANS_KEY}_per_type": None,
|
||||
},
|
||||
)(make_span_ruler)
|
||||
|
||||
# trainable_lemmatizer
|
||||
Language.factory(
|
||||
"trainable_lemmatizer",
|
||||
assigns=["token.lemma"],
|
||||
requires=[],
|
||||
default_config={
|
||||
"model": DEFAULT_EDIT_TREE_LEMMATIZER_MODEL,
|
||||
"backoff": "orth",
|
||||
"min_tree_freq": 3,
|
||||
"overwrite": False,
|
||||
"top_k": 1,
|
||||
"scorer": {"@scorers": "spacy.lemmatizer_scorer.v1"},
|
||||
},
|
||||
default_score_weights={"lemma_acc": 1.0},
|
||||
)(make_edit_tree_lemmatizer)
|
||||
|
||||
# textcat_multilabel
|
||||
Language.factory(
|
||||
"textcat_multilabel",
|
||||
assigns=["doc.cats"],
|
||||
default_config={
|
||||
"threshold": 0.5,
|
||||
"model": DEFAULT_MULTI_TEXTCAT_MODEL,
|
||||
"scorer": {"@scorers": "spacy.textcat_multilabel_scorer.v2"},
|
||||
},
|
||||
default_score_weights={
|
||||
"cats_score": 1.0,
|
||||
"cats_score_desc": None,
|
||||
"cats_micro_p": None,
|
||||
"cats_micro_r": None,
|
||||
"cats_micro_f": None,
|
||||
"cats_macro_p": None,
|
||||
"cats_macro_r": None,
|
||||
"cats_macro_f": None,
|
||||
"cats_macro_auc": None,
|
||||
"cats_f_per_type": None,
|
||||
},
|
||||
)(make_multilabel_textcat)
|
||||
|
||||
# span_finder
|
||||
Language.factory(
|
||||
"span_finder",
|
||||
assigns=["doc.spans"],
|
||||
default_config={
|
||||
"threshold": 0.5,
|
||||
"model": DEFAULT_SPAN_FINDER_MODEL,
|
||||
"spans_key": DEFAULT_SPANS_KEY,
|
||||
"max_length": 25,
|
||||
"min_length": None,
|
||||
"scorer": {"@scorers": "spacy.span_finder_scorer.v1"},
|
||||
},
|
||||
default_score_weights={
|
||||
f"spans_{DEFAULT_SPANS_KEY}_f": 1.0,
|
||||
f"spans_{DEFAULT_SPANS_KEY}_p": 0.0,
|
||||
f"spans_{DEFAULT_SPANS_KEY}_r": 0.0,
|
||||
},
|
||||
)(make_span_finder)
|
||||
|
||||
# ner
|
||||
Language.factory(
|
||||
"ner",
|
||||
assigns=["doc.ents", "token.ent_iob", "token.ent_type"],
|
||||
default_config={
|
||||
"moves": None,
|
||||
"update_with_oracle_cut_size": 100,
|
||||
"model": DEFAULT_NER_MODEL,
|
||||
"incorrect_spans_key": None,
|
||||
"scorer": {"@scorers": "spacy.ner_scorer.v1"},
|
||||
},
|
||||
default_score_weights={
|
||||
"ents_f": 1.0,
|
||||
"ents_p": 0.0,
|
||||
"ents_r": 0.0,
|
||||
"ents_per_type": None,
|
||||
},
|
||||
)(make_ner)
|
||||
|
||||
# beam_ner
|
||||
Language.factory(
|
||||
"beam_ner",
|
||||
assigns=["doc.ents", "token.ent_iob", "token.ent_type"],
|
||||
default_config={
|
||||
"moves": None,
|
||||
"update_with_oracle_cut_size": 100,
|
||||
"model": DEFAULT_NER_MODEL,
|
||||
"beam_density": 0.01,
|
||||
"beam_update_prob": 0.5,
|
||||
"beam_width": 32,
|
||||
"incorrect_spans_key": None,
|
||||
"scorer": {"@scorers": "spacy.ner_scorer.v1"},
|
||||
},
|
||||
default_score_weights={
|
||||
"ents_f": 1.0,
|
||||
"ents_p": 0.0,
|
||||
"ents_r": 0.0,
|
||||
"ents_per_type": None,
|
||||
},
|
||||
)(make_beam_ner)
|
||||
|
||||
# parser
|
||||
Language.factory(
|
||||
"parser",
|
||||
assigns=["token.dep", "token.head", "token.is_sent_start", "doc.sents"],
|
||||
default_config={
|
||||
"moves": None,
|
||||
"update_with_oracle_cut_size": 100,
|
||||
"learn_tokens": False,
|
||||
"min_action_freq": 30,
|
||||
"model": DEFAULT_PARSER_MODEL,
|
||||
"scorer": {"@scorers": "spacy.parser_scorer.v1"},
|
||||
},
|
||||
default_score_weights={
|
||||
"dep_uas": 0.5,
|
||||
"dep_las": 0.5,
|
||||
"dep_las_per_type": None,
|
||||
"sents_p": None,
|
||||
"sents_r": None,
|
||||
"sents_f": 0.0,
|
||||
},
|
||||
)(make_parser)
|
||||
|
||||
# beam_parser
|
||||
Language.factory(
|
||||
"beam_parser",
|
||||
assigns=["token.dep", "token.head", "token.is_sent_start", "doc.sents"],
|
||||
default_config={
|
||||
"moves": None,
|
||||
"update_with_oracle_cut_size": 100,
|
||||
"learn_tokens": False,
|
||||
"min_action_freq": 30,
|
||||
"beam_width": 8,
|
||||
"beam_density": 0.0001,
|
||||
"beam_update_prob": 0.5,
|
||||
"model": DEFAULT_PARSER_MODEL,
|
||||
"scorer": {"@scorers": "spacy.parser_scorer.v1"},
|
||||
},
|
||||
default_score_weights={
|
||||
"dep_uas": 0.5,
|
||||
"dep_las": 0.5,
|
||||
"dep_las_per_type": None,
|
||||
"sents_p": None,
|
||||
"sents_r": None,
|
||||
"sents_f": 0.0,
|
||||
},
|
||||
)(make_beam_parser)
|
||||
|
||||
# tagger
|
||||
Language.factory(
|
||||
"tagger",
|
||||
assigns=["token.tag"],
|
||||
default_config={
|
||||
"model": DEFAULT_TAGGER_MODEL,
|
||||
"overwrite": False,
|
||||
"scorer": {"@scorers": "spacy.tagger_scorer.v1"},
|
||||
"neg_prefix": "!",
|
||||
"label_smoothing": 0.0,
|
||||
},
|
||||
default_score_weights={
|
||||
"tag_acc": 1.0,
|
||||
"pos_acc": 0.0,
|
||||
"tag_micro_p": None,
|
||||
"tag_micro_r": None,
|
||||
"tag_micro_f": None,
|
||||
},
|
||||
)(make_tagger)
|
||||
|
||||
# nn_labeller
|
||||
Language.factory(
|
||||
"nn_labeller",
|
||||
default_config={
|
||||
"labels": None,
|
||||
"target": "dep_tag_offset",
|
||||
"model": DEFAULT_MT_MODEL,
|
||||
},
|
||||
)(make_nn_labeller)
|
||||
|
||||
# sentencizer
|
||||
Language.factory(
|
||||
"sentencizer",
|
||||
assigns=["token.is_sent_start", "doc.sents"],
|
||||
default_config={
|
||||
"punct_chars": None,
|
||||
"overwrite": False,
|
||||
"scorer": {"@scorers": "spacy.senter_scorer.v1"},
|
||||
},
|
||||
default_score_weights={"sents_f": 1.0, "sents_p": 0.0, "sents_r": 0.0},
|
||||
)(make_sentencizer)
|
||||
|
||||
# Set the flag to indicate that all factories have been registered
|
||||
FACTORIES_REGISTERED = True
|
||||
|
||||
|
||||
# We can't have function implementations for these factories in Cython, because
|
||||
# we need to build a Pydantic model for them dynamically, reading their argument
|
||||
# structure from the signature. In Cython 3, this doesn't work because the
|
||||
# from __future__ import annotations semantics are used, which means the types
|
||||
# are stored as strings.
|
||||
def make_sentencizer(
|
||||
nlp: Language,
|
||||
name: str,
|
||||
punct_chars: Optional[List[str]],
|
||||
overwrite: bool,
|
||||
scorer: Optional[Callable],
|
||||
):
|
||||
return Sentencizer(
|
||||
name, punct_chars=punct_chars, overwrite=overwrite, scorer=scorer
|
||||
)
|
||||
|
||||
|
||||
def make_attribute_ruler(
|
||||
nlp: Language, name: str, validate: bool, scorer: Optional[Callable]
|
||||
):
|
||||
return AttributeRuler(nlp.vocab, name, validate=validate, scorer=scorer)
|
||||
|
||||
|
||||
def make_entity_linker(
|
||||
nlp: Language,
|
||||
name: str,
|
||||
model: Model,
|
||||
*,
|
||||
labels_discard: Iterable[str],
|
||||
n_sents: int,
|
||||
incl_prior: bool,
|
||||
incl_context: bool,
|
||||
entity_vector_length: int,
|
||||
get_candidates: Callable[[KnowledgeBase, Span], Iterable[Candidate]],
|
||||
get_candidates_batch: Callable[
|
||||
[KnowledgeBase, Iterable[Span]], Iterable[Iterable[Candidate]]
|
||||
],
|
||||
generate_empty_kb: Callable[[Vocab, int], KnowledgeBase],
|
||||
overwrite: bool,
|
||||
scorer: Optional[Callable],
|
||||
use_gold_ents: bool,
|
||||
candidates_batch_size: int,
|
||||
threshold: Optional[float] = None,
|
||||
):
|
||||
|
||||
if not model.attrs.get("include_span_maker", False):
|
||||
# The only difference in arguments here is that use_gold_ents and threshold aren't available.
|
||||
return EntityLinker_v1(
|
||||
nlp.vocab,
|
||||
model,
|
||||
name,
|
||||
labels_discard=labels_discard,
|
||||
n_sents=n_sents,
|
||||
incl_prior=incl_prior,
|
||||
incl_context=incl_context,
|
||||
entity_vector_length=entity_vector_length,
|
||||
get_candidates=get_candidates,
|
||||
overwrite=overwrite,
|
||||
scorer=scorer,
|
||||
)
|
||||
return EntityLinker(
|
||||
nlp.vocab,
|
||||
model,
|
||||
name,
|
||||
labels_discard=labels_discard,
|
||||
n_sents=n_sents,
|
||||
incl_prior=incl_prior,
|
||||
incl_context=incl_context,
|
||||
entity_vector_length=entity_vector_length,
|
||||
get_candidates=get_candidates,
|
||||
get_candidates_batch=get_candidates_batch,
|
||||
generate_empty_kb=generate_empty_kb,
|
||||
overwrite=overwrite,
|
||||
scorer=scorer,
|
||||
use_gold_ents=use_gold_ents,
|
||||
candidates_batch_size=candidates_batch_size,
|
||||
threshold=threshold,
|
||||
)
|
||||
|
||||
|
||||
def make_lemmatizer(
|
||||
nlp: Language,
|
||||
model: Optional[Model],
|
||||
name: str,
|
||||
mode: str,
|
||||
overwrite: bool,
|
||||
scorer: Optional[Callable],
|
||||
):
|
||||
return Lemmatizer(
|
||||
nlp.vocab, model, name, mode=mode, overwrite=overwrite, scorer=scorer
|
||||
)
|
||||
|
||||
|
||||
def make_textcat(
|
||||
nlp: Language,
|
||||
name: str,
|
||||
model: Model[List[Doc], List[Floats2d]],
|
||||
threshold: float,
|
||||
scorer: Optional[Callable],
|
||||
) -> TextCategorizer:
|
||||
return TextCategorizer(nlp.vocab, model, name, threshold=threshold, scorer=scorer)
|
||||
|
||||
|
||||
def make_token_splitter(
|
||||
nlp: Language, name: str, *, min_length: int = 0, split_length: int = 0
|
||||
):
|
||||
return TokenSplitter(min_length=min_length, split_length=split_length)
|
||||
|
||||
|
||||
def make_doc_cleaner(nlp: Language, name: str, *, attrs: Dict[str, Any], silent: bool):
|
||||
return DocCleaner(attrs, silent=silent)
|
||||
|
||||
|
||||
def make_tok2vec(nlp: Language, name: str, model: Model) -> Tok2Vec:
|
||||
return Tok2Vec(nlp.vocab, model, name)
|
||||
|
||||
|
||||
def make_spancat(
|
||||
nlp: Language,
|
||||
name: str,
|
||||
suggester: Suggester,
|
||||
model: Model[Tuple[List[Doc], Ragged], Floats2d],
|
||||
spans_key: str,
|
||||
scorer: Optional[Callable],
|
||||
threshold: float,
|
||||
max_positive: Optional[int],
|
||||
) -> SpanCategorizer:
|
||||
return SpanCategorizer(
|
||||
nlp.vocab,
|
||||
model=model,
|
||||
suggester=suggester,
|
||||
name=name,
|
||||
spans_key=spans_key,
|
||||
negative_weight=None,
|
||||
allow_overlap=True,
|
||||
max_positive=max_positive,
|
||||
threshold=threshold,
|
||||
scorer=scorer,
|
||||
add_negative_label=False,
|
||||
)
|
||||
|
||||
|
||||
def make_spancat_singlelabel(
|
||||
nlp: Language,
|
||||
name: str,
|
||||
suggester: Suggester,
|
||||
model: Model[Tuple[List[Doc], Ragged], Floats2d],
|
||||
spans_key: str,
|
||||
negative_weight: float,
|
||||
allow_overlap: bool,
|
||||
scorer: Optional[Callable],
|
||||
) -> SpanCategorizer:
|
||||
return SpanCategorizer(
|
||||
nlp.vocab,
|
||||
model=model,
|
||||
suggester=suggester,
|
||||
name=name,
|
||||
spans_key=spans_key,
|
||||
negative_weight=negative_weight,
|
||||
allow_overlap=allow_overlap,
|
||||
max_positive=1,
|
||||
add_negative_label=True,
|
||||
threshold=None,
|
||||
scorer=scorer,
|
||||
)
|
||||
|
||||
|
||||
def make_future_entity_ruler(
|
||||
nlp: Language,
|
||||
name: str,
|
||||
phrase_matcher_attr: Optional[Union[int, str]],
|
||||
matcher_fuzzy_compare: Callable,
|
||||
validate: bool,
|
||||
overwrite_ents: bool,
|
||||
scorer: Optional[Callable],
|
||||
ent_id_sep: str,
|
||||
):
|
||||
if overwrite_ents:
|
||||
ents_filter = prioritize_new_ents_filter
|
||||
else:
|
||||
ents_filter = prioritize_existing_ents_filter
|
||||
return SpanRuler(
|
||||
nlp,
|
||||
name,
|
||||
spans_key=None,
|
||||
spans_filter=None,
|
||||
annotate_ents=True,
|
||||
ents_filter=ents_filter,
|
||||
phrase_matcher_attr=phrase_matcher_attr,
|
||||
matcher_fuzzy_compare=matcher_fuzzy_compare,
|
||||
validate=validate,
|
||||
overwrite=False,
|
||||
scorer=scorer,
|
||||
)
|
||||
|
||||
|
||||
def make_entity_ruler(
|
||||
nlp: Language,
|
||||
name: str,
|
||||
phrase_matcher_attr: Optional[Union[int, str]],
|
||||
matcher_fuzzy_compare: Callable,
|
||||
validate: bool,
|
||||
overwrite_ents: bool,
|
||||
ent_id_sep: str,
|
||||
scorer: Optional[Callable],
|
||||
):
|
||||
return EntityRuler(
|
||||
nlp,
|
||||
name,
|
||||
phrase_matcher_attr=phrase_matcher_attr,
|
||||
matcher_fuzzy_compare=matcher_fuzzy_compare,
|
||||
validate=validate,
|
||||
overwrite_ents=overwrite_ents,
|
||||
ent_id_sep=ent_id_sep,
|
||||
scorer=scorer,
|
||||
)
|
||||
|
||||
|
||||
def make_span_ruler(
|
||||
nlp: Language,
|
||||
name: str,
|
||||
spans_key: Optional[str],
|
||||
spans_filter: Optional[Callable[[Iterable[Span], Iterable[Span]], Iterable[Span]]],
|
||||
annotate_ents: bool,
|
||||
ents_filter: Callable[[Iterable[Span], Iterable[Span]], Iterable[Span]],
|
||||
phrase_matcher_attr: Optional[Union[int, str]],
|
||||
matcher_fuzzy_compare: Callable,
|
||||
validate: bool,
|
||||
overwrite: bool,
|
||||
scorer: Optional[Callable],
|
||||
):
|
||||
return SpanRuler(
|
||||
nlp,
|
||||
name,
|
||||
spans_key=spans_key,
|
||||
spans_filter=spans_filter,
|
||||
annotate_ents=annotate_ents,
|
||||
ents_filter=ents_filter,
|
||||
phrase_matcher_attr=phrase_matcher_attr,
|
||||
matcher_fuzzy_compare=matcher_fuzzy_compare,
|
||||
validate=validate,
|
||||
overwrite=overwrite,
|
||||
scorer=scorer,
|
||||
)
|
||||
|
||||
|
||||
def make_edit_tree_lemmatizer(
|
||||
nlp: Language,
|
||||
name: str,
|
||||
model: Model,
|
||||
backoff: Optional[str],
|
||||
min_tree_freq: int,
|
||||
overwrite: bool,
|
||||
top_k: int,
|
||||
scorer: Optional[Callable],
|
||||
):
|
||||
return EditTreeLemmatizer(
|
||||
nlp.vocab,
|
||||
model,
|
||||
name,
|
||||
backoff=backoff,
|
||||
min_tree_freq=min_tree_freq,
|
||||
overwrite=overwrite,
|
||||
top_k=top_k,
|
||||
scorer=scorer,
|
||||
)
|
||||
|
||||
|
||||
def make_multilabel_textcat(
|
||||
nlp: Language,
|
||||
name: str,
|
||||
model: Model[List[Doc], List[Floats2d]],
|
||||
threshold: float,
|
||||
scorer: Optional[Callable],
|
||||
) -> MultiLabel_TextCategorizer:
|
||||
return MultiLabel_TextCategorizer(
|
||||
nlp.vocab, model, name, threshold=threshold, scorer=scorer
|
||||
)
|
||||
|
||||
|
||||
def make_span_finder(
|
||||
nlp: Language,
|
||||
name: str,
|
||||
model: Model[Iterable[Doc], Floats2d],
|
||||
spans_key: str,
|
||||
threshold: float,
|
||||
max_length: Optional[int],
|
||||
min_length: Optional[int],
|
||||
scorer: Optional[Callable],
|
||||
) -> SpanFinder:
|
||||
return SpanFinder(
|
||||
nlp,
|
||||
model=model,
|
||||
threshold=threshold,
|
||||
name=name,
|
||||
scorer=scorer,
|
||||
max_length=max_length,
|
||||
min_length=min_length,
|
||||
spans_key=spans_key,
|
||||
)
|
||||
|
||||
|
||||
def make_ner(
|
||||
nlp: Language,
|
||||
name: str,
|
||||
model: Model,
|
||||
moves: Optional[TransitionSystem],
|
||||
update_with_oracle_cut_size: int,
|
||||
incorrect_spans_key: Optional[str],
|
||||
scorer: Optional[Callable],
|
||||
):
|
||||
return EntityRecognizer(
|
||||
nlp.vocab,
|
||||
model,
|
||||
name=name,
|
||||
moves=moves,
|
||||
update_with_oracle_cut_size=update_with_oracle_cut_size,
|
||||
incorrect_spans_key=incorrect_spans_key,
|
||||
scorer=scorer,
|
||||
)
|
||||
|
||||
|
||||
def make_beam_ner(
|
||||
nlp: Language,
|
||||
name: str,
|
||||
model: Model,
|
||||
moves: Optional[TransitionSystem],
|
||||
update_with_oracle_cut_size: int,
|
||||
beam_width: int,
|
||||
beam_density: float,
|
||||
beam_update_prob: float,
|
||||
incorrect_spans_key: Optional[str],
|
||||
scorer: Optional[Callable],
|
||||
):
|
||||
return EntityRecognizer(
|
||||
nlp.vocab,
|
||||
model,
|
||||
name=name,
|
||||
moves=moves,
|
||||
update_with_oracle_cut_size=update_with_oracle_cut_size,
|
||||
beam_width=beam_width,
|
||||
beam_density=beam_density,
|
||||
beam_update_prob=beam_update_prob,
|
||||
incorrect_spans_key=incorrect_spans_key,
|
||||
scorer=scorer,
|
||||
)
|
||||
|
||||
|
||||
def make_parser(
|
||||
nlp: Language,
|
||||
name: str,
|
||||
model: Model,
|
||||
moves: Optional[TransitionSystem],
|
||||
update_with_oracle_cut_size: int,
|
||||
learn_tokens: bool,
|
||||
min_action_freq: int,
|
||||
scorer: Optional[Callable],
|
||||
):
|
||||
return DependencyParser(
|
||||
nlp.vocab,
|
||||
model,
|
||||
name=name,
|
||||
moves=moves,
|
||||
update_with_oracle_cut_size=update_with_oracle_cut_size,
|
||||
learn_tokens=learn_tokens,
|
||||
min_action_freq=min_action_freq,
|
||||
scorer=scorer,
|
||||
)
|
||||
|
||||
|
||||
def make_beam_parser(
|
||||
nlp: Language,
|
||||
name: str,
|
||||
model: Model,
|
||||
moves: Optional[TransitionSystem],
|
||||
update_with_oracle_cut_size: int,
|
||||
learn_tokens: bool,
|
||||
min_action_freq: int,
|
||||
beam_width: int,
|
||||
beam_density: float,
|
||||
beam_update_prob: float,
|
||||
scorer: Optional[Callable],
|
||||
):
|
||||
return DependencyParser(
|
||||
nlp.vocab,
|
||||
model,
|
||||
name=name,
|
||||
moves=moves,
|
||||
update_with_oracle_cut_size=update_with_oracle_cut_size,
|
||||
learn_tokens=learn_tokens,
|
||||
min_action_freq=min_action_freq,
|
||||
beam_width=beam_width,
|
||||
beam_density=beam_density,
|
||||
beam_update_prob=beam_update_prob,
|
||||
scorer=scorer,
|
||||
)
|
||||
|
||||
|
||||
def make_tagger(
|
||||
nlp: Language,
|
||||
name: str,
|
||||
model: Model,
|
||||
overwrite: bool,
|
||||
scorer: Optional[Callable],
|
||||
neg_prefix: str,
|
||||
label_smoothing: float,
|
||||
):
|
||||
return Tagger(
|
||||
nlp.vocab,
|
||||
model,
|
||||
name=name,
|
||||
overwrite=overwrite,
|
||||
scorer=scorer,
|
||||
neg_prefix=neg_prefix,
|
||||
label_smoothing=label_smoothing,
|
||||
)
|
||||
|
||||
|
||||
def make_nn_labeller(
|
||||
nlp: Language, name: str, model: Model, labels: Optional[dict], target: str
|
||||
):
|
||||
return MultitaskObjective(nlp.vocab, model, name, target=target)
|
||||
|
||||
|
||||
def make_morphologizer(
|
||||
nlp: Language,
|
||||
model: Model,
|
||||
name: str,
|
||||
overwrite: bool,
|
||||
extend: bool,
|
||||
label_smoothing: float,
|
||||
scorer: Optional[Callable],
|
||||
):
|
||||
return Morphologizer(
|
||||
nlp.vocab,
|
||||
model,
|
||||
name,
|
||||
overwrite=overwrite,
|
||||
extend=extend,
|
||||
label_smoothing=label_smoothing,
|
||||
scorer=scorer,
|
||||
)
|
||||
|
||||
|
||||
def make_senter(
|
||||
nlp: Language, name: str, model: Model, overwrite: bool, scorer: Optional[Callable]
|
||||
):
|
||||
return SentenceRecognizer(
|
||||
nlp.vocab, model, name, overwrite=overwrite, scorer=scorer
|
||||
)
|
|
@ -1,3 +1,5 @@
|
|||
import importlib
|
||||
import sys
|
||||
import warnings
|
||||
from typing import Any, Dict
|
||||
|
||||
|
@ -73,17 +75,6 @@ def merge_subtokens(doc: Doc, label: str = "subtok") -> Doc:
|
|||
return doc
|
||||
|
||||
|
||||
@Language.factory(
|
||||
"token_splitter",
|
||||
default_config={"min_length": 25, "split_length": 10},
|
||||
retokenizes=True,
|
||||
)
|
||||
def make_token_splitter(
|
||||
nlp: Language, name: str, *, min_length: int = 0, split_length: int = 0
|
||||
):
|
||||
return TokenSplitter(min_length=min_length, split_length=split_length)
|
||||
|
||||
|
||||
class TokenSplitter:
|
||||
def __init__(self, min_length: int = 0, split_length: int = 0):
|
||||
self.min_length = min_length
|
||||
|
@ -141,14 +132,6 @@ class TokenSplitter:
|
|||
util.from_disk(path, serializers, [])
|
||||
|
||||
|
||||
@Language.factory(
|
||||
"doc_cleaner",
|
||||
default_config={"attrs": {"tensor": None, "_.trf_data": None}, "silent": True},
|
||||
)
|
||||
def make_doc_cleaner(nlp: Language, name: str, *, attrs: Dict[str, Any], silent: bool):
|
||||
return DocCleaner(attrs, silent=silent)
|
||||
|
||||
|
||||
class DocCleaner:
|
||||
def __init__(self, attrs: Dict[str, Any], *, silent: bool = True):
|
||||
self.cfg: Dict[str, Any] = {"attrs": dict(attrs), "silent": silent}
|
||||
|
@ -201,3 +184,14 @@ class DocCleaner:
|
|||
"cfg": lambda p: self.cfg.update(srsly.read_json(p)),
|
||||
}
|
||||
util.from_disk(path, serializers, [])
|
||||
|
||||
|
||||
# Setup backwards compatibility hook for factories
|
||||
def __getattr__(name):
|
||||
if name == "make_doc_cleaner":
|
||||
module = importlib.import_module("spacy.pipeline.factories")
|
||||
return module.make_doc_cleaner
|
||||
elif name == "make_token_splitter":
|
||||
module = importlib.import_module("spacy.pipeline.factories")
|
||||
return module.make_token_splitter
|
||||
raise AttributeError(f"module {__name__} has no attribute {name}")
|
||||
|
|
|
@ -1,3 +1,5 @@
|
|||
import importlib
|
||||
import sys
|
||||
import warnings
|
||||
from pathlib import Path
|
||||
from typing import Any, Callable, Dict, Iterable, List, Optional, Tuple, Union
|
||||
|
@ -16,35 +18,10 @@ from ..vocab import Vocab
|
|||
from .pipe import Pipe
|
||||
|
||||
|
||||
@Language.factory(
|
||||
"lemmatizer",
|
||||
assigns=["token.lemma"],
|
||||
default_config={
|
||||
"model": None,
|
||||
"mode": "lookup",
|
||||
"overwrite": False,
|
||||
"scorer": {"@scorers": "spacy.lemmatizer_scorer.v1"},
|
||||
},
|
||||
default_score_weights={"lemma_acc": 1.0},
|
||||
)
|
||||
def make_lemmatizer(
|
||||
nlp: Language,
|
||||
model: Optional[Model],
|
||||
name: str,
|
||||
mode: str,
|
||||
overwrite: bool,
|
||||
scorer: Optional[Callable],
|
||||
):
|
||||
return Lemmatizer(
|
||||
nlp.vocab, model, name, mode=mode, overwrite=overwrite, scorer=scorer
|
||||
)
|
||||
|
||||
|
||||
def lemmatizer_score(examples: Iterable[Example], **kwargs) -> Dict[str, Any]:
|
||||
return Scorer.score_token_attr(examples, "lemma", **kwargs)
|
||||
|
||||
|
||||
@registry.scorers("spacy.lemmatizer_scorer.v1")
|
||||
def make_lemmatizer_scorer():
|
||||
return lemmatizer_score
|
||||
|
||||
|
@ -241,7 +218,10 @@ class Lemmatizer(Pipe):
|
|||
if not form:
|
||||
pass
|
||||
elif form in index or not form.isalpha():
|
||||
forms.append(form)
|
||||
if form in index:
|
||||
forms.insert(0, form)
|
||||
else:
|
||||
forms.append(form)
|
||||
else:
|
||||
oov_forms.append(form)
|
||||
# Remove duplicates but preserve the ordering of applied "rules"
|
||||
|
@ -334,3 +314,11 @@ class Lemmatizer(Pipe):
|
|||
util.from_bytes(bytes_data, deserialize, exclude)
|
||||
self._validate_tables()
|
||||
return self
|
||||
|
||||
|
||||
# Setup backwards compatibility hook for factories
|
||||
def __getattr__(name):
|
||||
if name == "make_lemmatizer":
|
||||
module = importlib.import_module("spacy.pipeline.factories")
|
||||
return module.make_lemmatizer
|
||||
raise AttributeError(f"module {__name__} has no attribute {name}")
|
||||
|
|
|
@ -1,4 +1,6 @@
|
|||
# cython: infer_types=True, binding=True
|
||||
import importlib
|
||||
import sys
|
||||
from itertools import islice
|
||||
from typing import Callable, Dict, Optional, Union
|
||||
|
||||
|
@ -47,25 +49,6 @@ maxout_pieces = 3
|
|||
DEFAULT_MORPH_MODEL = Config().from_str(default_model_config)["model"]
|
||||
|
||||
|
||||
@Language.factory(
|
||||
"morphologizer",
|
||||
assigns=["token.morph", "token.pos"],
|
||||
default_config={"model": DEFAULT_MORPH_MODEL, "overwrite": True, "extend": False,
|
||||
"scorer": {"@scorers": "spacy.morphologizer_scorer.v1"}, "label_smoothing": 0.0},
|
||||
default_score_weights={"pos_acc": 0.5, "morph_acc": 0.5, "morph_per_feat": None},
|
||||
)
|
||||
def make_morphologizer(
|
||||
nlp: Language,
|
||||
model: Model,
|
||||
name: str,
|
||||
overwrite: bool,
|
||||
extend: bool,
|
||||
label_smoothing: float,
|
||||
scorer: Optional[Callable],
|
||||
):
|
||||
return Morphologizer(nlp.vocab, model, name, overwrite=overwrite, extend=extend, label_smoothing=label_smoothing, scorer=scorer)
|
||||
|
||||
|
||||
def morphologizer_score(examples, **kwargs):
|
||||
def morph_key_getter(token, attr):
|
||||
return getattr(token, attr).key
|
||||
|
@ -81,7 +64,6 @@ def morphologizer_score(examples, **kwargs):
|
|||
return results
|
||||
|
||||
|
||||
@registry.scorers("spacy.morphologizer_scorer.v1")
|
||||
def make_morphologizer_scorer():
|
||||
return morphologizer_score
|
||||
|
||||
|
@ -309,3 +291,11 @@ class Morphologizer(Tagger):
|
|||
if self.model.ops.xp.isnan(loss):
|
||||
raise ValueError(Errors.E910.format(name=self.name))
|
||||
return float(loss), d_scores
|
||||
|
||||
|
||||
# Setup backwards compatibility hook for factories
|
||||
def __getattr__(name):
|
||||
if name == "make_morphologizer":
|
||||
module = importlib.import_module("spacy.pipeline.factories")
|
||||
return module.make_morphologizer
|
||||
raise AttributeError(f"module {__name__} has no attribute {name}")
|
||||
|
|
|
@ -1,4 +1,6 @@
|
|||
# cython: infer_types=True, binding=True
|
||||
import importlib
|
||||
import sys
|
||||
from typing import Optional
|
||||
|
||||
import numpy
|
||||
|
@ -30,14 +32,6 @@ subword_features = true
|
|||
DEFAULT_MT_MODEL = Config().from_str(default_model_config)["model"]
|
||||
|
||||
|
||||
@Language.factory(
|
||||
"nn_labeller",
|
||||
default_config={"labels": None, "target": "dep_tag_offset", "model": DEFAULT_MT_MODEL}
|
||||
)
|
||||
def make_nn_labeller(nlp: Language, name: str, model: Model, labels: Optional[dict], target: str):
|
||||
return MultitaskObjective(nlp.vocab, model, name)
|
||||
|
||||
|
||||
class MultitaskObjective(Tagger):
|
||||
"""Experimental: Assist training of a parser or tagger, by training a
|
||||
side-objective.
|
||||
|
@ -213,3 +207,11 @@ class ClozeMultitask(TrainablePipe):
|
|||
|
||||
def add_label(self, label):
|
||||
raise NotImplementedError
|
||||
|
||||
|
||||
# Setup backwards compatibility hook for factories
|
||||
def __getattr__(name):
|
||||
if name == "make_nn_labeller":
|
||||
module = importlib.import_module("spacy.pipeline.factories")
|
||||
return module.make_nn_labeller
|
||||
raise AttributeError(f"module {__name__} has no attribute {name}")
|
||||
|
|
|
@ -1,4 +1,6 @@
|
|||
# cython: infer_types=True, binding=True
|
||||
import importlib
|
||||
import sys
|
||||
from collections import defaultdict
|
||||
from typing import Callable, Optional
|
||||
|
||||
|
@ -36,154 +38,10 @@ subword_features = true
|
|||
DEFAULT_NER_MODEL = Config().from_str(default_model_config)["model"]
|
||||
|
||||
|
||||
@Language.factory(
|
||||
"ner",
|
||||
assigns=["doc.ents", "token.ent_iob", "token.ent_type"],
|
||||
default_config={
|
||||
"moves": None,
|
||||
"update_with_oracle_cut_size": 100,
|
||||
"model": DEFAULT_NER_MODEL,
|
||||
"incorrect_spans_key": None,
|
||||
"scorer": {"@scorers": "spacy.ner_scorer.v1"},
|
||||
},
|
||||
default_score_weights={"ents_f": 1.0, "ents_p": 0.0, "ents_r": 0.0, "ents_per_type": None},
|
||||
|
||||
)
|
||||
def make_ner(
|
||||
nlp: Language,
|
||||
name: str,
|
||||
model: Model,
|
||||
moves: Optional[TransitionSystem],
|
||||
update_with_oracle_cut_size: int,
|
||||
incorrect_spans_key: Optional[str],
|
||||
scorer: Optional[Callable],
|
||||
):
|
||||
"""Create a transition-based EntityRecognizer component. The entity recognizer
|
||||
identifies non-overlapping labelled spans of tokens.
|
||||
|
||||
The transition-based algorithm used encodes certain assumptions that are
|
||||
effective for "traditional" named entity recognition tasks, but may not be
|
||||
a good fit for every span identification problem. Specifically, the loss
|
||||
function optimizes for whole entity accuracy, so if your inter-annotator
|
||||
agreement on boundary tokens is low, the component will likely perform poorly
|
||||
on your problem. The transition-based algorithm also assumes that the most
|
||||
decisive information about your entities will be close to their initial tokens.
|
||||
If your entities are long and characterised by tokens in their middle, the
|
||||
component will likely do poorly on your task.
|
||||
|
||||
model (Model): The model for the transition-based parser. The model needs
|
||||
to have a specific substructure of named components --- see the
|
||||
spacy.ml.tb_framework.TransitionModel for details.
|
||||
moves (Optional[TransitionSystem]): This defines how the parse-state is created,
|
||||
updated and evaluated. If 'moves' is None, a new instance is
|
||||
created with `self.TransitionSystem()`. Defaults to `None`.
|
||||
update_with_oracle_cut_size (int): During training, cut long sequences into
|
||||
shorter segments by creating intermediate states based on the gold-standard
|
||||
history. The model is not very sensitive to this parameter, so you usually
|
||||
won't need to change it. 100 is a good default.
|
||||
incorrect_spans_key (Optional[str]): Identifies spans that are known
|
||||
to be incorrect entity annotations. The incorrect entity annotations
|
||||
can be stored in the span group, under this key.
|
||||
scorer (Optional[Callable]): The scoring method.
|
||||
"""
|
||||
return EntityRecognizer(
|
||||
nlp.vocab,
|
||||
model,
|
||||
name,
|
||||
moves=moves,
|
||||
update_with_oracle_cut_size=update_with_oracle_cut_size,
|
||||
incorrect_spans_key=incorrect_spans_key,
|
||||
multitasks=[],
|
||||
beam_width=1,
|
||||
beam_density=0.0,
|
||||
beam_update_prob=0.0,
|
||||
scorer=scorer,
|
||||
)
|
||||
|
||||
|
||||
@Language.factory(
|
||||
"beam_ner",
|
||||
assigns=["doc.ents", "token.ent_iob", "token.ent_type"],
|
||||
default_config={
|
||||
"moves": None,
|
||||
"update_with_oracle_cut_size": 100,
|
||||
"model": DEFAULT_NER_MODEL,
|
||||
"beam_density": 0.01,
|
||||
"beam_update_prob": 0.5,
|
||||
"beam_width": 32,
|
||||
"incorrect_spans_key": None,
|
||||
"scorer": None,
|
||||
},
|
||||
default_score_weights={"ents_f": 1.0, "ents_p": 0.0, "ents_r": 0.0, "ents_per_type": None},
|
||||
)
|
||||
def make_beam_ner(
|
||||
nlp: Language,
|
||||
name: str,
|
||||
model: Model,
|
||||
moves: Optional[TransitionSystem],
|
||||
update_with_oracle_cut_size: int,
|
||||
beam_width: int,
|
||||
beam_density: float,
|
||||
beam_update_prob: float,
|
||||
incorrect_spans_key: Optional[str],
|
||||
scorer: Optional[Callable],
|
||||
):
|
||||
"""Create a transition-based EntityRecognizer component that uses beam-search.
|
||||
The entity recognizer identifies non-overlapping labelled spans of tokens.
|
||||
|
||||
The transition-based algorithm used encodes certain assumptions that are
|
||||
effective for "traditional" named entity recognition tasks, but may not be
|
||||
a good fit for every span identification problem. Specifically, the loss
|
||||
function optimizes for whole entity accuracy, so if your inter-annotator
|
||||
agreement on boundary tokens is low, the component will likely perform poorly
|
||||
on your problem. The transition-based algorithm also assumes that the most
|
||||
decisive information about your entities will be close to their initial tokens.
|
||||
If your entities are long and characterised by tokens in their middle, the
|
||||
component will likely do poorly on your task.
|
||||
|
||||
model (Model): The model for the transition-based parser. The model needs
|
||||
to have a specific substructure of named components --- see the
|
||||
spacy.ml.tb_framework.TransitionModel for details.
|
||||
moves (Optional[TransitionSystem]): This defines how the parse-state is created,
|
||||
updated and evaluated. If 'moves' is None, a new instance is
|
||||
created with `self.TransitionSystem()`. Defaults to `None`.
|
||||
update_with_oracle_cut_size (int): During training, cut long sequences into
|
||||
shorter segments by creating intermediate states based on the gold-standard
|
||||
history. The model is not very sensitive to this parameter, so you usually
|
||||
won't need to change it. 100 is a good default.
|
||||
beam_width (int): The number of candidate analyses to maintain.
|
||||
beam_density (float): The minimum ratio between the scores of the first and
|
||||
last candidates in the beam. This allows the parser to avoid exploring
|
||||
candidates that are too far behind. This is mostly intended to improve
|
||||
efficiency, but it can also improve accuracy as deeper search is not
|
||||
always better.
|
||||
beam_update_prob (float): The chance of making a beam update, instead of a
|
||||
greedy update. Greedy updates are an approximation for the beam updates,
|
||||
and are faster to compute.
|
||||
incorrect_spans_key (Optional[str]): Optional key into span groups of
|
||||
entities known to be non-entities.
|
||||
scorer (Optional[Callable]): The scoring method.
|
||||
"""
|
||||
return EntityRecognizer(
|
||||
nlp.vocab,
|
||||
model,
|
||||
name,
|
||||
moves=moves,
|
||||
update_with_oracle_cut_size=update_with_oracle_cut_size,
|
||||
multitasks=[],
|
||||
beam_width=beam_width,
|
||||
beam_density=beam_density,
|
||||
beam_update_prob=beam_update_prob,
|
||||
incorrect_spans_key=incorrect_spans_key,
|
||||
scorer=scorer,
|
||||
)
|
||||
|
||||
|
||||
def ner_score(examples, **kwargs):
|
||||
return get_ner_prf(examples, **kwargs)
|
||||
|
||||
|
||||
@registry.scorers("spacy.ner_scorer.v1")
|
||||
def make_ner_scorer():
|
||||
return ner_score
|
||||
|
||||
|
@ -261,3 +119,14 @@ cdef class EntityRecognizer(Parser):
|
|||
score_dict[(start, end, label)] += score
|
||||
entity_scores.append(score_dict)
|
||||
return entity_scores
|
||||
|
||||
|
||||
# Setup backwards compatibility hook for factories
|
||||
def __getattr__(name):
|
||||
if name == "make_ner":
|
||||
module = importlib.import_module("spacy.pipeline.factories")
|
||||
return module.make_ner
|
||||
elif name == "make_beam_ner":
|
||||
module = importlib.import_module("spacy.pipeline.factories")
|
||||
return module.make_beam_ner
|
||||
raise AttributeError(f"module {__name__} has no attribute {name}")
|
||||
|
|
|
@ -21,13 +21,6 @@ cdef class Pipe:
|
|||
DOCS: https://spacy.io/api/pipe
|
||||
"""
|
||||
|
||||
@classmethod
|
||||
def __init_subclass__(cls, **kwargs):
|
||||
"""Raise a warning if an inheriting class implements 'begin_training'
|
||||
(from v2) instead of the new 'initialize' method (from v3)"""
|
||||
if hasattr(cls, "begin_training"):
|
||||
warnings.warn(Warnings.W088.format(name=cls.__name__))
|
||||
|
||||
def __call__(self, Doc doc) -> Doc:
|
||||
"""Apply the pipe to one document. The document is modified in place,
|
||||
and returned. This usually happens under the hood when the nlp object
|
||||
|
|
|
@ -1,4 +1,6 @@
|
|||
# cython: infer_types=True, binding=True
|
||||
import importlib
|
||||
import sys
|
||||
from typing import Callable, List, Optional
|
||||
|
||||
import srsly
|
||||
|
@ -14,22 +16,6 @@ from .senter import senter_score
|
|||
BACKWARD_OVERWRITE = False
|
||||
|
||||
|
||||
@Language.factory(
|
||||
"sentencizer",
|
||||
assigns=["token.is_sent_start", "doc.sents"],
|
||||
default_config={"punct_chars": None, "overwrite": False, "scorer": {"@scorers": "spacy.senter_scorer.v1"}},
|
||||
default_score_weights={"sents_f": 1.0, "sents_p": 0.0, "sents_r": 0.0},
|
||||
)
|
||||
def make_sentencizer(
|
||||
nlp: Language,
|
||||
name: str,
|
||||
punct_chars: Optional[List[str]],
|
||||
overwrite: bool,
|
||||
scorer: Optional[Callable],
|
||||
):
|
||||
return Sentencizer(name, punct_chars=punct_chars, overwrite=overwrite, scorer=scorer)
|
||||
|
||||
|
||||
class Sentencizer(Pipe):
|
||||
"""Segment the Doc into sentences using a rule-based strategy.
|
||||
|
||||
|
@ -181,3 +167,11 @@ class Sentencizer(Pipe):
|
|||
self.punct_chars = set(cfg.get("punct_chars", self.default_punct_chars))
|
||||
self.overwrite = cfg.get("overwrite", self.overwrite)
|
||||
return self
|
||||
|
||||
|
||||
# Setup backwards compatibility hook for factories
|
||||
def __getattr__(name):
|
||||
if name == "make_sentencizer":
|
||||
module = importlib.import_module("spacy.pipeline.factories")
|
||||
return module.make_sentencizer
|
||||
raise AttributeError(f"module {__name__} has no attribute {name}")
|
||||
|
|
|
@ -1,4 +1,6 @@
|
|||
# cython: infer_types=True, binding=True
|
||||
import importlib
|
||||
import sys
|
||||
from itertools import islice
|
||||
from typing import Callable, Optional
|
||||
|
||||
|
@ -34,16 +36,6 @@ subword_features = true
|
|||
DEFAULT_SENTER_MODEL = Config().from_str(default_model_config)["model"]
|
||||
|
||||
|
||||
@Language.factory(
|
||||
"senter",
|
||||
assigns=["token.is_sent_start"],
|
||||
default_config={"model": DEFAULT_SENTER_MODEL, "overwrite": False, "scorer": {"@scorers": "spacy.senter_scorer.v1"}},
|
||||
default_score_weights={"sents_f": 1.0, "sents_p": 0.0, "sents_r": 0.0},
|
||||
)
|
||||
def make_senter(nlp: Language, name: str, model: Model, overwrite: bool, scorer: Optional[Callable]):
|
||||
return SentenceRecognizer(nlp.vocab, model, name, overwrite=overwrite, scorer=scorer)
|
||||
|
||||
|
||||
def senter_score(examples, **kwargs):
|
||||
def has_sents(doc):
|
||||
return doc.has_annotation("SENT_START")
|
||||
|
@ -53,7 +45,6 @@ def senter_score(examples, **kwargs):
|
|||
return results
|
||||
|
||||
|
||||
@registry.scorers("spacy.senter_scorer.v1")
|
||||
def make_senter_scorer():
|
||||
return senter_score
|
||||
|
||||
|
@ -185,3 +176,11 @@ class SentenceRecognizer(Tagger):
|
|||
|
||||
def add_label(self, label, values=None):
|
||||
raise NotImplementedError
|
||||
|
||||
|
||||
# Setup backwards compatibility hook for factories
|
||||
def __getattr__(name):
|
||||
if name == "make_senter":
|
||||
module = importlib.import_module("spacy.pipeline.factories")
|
||||
return module.make_senter
|
||||
raise AttributeError(f"module {__name__} has no attribute {name}")
|
||||
|
|
|
@ -1,3 +1,5 @@
|
|||
import importlib
|
||||
import sys
|
||||
from typing import Any, Callable, Dict, Iterable, List, Optional, Tuple
|
||||
|
||||
from thinc.api import Config, Model, Optimizer, set_dropout_rate
|
||||
|
@ -41,63 +43,6 @@ depth = 4
|
|||
DEFAULT_SPAN_FINDER_MODEL = Config().from_str(span_finder_default_config)["model"]
|
||||
|
||||
|
||||
@Language.factory(
|
||||
"span_finder",
|
||||
assigns=["doc.spans"],
|
||||
default_config={
|
||||
"threshold": 0.5,
|
||||
"model": DEFAULT_SPAN_FINDER_MODEL,
|
||||
"spans_key": DEFAULT_SPANS_KEY,
|
||||
"max_length": 25,
|
||||
"min_length": None,
|
||||
"scorer": {"@scorers": "spacy.span_finder_scorer.v1"},
|
||||
},
|
||||
default_score_weights={
|
||||
f"spans_{DEFAULT_SPANS_KEY}_f": 1.0,
|
||||
f"spans_{DEFAULT_SPANS_KEY}_p": 0.0,
|
||||
f"spans_{DEFAULT_SPANS_KEY}_r": 0.0,
|
||||
},
|
||||
)
|
||||
def make_span_finder(
|
||||
nlp: Language,
|
||||
name: str,
|
||||
model: Model[Iterable[Doc], Floats2d],
|
||||
spans_key: str,
|
||||
threshold: float,
|
||||
max_length: Optional[int],
|
||||
min_length: Optional[int],
|
||||
scorer: Optional[Callable],
|
||||
) -> "SpanFinder":
|
||||
"""Create a SpanFinder component. The component predicts whether a token is
|
||||
the start or the end of a potential span.
|
||||
|
||||
model (Model[List[Doc], Floats2d]): A model instance that
|
||||
is given a list of documents and predicts a probability for each token.
|
||||
spans_key (str): Key of the doc.spans dict to save the spans under. During
|
||||
initialization and training, the component will look for spans on the
|
||||
reference document under the same key.
|
||||
threshold (float): Minimum probability to consider a prediction positive.
|
||||
max_length (Optional[int]): Maximum length of the produced spans, defaults
|
||||
to None meaning unlimited length.
|
||||
min_length (Optional[int]): Minimum length of the produced spans, defaults
|
||||
to None meaning shortest span length is 1.
|
||||
scorer (Optional[Callable]): The scoring method. Defaults to
|
||||
Scorer.score_spans for the Doc.spans[spans_key] with overlapping
|
||||
spans allowed.
|
||||
"""
|
||||
return SpanFinder(
|
||||
nlp,
|
||||
model=model,
|
||||
threshold=threshold,
|
||||
name=name,
|
||||
scorer=scorer,
|
||||
max_length=max_length,
|
||||
min_length=min_length,
|
||||
spans_key=spans_key,
|
||||
)
|
||||
|
||||
|
||||
@registry.scorers("spacy.span_finder_scorer.v1")
|
||||
def make_span_finder_scorer():
|
||||
return span_finder_score
|
||||
|
||||
|
@ -333,3 +278,11 @@ class SpanFinder(TrainablePipe):
|
|||
self.model.initialize(X=docs, Y=Y)
|
||||
else:
|
||||
self.model.initialize()
|
||||
|
||||
|
||||
# Setup backwards compatibility hook for factories
|
||||
def __getattr__(name):
|
||||
if name == "make_span_finder":
|
||||
module = importlib.import_module("spacy.pipeline.factories")
|
||||
return module.make_span_finder
|
||||
raise AttributeError(f"module {__name__} has no attribute {name}")
|
||||
|
|
|
@ -1,3 +1,5 @@
|
|||
import importlib
|
||||
import sys
|
||||
import warnings
|
||||
from functools import partial
|
||||
from pathlib import Path
|
||||
|
@ -32,105 +34,6 @@ PatternType = Dict[str, Union[str, List[Dict[str, Any]]]]
|
|||
DEFAULT_SPANS_KEY = "ruler"
|
||||
|
||||
|
||||
@Language.factory(
|
||||
"future_entity_ruler",
|
||||
assigns=["doc.ents"],
|
||||
default_config={
|
||||
"phrase_matcher_attr": None,
|
||||
"validate": False,
|
||||
"overwrite_ents": False,
|
||||
"scorer": {"@scorers": "spacy.entity_ruler_scorer.v1"},
|
||||
"ent_id_sep": "__unused__",
|
||||
"matcher_fuzzy_compare": {"@misc": "spacy.levenshtein_compare.v1"},
|
||||
},
|
||||
default_score_weights={
|
||||
"ents_f": 1.0,
|
||||
"ents_p": 0.0,
|
||||
"ents_r": 0.0,
|
||||
"ents_per_type": None,
|
||||
},
|
||||
)
|
||||
def make_entity_ruler(
|
||||
nlp: Language,
|
||||
name: str,
|
||||
phrase_matcher_attr: Optional[Union[int, str]],
|
||||
matcher_fuzzy_compare: Callable,
|
||||
validate: bool,
|
||||
overwrite_ents: bool,
|
||||
scorer: Optional[Callable],
|
||||
ent_id_sep: str,
|
||||
):
|
||||
if overwrite_ents:
|
||||
ents_filter = prioritize_new_ents_filter
|
||||
else:
|
||||
ents_filter = prioritize_existing_ents_filter
|
||||
return SpanRuler(
|
||||
nlp,
|
||||
name,
|
||||
spans_key=None,
|
||||
spans_filter=None,
|
||||
annotate_ents=True,
|
||||
ents_filter=ents_filter,
|
||||
phrase_matcher_attr=phrase_matcher_attr,
|
||||
matcher_fuzzy_compare=matcher_fuzzy_compare,
|
||||
validate=validate,
|
||||
overwrite=False,
|
||||
scorer=scorer,
|
||||
)
|
||||
|
||||
|
||||
@Language.factory(
|
||||
"span_ruler",
|
||||
assigns=["doc.spans"],
|
||||
default_config={
|
||||
"spans_key": DEFAULT_SPANS_KEY,
|
||||
"spans_filter": None,
|
||||
"annotate_ents": False,
|
||||
"ents_filter": {"@misc": "spacy.first_longest_spans_filter.v1"},
|
||||
"phrase_matcher_attr": None,
|
||||
"matcher_fuzzy_compare": {"@misc": "spacy.levenshtein_compare.v1"},
|
||||
"validate": False,
|
||||
"overwrite": True,
|
||||
"scorer": {
|
||||
"@scorers": "spacy.overlapping_labeled_spans_scorer.v1",
|
||||
"spans_key": DEFAULT_SPANS_KEY,
|
||||
},
|
||||
},
|
||||
default_score_weights={
|
||||
f"spans_{DEFAULT_SPANS_KEY}_f": 1.0,
|
||||
f"spans_{DEFAULT_SPANS_KEY}_p": 0.0,
|
||||
f"spans_{DEFAULT_SPANS_KEY}_r": 0.0,
|
||||
f"spans_{DEFAULT_SPANS_KEY}_per_type": None,
|
||||
},
|
||||
)
|
||||
def make_span_ruler(
|
||||
nlp: Language,
|
||||
name: str,
|
||||
spans_key: Optional[str],
|
||||
spans_filter: Optional[Callable[[Iterable[Span], Iterable[Span]], Iterable[Span]]],
|
||||
annotate_ents: bool,
|
||||
ents_filter: Callable[[Iterable[Span], Iterable[Span]], Iterable[Span]],
|
||||
phrase_matcher_attr: Optional[Union[int, str]],
|
||||
matcher_fuzzy_compare: Callable,
|
||||
validate: bool,
|
||||
overwrite: bool,
|
||||
scorer: Optional[Callable],
|
||||
):
|
||||
return SpanRuler(
|
||||
nlp,
|
||||
name,
|
||||
spans_key=spans_key,
|
||||
spans_filter=spans_filter,
|
||||
annotate_ents=annotate_ents,
|
||||
ents_filter=ents_filter,
|
||||
phrase_matcher_attr=phrase_matcher_attr,
|
||||
matcher_fuzzy_compare=matcher_fuzzy_compare,
|
||||
validate=validate,
|
||||
overwrite=overwrite,
|
||||
scorer=scorer,
|
||||
)
|
||||
|
||||
|
||||
def prioritize_new_ents_filter(
|
||||
entities: Iterable[Span], spans: Iterable[Span]
|
||||
) -> List[Span]:
|
||||
|
@ -157,7 +60,6 @@ def prioritize_new_ents_filter(
|
|||
return entities + new_entities
|
||||
|
||||
|
||||
@registry.misc("spacy.prioritize_new_ents_filter.v1")
|
||||
def make_prioritize_new_ents_filter():
|
||||
return prioritize_new_ents_filter
|
||||
|
||||
|
@ -188,7 +90,6 @@ def prioritize_existing_ents_filter(
|
|||
return entities + new_entities
|
||||
|
||||
|
||||
@registry.misc("spacy.prioritize_existing_ents_filter.v1")
|
||||
def make_preserve_existing_ents_filter():
|
||||
return prioritize_existing_ents_filter
|
||||
|
||||
|
@ -208,7 +109,6 @@ def overlapping_labeled_spans_score(
|
|||
return Scorer.score_spans(examples, **kwargs)
|
||||
|
||||
|
||||
@registry.scorers("spacy.overlapping_labeled_spans_scorer.v1")
|
||||
def make_overlapping_labeled_spans_scorer(spans_key: str = DEFAULT_SPANS_KEY):
|
||||
return partial(overlapping_labeled_spans_score, spans_key=spans_key)
|
||||
|
||||
|
@ -595,3 +495,14 @@ class SpanRuler(Pipe):
|
|||
"patterns": lambda p: srsly.write_jsonl(p, self.patterns),
|
||||
}
|
||||
util.to_disk(path, serializers, {})
|
||||
|
||||
|
||||
# Setup backwards compatibility hook for factories
|
||||
def __getattr__(name):
|
||||
if name == "make_span_ruler":
|
||||
module = importlib.import_module("spacy.pipeline.factories")
|
||||
return module.make_span_ruler
|
||||
elif name == "make_entity_ruler":
|
||||
module = importlib.import_module("spacy.pipeline.factories")
|
||||
return module.make_future_entity_ruler
|
||||
raise AttributeError(f"module {__name__} has no attribute {name}")
|
||||
|
|
|
@ -1,3 +1,5 @@
|
|||
import importlib
|
||||
import sys
|
||||
from dataclasses import dataclass
|
||||
from functools import partial
|
||||
from typing import Any, Callable, Dict, Iterable, List, Optional, Tuple, Union, cast
|
||||
|
@ -134,7 +136,6 @@ def preset_spans_suggester(
|
|||
return output
|
||||
|
||||
|
||||
@registry.misc("spacy.ngram_suggester.v1")
|
||||
def build_ngram_suggester(sizes: List[int]) -> Suggester:
|
||||
"""Suggest all spans of the given lengths. Spans are returned as a ragged
|
||||
array of integers. The array has two columns, indicating the start and end
|
||||
|
@ -143,7 +144,6 @@ def build_ngram_suggester(sizes: List[int]) -> Suggester:
|
|||
return partial(ngram_suggester, sizes=sizes)
|
||||
|
||||
|
||||
@registry.misc("spacy.ngram_range_suggester.v1")
|
||||
def build_ngram_range_suggester(min_size: int, max_size: int) -> Suggester:
|
||||
"""Suggest all spans of the given lengths between a given min and max value - both inclusive.
|
||||
Spans are returned as a ragged array of integers. The array has two columns,
|
||||
|
@ -152,7 +152,6 @@ def build_ngram_range_suggester(min_size: int, max_size: int) -> Suggester:
|
|||
return build_ngram_suggester(sizes)
|
||||
|
||||
|
||||
@registry.misc("spacy.preset_spans_suggester.v1")
|
||||
def build_preset_spans_suggester(spans_key: str) -> Suggester:
|
||||
"""Suggest all spans that are already stored in doc.spans[spans_key].
|
||||
This is useful when an upstream component is used to set the spans
|
||||
|
@ -160,136 +159,6 @@ def build_preset_spans_suggester(spans_key: str) -> Suggester:
|
|||
return partial(preset_spans_suggester, spans_key=spans_key)
|
||||
|
||||
|
||||
@Language.factory(
|
||||
"spancat",
|
||||
assigns=["doc.spans"],
|
||||
default_config={
|
||||
"threshold": 0.5,
|
||||
"spans_key": DEFAULT_SPANS_KEY,
|
||||
"max_positive": None,
|
||||
"model": DEFAULT_SPANCAT_MODEL,
|
||||
"suggester": {"@misc": "spacy.ngram_suggester.v1", "sizes": [1, 2, 3]},
|
||||
"scorer": {"@scorers": "spacy.spancat_scorer.v1"},
|
||||
},
|
||||
default_score_weights={"spans_sc_f": 1.0, "spans_sc_p": 0.0, "spans_sc_r": 0.0},
|
||||
)
|
||||
def make_spancat(
|
||||
nlp: Language,
|
||||
name: str,
|
||||
suggester: Suggester,
|
||||
model: Model[Tuple[List[Doc], Ragged], Floats2d],
|
||||
spans_key: str,
|
||||
scorer: Optional[Callable],
|
||||
threshold: float,
|
||||
max_positive: Optional[int],
|
||||
) -> "SpanCategorizer":
|
||||
"""Create a SpanCategorizer component and configure it for multi-label
|
||||
classification to be able to assign multiple labels for each span.
|
||||
The span categorizer consists of two
|
||||
parts: a suggester function that proposes candidate spans, and a labeller
|
||||
model that predicts one or more labels for each span.
|
||||
|
||||
name (str): The component instance name, used to add entries to the
|
||||
losses during training.
|
||||
suggester (Callable[[Iterable[Doc], Optional[Ops]], Ragged]): A function that suggests spans.
|
||||
Spans are returned as a ragged array with two integer columns, for the
|
||||
start and end positions.
|
||||
model (Model[Tuple[List[Doc], Ragged], Floats2d]): A model instance that
|
||||
is given a list of documents and (start, end) indices representing
|
||||
candidate span offsets. The model predicts a probability for each category
|
||||
for each span.
|
||||
spans_key (str): Key of the doc.spans dict to save the spans under. During
|
||||
initialization and training, the component will look for spans on the
|
||||
reference document under the same key.
|
||||
scorer (Optional[Callable]): The scoring method. Defaults to
|
||||
Scorer.score_spans for the Doc.spans[spans_key] with overlapping
|
||||
spans allowed.
|
||||
threshold (float): Minimum probability to consider a prediction positive.
|
||||
Spans with a positive prediction will be saved on the Doc. Defaults to
|
||||
0.5.
|
||||
max_positive (Optional[int]): Maximum number of labels to consider positive
|
||||
per span. Defaults to None, indicating no limit.
|
||||
"""
|
||||
return SpanCategorizer(
|
||||
nlp.vocab,
|
||||
model=model,
|
||||
suggester=suggester,
|
||||
name=name,
|
||||
spans_key=spans_key,
|
||||
negative_weight=None,
|
||||
allow_overlap=True,
|
||||
max_positive=max_positive,
|
||||
threshold=threshold,
|
||||
scorer=scorer,
|
||||
add_negative_label=False,
|
||||
)
|
||||
|
||||
|
||||
@Language.factory(
|
||||
"spancat_singlelabel",
|
||||
assigns=["doc.spans"],
|
||||
default_config={
|
||||
"spans_key": DEFAULT_SPANS_KEY,
|
||||
"model": DEFAULT_SPANCAT_SINGLELABEL_MODEL,
|
||||
"negative_weight": 1.0,
|
||||
"suggester": {"@misc": "spacy.ngram_suggester.v1", "sizes": [1, 2, 3]},
|
||||
"scorer": {"@scorers": "spacy.spancat_scorer.v1"},
|
||||
"allow_overlap": True,
|
||||
},
|
||||
default_score_weights={"spans_sc_f": 1.0, "spans_sc_p": 0.0, "spans_sc_r": 0.0},
|
||||
)
|
||||
def make_spancat_singlelabel(
|
||||
nlp: Language,
|
||||
name: str,
|
||||
suggester: Suggester,
|
||||
model: Model[Tuple[List[Doc], Ragged], Floats2d],
|
||||
spans_key: str,
|
||||
negative_weight: float,
|
||||
allow_overlap: bool,
|
||||
scorer: Optional[Callable],
|
||||
) -> "SpanCategorizer":
|
||||
"""Create a SpanCategorizer component and configure it for multi-class
|
||||
classification. With this configuration each span can get at most one
|
||||
label. The span categorizer consists of two
|
||||
parts: a suggester function that proposes candidate spans, and a labeller
|
||||
model that predicts one or more labels for each span.
|
||||
|
||||
name (str): The component instance name, used to add entries to the
|
||||
losses during training.
|
||||
suggester (Callable[[Iterable[Doc], Optional[Ops]], Ragged]): A function that suggests spans.
|
||||
Spans are returned as a ragged array with two integer columns, for the
|
||||
start and end positions.
|
||||
model (Model[Tuple[List[Doc], Ragged], Floats2d]): A model instance that
|
||||
is given a list of documents and (start, end) indices representing
|
||||
candidate span offsets. The model predicts a probability for each category
|
||||
for each span.
|
||||
spans_key (str): Key of the doc.spans dict to save the spans under. During
|
||||
initialization and training, the component will look for spans on the
|
||||
reference document under the same key.
|
||||
scorer (Optional[Callable]): The scoring method. Defaults to
|
||||
Scorer.score_spans for the Doc.spans[spans_key] with overlapping
|
||||
spans allowed.
|
||||
negative_weight (float): Multiplier for the loss terms.
|
||||
Can be used to downweight the negative samples if there are too many.
|
||||
allow_overlap (bool): If True the data is assumed to contain overlapping spans.
|
||||
Otherwise it produces non-overlapping spans greedily prioritizing
|
||||
higher assigned label scores.
|
||||
"""
|
||||
return SpanCategorizer(
|
||||
nlp.vocab,
|
||||
model=model,
|
||||
suggester=suggester,
|
||||
name=name,
|
||||
spans_key=spans_key,
|
||||
negative_weight=negative_weight,
|
||||
allow_overlap=allow_overlap,
|
||||
max_positive=1,
|
||||
add_negative_label=True,
|
||||
threshold=None,
|
||||
scorer=scorer,
|
||||
)
|
||||
|
||||
|
||||
def spancat_score(examples: Iterable[Example], **kwargs) -> Dict[str, Any]:
|
||||
kwargs = dict(kwargs)
|
||||
attr_prefix = "spans_"
|
||||
|
@ -303,7 +172,6 @@ def spancat_score(examples: Iterable[Example], **kwargs) -> Dict[str, Any]:
|
|||
return Scorer.score_spans(examples, **kwargs)
|
||||
|
||||
|
||||
@registry.scorers("spacy.spancat_scorer.v1")
|
||||
def make_spancat_scorer():
|
||||
return spancat_score
|
||||
|
||||
|
@ -785,3 +653,14 @@ class SpanCategorizer(TrainablePipe):
|
|||
|
||||
spans.attrs["scores"] = numpy.array(attrs_scores)
|
||||
return spans
|
||||
|
||||
|
||||
# Setup backwards compatibility hook for factories
|
||||
def __getattr__(name):
|
||||
if name == "make_spancat":
|
||||
module = importlib.import_module("spacy.pipeline.factories")
|
||||
return module.make_spancat
|
||||
elif name == "make_spancat_singlelabel":
|
||||
module = importlib.import_module("spacy.pipeline.factories")
|
||||
return module.make_spancat_singlelabel
|
||||
raise AttributeError(f"module {__name__} has no attribute {name}")
|
||||
|
|
|
@ -1,4 +1,6 @@
|
|||
# cython: infer_types=True, binding=True
|
||||
import importlib
|
||||
import sys
|
||||
from itertools import islice
|
||||
from typing import Callable, Optional
|
||||
|
||||
|
@ -35,36 +37,10 @@ subword_features = true
|
|||
DEFAULT_TAGGER_MODEL = Config().from_str(default_model_config)["model"]
|
||||
|
||||
|
||||
@Language.factory(
|
||||
"tagger",
|
||||
assigns=["token.tag"],
|
||||
default_config={"model": DEFAULT_TAGGER_MODEL, "overwrite": False, "scorer": {"@scorers": "spacy.tagger_scorer.v1"}, "neg_prefix": "!", "label_smoothing": 0.0},
|
||||
default_score_weights={"tag_acc": 1.0},
|
||||
)
|
||||
def make_tagger(
|
||||
nlp: Language,
|
||||
name: str,
|
||||
model: Model,
|
||||
overwrite: bool,
|
||||
scorer: Optional[Callable],
|
||||
neg_prefix: str,
|
||||
label_smoothing: float,
|
||||
):
|
||||
"""Construct a part-of-speech tagger component.
|
||||
|
||||
model (Model[List[Doc], List[Floats2d]]): A model instance that predicts
|
||||
the tag probabilities. The output vectors should match the number of tags
|
||||
in size, and be normalized as probabilities (all scores between 0 and 1,
|
||||
with the rows summing to 1).
|
||||
"""
|
||||
return Tagger(nlp.vocab, model, name, overwrite=overwrite, scorer=scorer, neg_prefix=neg_prefix, label_smoothing=label_smoothing)
|
||||
|
||||
|
||||
def tagger_score(examples, **kwargs):
|
||||
return Scorer.score_token_attr(examples, "tag", **kwargs)
|
||||
|
||||
|
||||
@registry.scorers("spacy.tagger_scorer.v1")
|
||||
def make_tagger_scorer():
|
||||
return tagger_score
|
||||
|
||||
|
@ -317,3 +293,11 @@ class Tagger(TrainablePipe):
|
|||
self.cfg["labels"].append(label)
|
||||
self.vocab.strings.add(label)
|
||||
return 1
|
||||
|
||||
|
||||
# Setup backwards compatibility hook for factories
|
||||
def __getattr__(name):
|
||||
if name == "make_tagger":
|
||||
module = importlib.import_module("spacy.pipeline.factories")
|
||||
return module.make_tagger
|
||||
raise AttributeError(f"module {__name__} has no attribute {name}")
|
||||
|
|
|
@ -1,3 +1,5 @@
|
|||
import importlib
|
||||
import sys
|
||||
from itertools import islice
|
||||
from typing import Any, Callable, Dict, Iterable, List, Optional, Tuple
|
||||
|
||||
|
@ -74,46 +76,6 @@ subword_features = true
|
|||
"""
|
||||
|
||||
|
||||
@Language.factory(
|
||||
"textcat",
|
||||
assigns=["doc.cats"],
|
||||
default_config={
|
||||
"threshold": 0.0,
|
||||
"model": DEFAULT_SINGLE_TEXTCAT_MODEL,
|
||||
"scorer": {"@scorers": "spacy.textcat_scorer.v2"},
|
||||
},
|
||||
default_score_weights={
|
||||
"cats_score": 1.0,
|
||||
"cats_score_desc": None,
|
||||
"cats_micro_p": None,
|
||||
"cats_micro_r": None,
|
||||
"cats_micro_f": None,
|
||||
"cats_macro_p": None,
|
||||
"cats_macro_r": None,
|
||||
"cats_macro_f": None,
|
||||
"cats_macro_auc": None,
|
||||
"cats_f_per_type": None,
|
||||
},
|
||||
)
|
||||
def make_textcat(
|
||||
nlp: Language,
|
||||
name: str,
|
||||
model: Model[List[Doc], List[Floats2d]],
|
||||
threshold: float,
|
||||
scorer: Optional[Callable],
|
||||
) -> "TextCategorizer":
|
||||
"""Create a TextCategorizer component. The text categorizer predicts categories
|
||||
over a whole document. It can learn one or more labels, and the labels are considered
|
||||
to be mutually exclusive (i.e. one true label per doc).
|
||||
|
||||
model (Model[List[Doc], List[Floats2d]]): A model instance that predicts
|
||||
scores for each category.
|
||||
threshold (float): Cutoff to consider a prediction "positive".
|
||||
scorer (Optional[Callable]): The scoring method.
|
||||
"""
|
||||
return TextCategorizer(nlp.vocab, model, name, threshold=threshold, scorer=scorer)
|
||||
|
||||
|
||||
def textcat_score(examples: Iterable[Example], **kwargs) -> Dict[str, Any]:
|
||||
return Scorer.score_cats(
|
||||
examples,
|
||||
|
@ -123,7 +85,6 @@ def textcat_score(examples: Iterable[Example], **kwargs) -> Dict[str, Any]:
|
|||
)
|
||||
|
||||
|
||||
@registry.scorers("spacy.textcat_scorer.v2")
|
||||
def make_textcat_scorer():
|
||||
return textcat_score
|
||||
|
||||
|
@ -412,3 +373,11 @@ class TextCategorizer(TrainablePipe):
|
|||
for val in vals:
|
||||
if not (val == 1.0 or val == 0.0):
|
||||
raise ValueError(Errors.E851.format(val=val))
|
||||
|
||||
|
||||
# Setup backwards compatibility hook for factories
|
||||
def __getattr__(name):
|
||||
if name == "make_textcat":
|
||||
module = importlib.import_module("spacy.pipeline.factories")
|
||||
return module.make_textcat
|
||||
raise AttributeError(f"module {__name__} has no attribute {name}")
|
||||
|
|
|
@ -1,3 +1,5 @@
|
|||
import importlib
|
||||
import sys
|
||||
from itertools import islice
|
||||
from typing import Any, Callable, Dict, Iterable, List, Optional
|
||||
|
||||
|
@ -72,49 +74,6 @@ subword_features = true
|
|||
"""
|
||||
|
||||
|
||||
@Language.factory(
|
||||
"textcat_multilabel",
|
||||
assigns=["doc.cats"],
|
||||
default_config={
|
||||
"threshold": 0.5,
|
||||
"model": DEFAULT_MULTI_TEXTCAT_MODEL,
|
||||
"scorer": {"@scorers": "spacy.textcat_multilabel_scorer.v2"},
|
||||
},
|
||||
default_score_weights={
|
||||
"cats_score": 1.0,
|
||||
"cats_score_desc": None,
|
||||
"cats_micro_p": None,
|
||||
"cats_micro_r": None,
|
||||
"cats_micro_f": None,
|
||||
"cats_macro_p": None,
|
||||
"cats_macro_r": None,
|
||||
"cats_macro_f": None,
|
||||
"cats_macro_auc": None,
|
||||
"cats_f_per_type": None,
|
||||
},
|
||||
)
|
||||
def make_multilabel_textcat(
|
||||
nlp: Language,
|
||||
name: str,
|
||||
model: Model[List[Doc], List[Floats2d]],
|
||||
threshold: float,
|
||||
scorer: Optional[Callable],
|
||||
) -> "MultiLabel_TextCategorizer":
|
||||
"""Create a MultiLabel_TextCategorizer component. The text categorizer predicts categories
|
||||
over a whole document. It can learn one or more labels, and the labels are considered
|
||||
to be non-mutually exclusive, which means that there can be zero or more labels
|
||||
per doc).
|
||||
|
||||
model (Model[List[Doc], List[Floats2d]]): A model instance that predicts
|
||||
scores for each category.
|
||||
threshold (float): Cutoff to consider a prediction "positive".
|
||||
scorer (Optional[Callable]): The scoring method.
|
||||
"""
|
||||
return MultiLabel_TextCategorizer(
|
||||
nlp.vocab, model, name, threshold=threshold, scorer=scorer
|
||||
)
|
||||
|
||||
|
||||
def textcat_multilabel_score(examples: Iterable[Example], **kwargs) -> Dict[str, Any]:
|
||||
return Scorer.score_cats(
|
||||
examples,
|
||||
|
@ -124,7 +83,6 @@ def textcat_multilabel_score(examples: Iterable[Example], **kwargs) -> Dict[str,
|
|||
)
|
||||
|
||||
|
||||
@registry.scorers("spacy.textcat_multilabel_scorer.v2")
|
||||
def make_textcat_multilabel_scorer():
|
||||
return textcat_multilabel_score
|
||||
|
||||
|
@ -212,3 +170,11 @@ class MultiLabel_TextCategorizer(TextCategorizer):
|
|||
for val in ex.reference.cats.values():
|
||||
if not (val == 1.0 or val == 0.0):
|
||||
raise ValueError(Errors.E851.format(val=val))
|
||||
|
||||
|
||||
# Setup backwards compatibility hook for factories
|
||||
def __getattr__(name):
|
||||
if name == "make_multilabel_textcat":
|
||||
module = importlib.import_module("spacy.pipeline.factories")
|
||||
return module.make_multilabel_textcat
|
||||
raise AttributeError(f"module {__name__} has no attribute {name}")
|
||||
|
|
|
@ -1,3 +1,5 @@
|
|||
import importlib
|
||||
import sys
|
||||
from itertools import islice
|
||||
from typing import Any, Callable, Dict, Iterable, List, Optional, Sequence
|
||||
|
||||
|
@ -24,13 +26,6 @@ subword_features = true
|
|||
DEFAULT_TOK2VEC_MODEL = Config().from_str(default_model_config)["model"]
|
||||
|
||||
|
||||
@Language.factory(
|
||||
"tok2vec", assigns=["doc.tensor"], default_config={"model": DEFAULT_TOK2VEC_MODEL}
|
||||
)
|
||||
def make_tok2vec(nlp: Language, name: str, model: Model) -> "Tok2Vec":
|
||||
return Tok2Vec(nlp.vocab, model, name)
|
||||
|
||||
|
||||
class Tok2Vec(TrainablePipe):
|
||||
"""Apply a "token-to-vector" model and set its outputs in the doc.tensor
|
||||
attribute. This is mostly useful to share a single subnetwork between multiple
|
||||
|
@ -320,3 +315,11 @@ def forward(model: Tok2VecListener, inputs, is_train: bool):
|
|||
|
||||
def _empty_backprop(dX): # for pickling
|
||||
return []
|
||||
|
||||
|
||||
# Setup backwards compatibility hook for factories
|
||||
def __getattr__(name):
|
||||
if name == "make_tok2vec":
|
||||
module = importlib.import_module("spacy.pipeline.factories")
|
||||
return module.make_tok2vec
|
||||
raise AttributeError(f"module {__name__} has no attribute {name}")
|
||||
|
|
|
@ -19,7 +19,7 @@ cdef class Parser(TrainablePipe):
|
|||
StateC** states,
|
||||
WeightsC weights,
|
||||
SizesC sizes
|
||||
) nogil
|
||||
) noexcept nogil
|
||||
|
||||
cdef void c_transition_batch(
|
||||
self,
|
||||
|
@ -27,4 +27,4 @@ cdef class Parser(TrainablePipe):
|
|||
const float* scores,
|
||||
int nr_class,
|
||||
int batch_size
|
||||
) nogil
|
||||
) noexcept nogil
|
||||
|
|
|
@ -316,7 +316,7 @@ cdef class Parser(TrainablePipe):
|
|||
|
||||
cdef void _parseC(
|
||||
self, CBlas cblas, StateC** states, WeightsC weights, SizesC sizes
|
||||
) nogil:
|
||||
) noexcept nogil:
|
||||
cdef int i
|
||||
cdef vector[StateC*] unfinished
|
||||
cdef ActivationsC activations = alloc_activations(sizes)
|
||||
|
@ -359,7 +359,7 @@ cdef class Parser(TrainablePipe):
|
|||
const float* scores,
|
||||
int nr_class,
|
||||
int batch_size
|
||||
) nogil:
|
||||
) noexcept nogil:
|
||||
# n_moves should not be zero at this point, but make sure to avoid zero-length mem alloc
|
||||
with gil:
|
||||
assert self.moves.n_moves > 0, Errors.E924.format(name=self.name)
|
||||
|
|
245
spacy/registrations.py
Normal file
245
spacy/registrations.py
Normal file
|
@ -0,0 +1,245 @@
|
|||
"""Centralized registry population for spaCy config
|
||||
|
||||
This module centralizes registry decorations to prevent circular import issues
|
||||
with Cython annotation changes from __future__ import annotations. Functions
|
||||
remain in their original locations, but decoration is moved here.
|
||||
|
||||
Component definitions and registrations are in spacy/pipeline/factories.py
|
||||
"""
|
||||
# Global flag to track if registry has been populated
|
||||
REGISTRY_POPULATED = False
|
||||
|
||||
|
||||
def populate_registry() -> None:
|
||||
"""Populate the registry with all necessary components.
|
||||
|
||||
This function should be called before accessing the registry, to ensure
|
||||
it's populated. The function uses a global flag to prevent repopulation.
|
||||
"""
|
||||
global REGISTRY_POPULATED
|
||||
if REGISTRY_POPULATED:
|
||||
return
|
||||
|
||||
# Import all necessary modules
|
||||
from .lang.ja import create_tokenizer as create_japanese_tokenizer
|
||||
from .lang.ko import create_tokenizer as create_korean_tokenizer
|
||||
from .lang.th import create_thai_tokenizer
|
||||
from .lang.vi import create_vietnamese_tokenizer
|
||||
from .lang.zh import create_chinese_tokenizer
|
||||
from .language import load_lookups_data
|
||||
from .matcher.levenshtein import make_levenshtein_compare
|
||||
from .ml.models.entity_linker import (
|
||||
create_candidates,
|
||||
create_candidates_batch,
|
||||
empty_kb,
|
||||
empty_kb_for_config,
|
||||
load_kb,
|
||||
)
|
||||
from .pipeline.attributeruler import make_attribute_ruler_scorer
|
||||
from .pipeline.dep_parser import make_parser_scorer
|
||||
|
||||
# Import the functions we refactored by removing direct registry decorators
|
||||
from .pipeline.entity_linker import make_entity_linker_scorer
|
||||
from .pipeline.entityruler import (
|
||||
make_entity_ruler_scorer as make_entityruler_scorer,
|
||||
)
|
||||
from .pipeline.lemmatizer import make_lemmatizer_scorer
|
||||
from .pipeline.morphologizer import make_morphologizer_scorer
|
||||
from .pipeline.ner import make_ner_scorer
|
||||
from .pipeline.senter import make_senter_scorer
|
||||
from .pipeline.span_finder import make_span_finder_scorer
|
||||
from .pipeline.span_ruler import (
|
||||
make_overlapping_labeled_spans_scorer,
|
||||
make_preserve_existing_ents_filter,
|
||||
make_prioritize_new_ents_filter,
|
||||
)
|
||||
from .pipeline.spancat import (
|
||||
build_ngram_range_suggester,
|
||||
build_ngram_suggester,
|
||||
build_preset_spans_suggester,
|
||||
make_spancat_scorer,
|
||||
)
|
||||
|
||||
# Import all pipeline components that were using registry decorators
|
||||
from .pipeline.tagger import make_tagger_scorer
|
||||
from .pipeline.textcat import make_textcat_scorer
|
||||
from .pipeline.textcat_multilabel import make_textcat_multilabel_scorer
|
||||
from .util import make_first_longest_spans_filter, registry
|
||||
|
||||
# Register miscellaneous components
|
||||
registry.misc("spacy.first_longest_spans_filter.v1")(
|
||||
make_first_longest_spans_filter
|
||||
)
|
||||
registry.misc("spacy.ngram_suggester.v1")(build_ngram_suggester)
|
||||
registry.misc("spacy.ngram_range_suggester.v1")(build_ngram_range_suggester)
|
||||
registry.misc("spacy.preset_spans_suggester.v1")(build_preset_spans_suggester)
|
||||
registry.misc("spacy.prioritize_new_ents_filter.v1")(
|
||||
make_prioritize_new_ents_filter
|
||||
)
|
||||
registry.misc("spacy.prioritize_existing_ents_filter.v1")(
|
||||
make_preserve_existing_ents_filter
|
||||
)
|
||||
registry.misc("spacy.levenshtein_compare.v1")(make_levenshtein_compare)
|
||||
# KB-related registrations
|
||||
registry.misc("spacy.KBFromFile.v1")(load_kb)
|
||||
registry.misc("spacy.EmptyKB.v2")(empty_kb_for_config)
|
||||
registry.misc("spacy.EmptyKB.v1")(empty_kb)
|
||||
registry.misc("spacy.CandidateGenerator.v1")(create_candidates)
|
||||
registry.misc("spacy.CandidateBatchGenerator.v1")(create_candidates_batch)
|
||||
registry.misc("spacy.LookupsDataLoader.v1")(load_lookups_data)
|
||||
|
||||
# Need to get references to the existing functions in registry by importing the function that is there
|
||||
# For the registry that was previously decorated
|
||||
|
||||
# Import ML components that use registry
|
||||
from .language import create_tokenizer
|
||||
from .ml._precomputable_affine import PrecomputableAffine
|
||||
from .ml.callbacks import (
|
||||
create_models_and_pipes_with_nvtx_range,
|
||||
create_models_with_nvtx_range,
|
||||
)
|
||||
from .ml.extract_ngrams import extract_ngrams
|
||||
from .ml.extract_spans import extract_spans
|
||||
|
||||
# Import decorator-removed ML components
|
||||
from .ml.featureextractor import FeatureExtractor
|
||||
from .ml.models.entity_linker import build_nel_encoder
|
||||
from .ml.models.multi_task import (
|
||||
create_pretrain_characters,
|
||||
create_pretrain_vectors,
|
||||
)
|
||||
from .ml.models.parser import build_tb_parser_model
|
||||
from .ml.models.span_finder import build_finder_model
|
||||
from .ml.models.spancat import (
|
||||
build_linear_logistic,
|
||||
build_mean_max_reducer,
|
||||
build_spancat_model,
|
||||
)
|
||||
from .ml.models.tagger import build_tagger_model
|
||||
from .ml.models.textcat import (
|
||||
build_bow_text_classifier,
|
||||
build_bow_text_classifier_v3,
|
||||
build_reduce_text_classifier,
|
||||
build_simple_cnn_text_classifier,
|
||||
build_text_classifier_lowdata,
|
||||
build_text_classifier_v2,
|
||||
build_textcat_parametric_attention_v1,
|
||||
)
|
||||
from .ml.models.tok2vec import (
|
||||
BiLSTMEncoder,
|
||||
CharacterEmbed,
|
||||
MaxoutWindowEncoder,
|
||||
MishWindowEncoder,
|
||||
MultiHashEmbed,
|
||||
build_hash_embed_cnn_tok2vec,
|
||||
build_Tok2Vec_model,
|
||||
tok2vec_listener_v1,
|
||||
)
|
||||
from .ml.staticvectors import StaticVectors
|
||||
from .ml.tb_framework import TransitionModel
|
||||
from .training.augment import (
|
||||
create_combined_augmenter,
|
||||
create_lower_casing_augmenter,
|
||||
create_orth_variants_augmenter,
|
||||
)
|
||||
from .training.batchers import (
|
||||
configure_minibatch,
|
||||
configure_minibatch_by_padded_size,
|
||||
configure_minibatch_by_words,
|
||||
)
|
||||
from .training.callbacks import create_copy_from_base_model
|
||||
from .training.loggers import console_logger, console_logger_v3
|
||||
|
||||
# Register scorers
|
||||
registry.scorers("spacy.tagger_scorer.v1")(make_tagger_scorer)
|
||||
registry.scorers("spacy.ner_scorer.v1")(make_ner_scorer)
|
||||
# span_ruler_scorer removed as it's not in span_ruler.py
|
||||
registry.scorers("spacy.entity_ruler_scorer.v1")(make_entityruler_scorer)
|
||||
registry.scorers("spacy.senter_scorer.v1")(make_senter_scorer)
|
||||
registry.scorers("spacy.textcat_scorer.v1")(make_textcat_scorer)
|
||||
registry.scorers("spacy.textcat_scorer.v2")(make_textcat_scorer)
|
||||
registry.scorers("spacy.textcat_multilabel_scorer.v1")(
|
||||
make_textcat_multilabel_scorer
|
||||
)
|
||||
registry.scorers("spacy.textcat_multilabel_scorer.v2")(
|
||||
make_textcat_multilabel_scorer
|
||||
)
|
||||
registry.scorers("spacy.lemmatizer_scorer.v1")(make_lemmatizer_scorer)
|
||||
registry.scorers("spacy.span_finder_scorer.v1")(make_span_finder_scorer)
|
||||
registry.scorers("spacy.spancat_scorer.v1")(make_spancat_scorer)
|
||||
registry.scorers("spacy.entity_linker_scorer.v1")(make_entity_linker_scorer)
|
||||
registry.scorers("spacy.overlapping_labeled_spans_scorer.v1")(
|
||||
make_overlapping_labeled_spans_scorer
|
||||
)
|
||||
registry.scorers("spacy.attribute_ruler_scorer.v1")(make_attribute_ruler_scorer)
|
||||
registry.scorers("spacy.parser_scorer.v1")(make_parser_scorer)
|
||||
registry.scorers("spacy.morphologizer_scorer.v1")(make_morphologizer_scorer)
|
||||
|
||||
# Register tokenizers
|
||||
registry.tokenizers("spacy.Tokenizer.v1")(create_tokenizer)
|
||||
registry.tokenizers("spacy.ja.JapaneseTokenizer")(create_japanese_tokenizer)
|
||||
registry.tokenizers("spacy.zh.ChineseTokenizer")(create_chinese_tokenizer)
|
||||
registry.tokenizers("spacy.ko.KoreanTokenizer")(create_korean_tokenizer)
|
||||
registry.tokenizers("spacy.vi.VietnameseTokenizer")(create_vietnamese_tokenizer)
|
||||
registry.tokenizers("spacy.th.ThaiTokenizer")(create_thai_tokenizer)
|
||||
|
||||
# Register tok2vec architectures we've modified
|
||||
registry.architectures("spacy.Tok2VecListener.v1")(tok2vec_listener_v1)
|
||||
registry.architectures("spacy.HashEmbedCNN.v2")(build_hash_embed_cnn_tok2vec)
|
||||
registry.architectures("spacy.Tok2Vec.v2")(build_Tok2Vec_model)
|
||||
registry.architectures("spacy.MultiHashEmbed.v2")(MultiHashEmbed)
|
||||
registry.architectures("spacy.CharacterEmbed.v2")(CharacterEmbed)
|
||||
registry.architectures("spacy.MaxoutWindowEncoder.v2")(MaxoutWindowEncoder)
|
||||
registry.architectures("spacy.MishWindowEncoder.v2")(MishWindowEncoder)
|
||||
registry.architectures("spacy.TorchBiLSTMEncoder.v1")(BiLSTMEncoder)
|
||||
registry.architectures("spacy.EntityLinker.v2")(build_nel_encoder)
|
||||
registry.architectures("spacy.TextCatCNN.v2")(build_simple_cnn_text_classifier)
|
||||
registry.architectures("spacy.TextCatBOW.v2")(build_bow_text_classifier)
|
||||
registry.architectures("spacy.TextCatBOW.v3")(build_bow_text_classifier_v3)
|
||||
registry.architectures("spacy.TextCatEnsemble.v2")(build_text_classifier_v2)
|
||||
registry.architectures("spacy.TextCatLowData.v1")(build_text_classifier_lowdata)
|
||||
registry.architectures("spacy.TextCatParametricAttention.v1")(
|
||||
build_textcat_parametric_attention_v1
|
||||
)
|
||||
registry.architectures("spacy.TextCatReduce.v1")(build_reduce_text_classifier)
|
||||
registry.architectures("spacy.SpanCategorizer.v1")(build_spancat_model)
|
||||
registry.architectures("spacy.SpanFinder.v1")(build_finder_model)
|
||||
registry.architectures("spacy.TransitionBasedParser.v2")(build_tb_parser_model)
|
||||
registry.architectures("spacy.PretrainVectors.v1")(create_pretrain_vectors)
|
||||
registry.architectures("spacy.PretrainCharacters.v1")(create_pretrain_characters)
|
||||
registry.architectures("spacy.Tagger.v2")(build_tagger_model)
|
||||
|
||||
# Register layers
|
||||
registry.layers("spacy.FeatureExtractor.v1")(FeatureExtractor)
|
||||
registry.layers("spacy.extract_spans.v1")(extract_spans)
|
||||
registry.layers("spacy.extract_ngrams.v1")(extract_ngrams)
|
||||
registry.layers("spacy.LinearLogistic.v1")(build_linear_logistic)
|
||||
registry.layers("spacy.mean_max_reducer.v1")(build_mean_max_reducer)
|
||||
registry.layers("spacy.StaticVectors.v2")(StaticVectors)
|
||||
registry.layers("spacy.PrecomputableAffine.v1")(PrecomputableAffine)
|
||||
registry.layers("spacy.CharEmbed.v1")(CharacterEmbed)
|
||||
registry.layers("spacy.TransitionModel.v1")(TransitionModel)
|
||||
|
||||
# Register callbacks
|
||||
registry.callbacks("spacy.copy_from_base_model.v1")(create_copy_from_base_model)
|
||||
registry.callbacks("spacy.models_with_nvtx_range.v1")(create_models_with_nvtx_range)
|
||||
registry.callbacks("spacy.models_and_pipes_with_nvtx_range.v1")(
|
||||
create_models_and_pipes_with_nvtx_range
|
||||
)
|
||||
|
||||
# Register loggers
|
||||
registry.loggers("spacy.ConsoleLogger.v2")(console_logger)
|
||||
registry.loggers("spacy.ConsoleLogger.v3")(console_logger_v3)
|
||||
|
||||
# Register batchers
|
||||
registry.batchers("spacy.batch_by_padded.v1")(configure_minibatch_by_padded_size)
|
||||
registry.batchers("spacy.batch_by_words.v1")(configure_minibatch_by_words)
|
||||
registry.batchers("spacy.batch_by_sequence.v1")(configure_minibatch)
|
||||
|
||||
# Register augmenters
|
||||
registry.augmenters("spacy.combined_augmenter.v1")(create_combined_augmenter)
|
||||
registry.augmenters("spacy.lower_case.v1")(create_lower_casing_augmenter)
|
||||
registry.augmenters("spacy.orth_variants.v1")(create_orth_variants_augmenter)
|
||||
|
||||
# Set the flag to indicate that the registry has been populated
|
||||
REGISTRY_POPULATED = True
|
|
@ -25,5 +25,7 @@ cdef class StringStore:
|
|||
cdef vector[hash_t] keys
|
||||
cdef public PreshMap _map
|
||||
|
||||
cdef const Utf8Str* intern_unicode(self, str py_string)
|
||||
cdef const Utf8Str* _intern_utf8(self, char* utf8_string, int length, hash_t* precalculated_hash)
|
||||
cdef const Utf8Str* intern_unicode(self, str py_string, bint allow_transient)
|
||||
cdef const Utf8Str* _intern_utf8(self, char* utf8_string, int length, hash_t* precalculated_hash, bint allow_transient)
|
||||
cdef vector[hash_t] _transient_keys
|
||||
cdef Pool _non_temp_mem
|
||||
|
|
|
@ -1,9 +1,14 @@
|
|||
# cython: infer_types=True
|
||||
# cython: profile=False
|
||||
cimport cython
|
||||
|
||||
from contextlib import contextmanager
|
||||
from typing import List, Optional
|
||||
|
||||
from libc.stdint cimport uint32_t
|
||||
from libc.string cimport memcpy
|
||||
from murmurhash.mrmr cimport hash32, hash64
|
||||
from preshed.maps cimport map_clear
|
||||
|
||||
import srsly
|
||||
|
||||
|
@ -31,7 +36,7 @@ def get_string_id(key):
|
|||
This function optimises for convenience over performance, so shouldn't be
|
||||
used in tight loops.
|
||||
"""
|
||||
cdef hash_t str_hash
|
||||
cdef hash_t str_hash
|
||||
if isinstance(key, str):
|
||||
if len(key) == 0:
|
||||
return 0
|
||||
|
@ -45,8 +50,8 @@ def get_string_id(key):
|
|||
elif _try_coerce_to_hash(key, &str_hash):
|
||||
# Coerce the integral key to the expected primitive hash type.
|
||||
# This ensures that custom/overloaded "primitive" data types
|
||||
# such as those implemented by numpy are not inadvertently used
|
||||
# downsteam (as these are internally implemented as custom PyObjects
|
||||
# such as those implemented by numpy are not inadvertently used
|
||||
# downsteam (as these are internally implemented as custom PyObjects
|
||||
# whose comparison operators can incur a significant overhead).
|
||||
return str_hash
|
||||
else:
|
||||
|
@ -119,10 +124,11 @@ cdef class StringStore:
|
|||
strings (iterable): A sequence of unicode strings to add to the store.
|
||||
"""
|
||||
self.mem = Pool()
|
||||
self._non_temp_mem = self.mem
|
||||
self._map = PreshMap()
|
||||
if strings is not None:
|
||||
for string in strings:
|
||||
self.add(string)
|
||||
self.add(string, allow_transient=False)
|
||||
|
||||
def __getitem__(self, object string_or_id):
|
||||
"""Retrieve a string from a given hash, or vice versa.
|
||||
|
@ -152,14 +158,17 @@ cdef class StringStore:
|
|||
return SYMBOLS_BY_INT[str_hash]
|
||||
else:
|
||||
utf8str = <Utf8Str*>self._map.get(str_hash)
|
||||
if utf8str is NULL:
|
||||
raise KeyError(Errors.E018.format(hash_value=string_or_id))
|
||||
else:
|
||||
return decode_Utf8Str(utf8str)
|
||||
else:
|
||||
# TODO: Raise an error instead
|
||||
utf8str = <Utf8Str*>self._map.get(string_or_id)
|
||||
|
||||
if utf8str is NULL:
|
||||
raise KeyError(Errors.E018.format(hash_value=string_or_id))
|
||||
else:
|
||||
return decode_Utf8Str(utf8str)
|
||||
if utf8str is NULL:
|
||||
raise KeyError(Errors.E018.format(hash_value=string_or_id))
|
||||
else:
|
||||
return decode_Utf8Str(utf8str)
|
||||
|
||||
def as_int(self, key):
|
||||
"""If key is an int, return it; otherwise, get the int value."""
|
||||
|
@ -175,12 +184,48 @@ cdef class StringStore:
|
|||
else:
|
||||
return self[key]
|
||||
|
||||
def add(self, string):
|
||||
def __len__(self) -> int:
|
||||
"""The number of strings in the store.
|
||||
|
||||
RETURNS (int): The number of strings in the store.
|
||||
"""
|
||||
return self.keys.size() + self._transient_keys.size()
|
||||
|
||||
@contextmanager
|
||||
def memory_zone(self, mem: Optional[Pool] = None) -> Pool:
|
||||
"""Begin a block where all resources allocated during the block will
|
||||
be freed at the end of it. If a resources was created within the
|
||||
memory zone block, accessing it outside the block is invalid.
|
||||
Behaviour of this invalid access is undefined. Memory zones should
|
||||
not be nested.
|
||||
|
||||
The memory zone is helpful for services that need to process large
|
||||
volumes of text with a defined memory budget.
|
||||
"""
|
||||
if mem is None:
|
||||
mem = Pool()
|
||||
self.mem = mem
|
||||
yield mem
|
||||
for key in self._transient_keys:
|
||||
map_clear(self._map.c_map, key)
|
||||
self._transient_keys.clear()
|
||||
self.mem = self._non_temp_mem
|
||||
|
||||
def add(self, string: str, allow_transient: Optional[bool] = None) -> int:
|
||||
"""Add a string to the StringStore.
|
||||
|
||||
string (str): The string to add.
|
||||
allow_transient (bool): Allow the string to be stored in the 'transient'
|
||||
map, which will be flushed at the end of the memory zone. Strings
|
||||
encountered during arbitrary text processing should be added
|
||||
with allow_transient=True, while labels and other strings used
|
||||
internally should not.
|
||||
RETURNS (uint64): The string's hash value.
|
||||
"""
|
||||
if not string:
|
||||
return 0
|
||||
if allow_transient is None:
|
||||
allow_transient = self.mem is not self._non_temp_mem
|
||||
cdef hash_t str_hash
|
||||
if isinstance(string, str):
|
||||
if string in SYMBOLS_BY_STR:
|
||||
|
@ -188,22 +233,26 @@ cdef class StringStore:
|
|||
|
||||
string = string.encode("utf8")
|
||||
str_hash = hash_utf8(string, len(string))
|
||||
self._intern_utf8(string, len(string), &str_hash)
|
||||
self._intern_utf8(string, len(string), &str_hash, allow_transient)
|
||||
elif isinstance(string, bytes):
|
||||
if string in SYMBOLS_BY_STR:
|
||||
return SYMBOLS_BY_STR[string]
|
||||
str_hash = hash_utf8(string, len(string))
|
||||
self._intern_utf8(string, len(string), &str_hash)
|
||||
self._intern_utf8(string, len(string), &str_hash, allow_transient)
|
||||
else:
|
||||
raise TypeError(Errors.E017.format(value_type=type(string)))
|
||||
return str_hash
|
||||
|
||||
def __len__(self):
|
||||
"""The number of strings in the store.
|
||||
if string in SYMBOLS_BY_STR:
|
||||
return SYMBOLS_BY_STR[string]
|
||||
else:
|
||||
return self._intern_str(string, allow_transient)
|
||||
|
||||
RETURNS (int): The number of strings in the store.
|
||||
"""
|
||||
return self.keys.size()
|
||||
return self.keys.size() + self._transient_keys.size()
|
||||
|
||||
def __contains__(self, string_or_id not None):
|
||||
"""Check whether a string or ID is in the store.
|
||||
|
@ -222,12 +271,17 @@ cdef class StringStore:
|
|||
pass
|
||||
else:
|
||||
# TODO: Raise an error instead
|
||||
return self._map.get(string_or_id) is not NULL
|
||||
|
||||
if self._map.get(string_or_id) is not NULL:
|
||||
return True
|
||||
else:
|
||||
return False
|
||||
if str_hash < len(SYMBOLS_BY_INT):
|
||||
return True
|
||||
else:
|
||||
return self._map.get(str_hash) is not NULL
|
||||
if self._map.get(str_hash) is not NULL:
|
||||
return True
|
||||
else:
|
||||
return False
|
||||
|
||||
def __iter__(self):
|
||||
"""Iterate over the strings in the store, in order.
|
||||
|
@ -240,12 +294,29 @@ cdef class StringStore:
|
|||
key = self.keys[i]
|
||||
utf8str = <Utf8Str*>self._map.get(key)
|
||||
yield decode_Utf8Str(utf8str)
|
||||
# TODO: Iterate OOV here?
|
||||
for i in range(self._transient_keys.size()):
|
||||
key = self._transient_keys[i]
|
||||
utf8str = <Utf8Str*>self._map.get(key)
|
||||
yield decode_Utf8Str(utf8str)
|
||||
|
||||
def __reduce__(self):
|
||||
strings = list(self)
|
||||
return (StringStore, (strings,), None, None, None)
|
||||
|
||||
def values(self) -> List[int]:
|
||||
"""Iterate over the stored strings hashes in insertion order.
|
||||
|
||||
RETURNS: A list of string hashs.
|
||||
"""
|
||||
cdef int i
|
||||
hashes = [None] * self._keys.size()
|
||||
for i in range(self._keys.size()):
|
||||
hashes[i] = self._keys[i]
|
||||
transient_hashes = [None] * self._transient_keys.size()
|
||||
for i in range(self._transient_keys.size()):
|
||||
transient_hashes[i] = self._transient_keys[i]
|
||||
return hashes + transient_hashes
|
||||
|
||||
def to_disk(self, path):
|
||||
"""Save the current state to a directory.
|
||||
|
||||
|
@ -269,7 +340,7 @@ cdef class StringStore:
|
|||
prev = list(self)
|
||||
self._reset_and_load(strings)
|
||||
for word in prev:
|
||||
self.add(word)
|
||||
self.add(word, allow_transient=False)
|
||||
return self
|
||||
|
||||
def to_bytes(self, **kwargs):
|
||||
|
@ -289,30 +360,38 @@ cdef class StringStore:
|
|||
prev = list(self)
|
||||
self._reset_and_load(strings)
|
||||
for word in prev:
|
||||
self.add(word)
|
||||
self.add(word, allow_transient=False)
|
||||
return self
|
||||
|
||||
def _reset_and_load(self, strings):
|
||||
self.mem = Pool()
|
||||
self._non_temp_mem = self.mem
|
||||
self._map = PreshMap()
|
||||
self.keys.clear()
|
||||
self._transient_keys.clear()
|
||||
for string in strings:
|
||||
self.add(string)
|
||||
self.add(string, allow_transient=False)
|
||||
|
||||
cdef const Utf8Str* intern_unicode(self, str py_string):
|
||||
cdef const Utf8Str* intern_unicode(self, str py_string, bint allow_transient):
|
||||
# 0 means missing, but we don't bother offsetting the index.
|
||||
cdef bytes byte_string = py_string.encode("utf8")
|
||||
return self._intern_utf8(byte_string, len(byte_string), NULL)
|
||||
return self._intern_utf8(byte_string, len(byte_string), NULL, allow_transient)
|
||||
|
||||
@cython.final
|
||||
cdef const Utf8Str* _intern_utf8(self, char* utf8_string, int length, hash_t* precalculated_hash):
|
||||
cdef const Utf8Str* _intern_utf8(self, char* utf8_string, int length, hash_t* precalculated_hash, bint allow_transient):
|
||||
# TODO: This function's API/behaviour is an unholy mess...
|
||||
# 0 means missing, but we don't bother offsetting the index.
|
||||
cdef hash_t key = precalculated_hash[0] if precalculated_hash is not NULL else hash_utf8(utf8_string, length)
|
||||
cdef Utf8Str* value = <Utf8Str*>self._map.get(key)
|
||||
if value is not NULL:
|
||||
return value
|
||||
value = _allocate(self.mem, <unsigned char*>utf8_string, length)
|
||||
if allow_transient:
|
||||
value = _allocate(self.mem, <unsigned char*>utf8_string, length)
|
||||
else:
|
||||
value = _allocate(self._non_temp_mem, <unsigned char*>utf8_string, length)
|
||||
self._map.set(key, value)
|
||||
self.keys.push_back(key)
|
||||
if allow_transient and self.mem is not self._non_temp_mem:
|
||||
self._transient_keys.push_back(key)
|
||||
else:
|
||||
self.keys.push_back(key)
|
||||
return value
|
||||
|
|
|
@ -479,3 +479,4 @@ NAMES = [it[0] for it in sorted(IDS.items(), key=sort_nums)]
|
|||
# (which is generating an enormous amount of C++ in Cython 0.24+)
|
||||
# We keep the enum cdef, and just make sure the names are available to Python
|
||||
locals().update(IDS)
|
||||
|
||||
|
|
|
@ -81,6 +81,11 @@ def bn_tokenizer():
|
|||
return get_lang_class("bn")().tokenizer
|
||||
|
||||
|
||||
@pytest.fixture(scope="session")
|
||||
def bo_tokenizer():
|
||||
return get_lang_class("bo")().tokenizer
|
||||
|
||||
|
||||
@pytest.fixture(scope="session")
|
||||
def ca_tokenizer():
|
||||
return get_lang_class("ca")().tokenizer
|
||||
|
@ -207,6 +212,16 @@ def hr_tokenizer():
|
|||
return get_lang_class("hr")().tokenizer
|
||||
|
||||
|
||||
@pytest.fixture(scope="session")
|
||||
def ht_tokenizer():
|
||||
return get_lang_class("ht")().tokenizer
|
||||
|
||||
|
||||
@pytest.fixture(scope="session")
|
||||
def ht_vocab():
|
||||
return get_lang_class("ht")().vocab
|
||||
|
||||
|
||||
@pytest.fixture
|
||||
def hu_tokenizer():
|
||||
return get_lang_class("hu")().tokenizer
|
||||
|
|
Some files were not shown because too many files have changed in this diff Show More
Loading…
Reference in New Issue
Block a user