from typing import List, Tuple from thinc.api import Model, chain from thinc.api import PyTorchWrapper, ArgsKwargs from thinc.types import Floats2d, Ints2d, Ints1d from thinc.util import torch, xp2torch, torch2xp from ...tokens import Doc from ...util import registry @registry.architectures("spacy.Coref.v1") def build_wl_coref_model( tok2vec: Model[List[Doc], List[Floats2d]], distance_embedding_size: int = 20, hidden_size: int = 1024, depth: int = 1, dropout: float = 0.3, # pairs to keep per mention after rough scoring antecedent_limit: int = 50, antecedent_batch_size: int = 512, ): # TODO add model return types # TODO fix this try: dim = tok2vec.get_dim("nO") except ValueError: # happens with transformer listener dim = 768 with Model.define_operators({">>": chain}): coref_clusterer = PyTorchWrapper( CorefClusterer( dim, distance_embedding_size, hidden_size, depth, dropout, antecedent_limit, antecedent_batch_size, ), convert_inputs=convert_coref_clusterer_inputs, convert_outputs=convert_coref_clusterer_outputs, ) coref_model = tok2vec >> coref_clusterer return coref_model def convert_coref_clusterer_inputs(model: Model, X: List[Floats2d], is_train: bool): # The input here is List[Floats2d], one for each doc # just use the first # TODO real batching X = X[0] word_features = xp2torch(X, requires_grad=is_train) def backprop(args: ArgsKwargs) -> List[Floats2d]: # convert to xp and wrap in list gradients = torch2xp(args.args[0]) return [gradients] return ArgsKwargs(args=(word_features,), kwargs={}), backprop def convert_coref_clusterer_outputs(model: Model, inputs_outputs, is_train: bool): _, outputs = inputs_outputs scores, indices = outputs def convert_for_torch_backward(dY: Floats2d) -> ArgsKwargs: dY_t = xp2torch(dY[0]) return ArgsKwargs( args=([scores],), kwargs={"grad_tensors": [dY_t]}, ) scores_xp = torch2xp(scores) indices_xp = torch2xp(indices) return (scores_xp, indices_xp), convert_for_torch_backward class CorefClusterer(torch.nn.Module): """ Combines all coref modules together to find coreferent token pairs. Submodules (in the order of their usage in the pipeline): - rough_scorer (RoughScorer) that prunes candidate pairs - pw (DistancePairwiseEncoder) that computes pairwise features - a_scorer (AnaphoricityScorer) produces the final scores """ def __init__( self, dim: int, # tok2vec size dist_emb_size: int, hidden_size: int, n_layers: int, dropout: float, roughk: int, batch_size: int, ): super().__init__() """ dim: Size of the input features. dist_emb_size: Size of the distance embeddings. hidden_size: Size of the coreference candidate embeddings. n_layers: Numbers of layers in the AnaphoricityScorer. dropout: Dropout probability to apply across all modules. roughk: Number of candidates the RoughScorer returns. batch_size: Internal batch-size for the more expensive scorer. """ self.dropout = torch.nn.Dropout(dropout) self.batch_size = batch_size # Modules self.pw = DistancePairwiseEncoder(dist_emb_size, dropout) pair_emb = dim * 3 + self.pw.shape self.a_scorer = AnaphoricityScorer(pair_emb, hidden_size, n_layers, dropout) self.lstm = torch.nn.LSTM( input_size=dim, hidden_size=dim, batch_first=True, ) self.rough_scorer = RoughScorer(dim, dropout, roughk) self.pw = DistancePairwiseEncoder(dist_emb_size, dropout) pair_emb = dim * 3 + self.pw.shape self.a_scorer = AnaphoricityScorer(pair_emb, hidden_size, n_layers, dropout) def forward(self, word_features: torch.Tensor) -> Tuple[torch.Tensor, torch.Tensor]: """ 1. LSTM encodes the incoming word_features. 2. The RoughScorer scores and prunes the candidates. 3. The DistancePairwiseEncoder embeds the distances between pairs. 4. The AnaphoricityScorer scores all pairs in mini-batches. word_features: torch.Tensor containing word encodings returns: coref_scores: n_words x roughk floats. top_indices: n_words x roughk integers. """ self.lstm.flatten_parameters() # XXX without this there's a warning word_features = torch.unsqueeze(word_features, dim=0) words, _ = self.lstm(word_features) words = words.squeeze() # words: n_words x dim words = self.dropout(words) # Obtain bilinear scores and leave only top-k antecedents for each word # top_rough_scores: (n_words x roughk) # top_indices: (n_words x roughk) top_rough_scores, top_indices = self.rough_scorer(words) # Get pairwise features # (n_words x roughk x n_pw_features) pw = self.pw(top_indices) batch_size = self.batch_size a_scores_lst: List[torch.Tensor] = [] for i in range(0, len(words), batch_size): pw_batch = pw[i : i + batch_size] words_batch = words[i : i + batch_size] top_indices_batch = top_indices[i : i + batch_size] top_rough_scores_batch = top_rough_scores[i : i + batch_size] # a_scores_batch [batch_size, n_ants] a_scores_batch = self.a_scorer( all_mentions=words, mentions_batch=words_batch, pw_batch=pw_batch, top_indices_batch=top_indices_batch, top_rough_scores_batch=top_rough_scores_batch, ) a_scores_lst.append(a_scores_batch) coref_scores = torch.cat(a_scores_lst, dim=0) return coref_scores, top_indices EPSILON = 1e-7 # Note this function is kept here to keep a torch dep out of coref_util. def add_dummy(tensor: torch.Tensor, eps: bool = False): """Prepends zeros (or a very small value if eps is True) to the first (not zeroth) dimension of tensor. """ kwargs = dict(device=tensor.device, dtype=tensor.dtype) shape: List[int] = list(tensor.shape) shape[1] = 1 if not eps: dummy = torch.zeros(shape, **kwargs) # type: ignore else: dummy = torch.full(shape, EPSILON, **kwargs) # type: ignore output = torch.cat((dummy, tensor), dim=1) return output class AnaphoricityScorer(torch.nn.Module): """Calculates anaphoricity scores by passing the inputs into a FFNN""" def __init__(self, in_features: int, hidden_size, depth, dropout): super().__init__() hidden_size = hidden_size if not depth: hidden_size = in_features layers = [] for i in range(depth): layers.extend( [ torch.nn.Linear(hidden_size if i else in_features, hidden_size), torch.nn.LeakyReLU(), torch.nn.Dropout(dropout), ] ) self.hidden = torch.nn.Sequential(*layers) self.out = torch.nn.Linear(hidden_size, out_features=1) def forward( self, *, # type: ignore # pylint: disable=arguments-differ #35566 in pytorch all_mentions: torch.Tensor, mentions_batch: torch.Tensor, pw_batch: torch.Tensor, top_indices_batch: torch.Tensor, top_rough_scores_batch: torch.Tensor, ) -> torch.Tensor: """Builds a pairwise matrix, scores the pairs and returns the scores. Args: all_mentions (torch.Tensor): [n_mentions, mention_emb] mentions_batch (torch.Tensor): [batch_size, mention_emb] pw_batch (torch.Tensor): [batch_size, n_ants, pw_emb] top_indices_batch (torch.Tensor): [batch_size, n_ants] top_rough_scores_batch (torch.Tensor): [batch_size, n_ants] Returns: torch.Tensor [batch_size, n_ants + 1] anaphoricity scores for the pairs + a dummy column """ # [batch_size, n_ants, pair_emb] pair_matrix = self._get_pair_matrix( all_mentions, mentions_batch, pw_batch, top_indices_batch ) # [batch_size, n_ants] scores = top_rough_scores_batch + self._ffnn(pair_matrix) scores = add_dummy(scores, eps=True) return scores def _ffnn(self, x: torch.Tensor) -> torch.Tensor: """ x: tensor of shape (batch_size x roughk x n_features returns: tensor of shape (batch_size x antecedent_limit) """ x = self.out(self.hidden(x)) return x.squeeze(2) @staticmethod def _get_pair_matrix( all_mentions: torch.Tensor, mentions_batch: torch.Tensor, pw_batch: torch.Tensor, top_indices_batch: torch.Tensor, ) -> torch.Tensor: """ Builds the matrix used as input for AnaphoricityScorer. all_mentions: (n_mentions x mention_emb), all the valid mentions of the document, can be on a different device mentions_batch: (batch_size x mention_emb), the mentions of the current batch. pw_batch: (batch_size x roughk x pw_emb), pairwise distance features of the current batch. top_indices_batch: (batch_size x n_ants), indices of antecedents of each mention Returns: out: pairwise features (batch_size x n_ants x pair_emb) """ emb_size = mentions_batch.shape[1] n_ants = pw_batch.shape[1] a_mentions = mentions_batch.unsqueeze(1).expand(-1, n_ants, emb_size) b_mentions = all_mentions[top_indices_batch] similarity = a_mentions * b_mentions out = torch.cat((a_mentions, b_mentions, similarity, pw_batch), dim=2) return out class RoughScorer(torch.nn.Module): """ Cheaper module that gives a rough estimate of the anaphoricity of two candidates, only top scoring candidates are considered on later steps to reduce computational cost. """ def __init__(self, features: int, dropout: float, antecedent_limit: int): super().__init__() self.dropout = torch.nn.Dropout(dropout) self.bilinear = torch.nn.Linear(features, features) self.k = antecedent_limit def forward( self, # type: ignore # pylint: disable=arguments-differ #35566 in pytorch mentions: torch.Tensor, ) -> Tuple[torch.Tensor, torch.Tensor]: """ Returns rough anaphoricity scores for candidates, which consist of the bilinear output of the current model summed with mention scores. """ # [n_mentions, n_mentions] pair_mask = torch.arange(mentions.shape[0]) pair_mask = pair_mask.unsqueeze(1) - pair_mask.unsqueeze(0) pair_mask = torch.log((pair_mask > 0).to(torch.float)) bilinear_scores = self.dropout(self.bilinear(mentions)).mm(mentions.T) rough_scores = pair_mask + bilinear_scores top_scores, indices = torch.topk( rough_scores, k=min(self.k, len(rough_scores)), dim=1, sorted=False ) return top_scores, indices class DistancePairwiseEncoder(torch.nn.Module): def __init__(self, distance_embedding_size, dropout): """ Takes the top_indices indicating, which is a ranked list for each word and its most likely corresponding anaphora candidates. For each of these pairs it looks up a distance embedding from a table, where the distance corresponds to the log-distance. distance_embedding_size: int, Dimensionality of the distance-embeddings table. dropout: float, Dropout probability. """ super().__init__() emb_size = distance_embedding_size self.distance_emb = torch.nn.Embedding(9, emb_size) self.dropout = torch.nn.Dropout(dropout) self.shape = emb_size def forward(self, top_indices: torch.Tensor) -> torch.Tensor: word_ids = torch.arange(0, top_indices.size(0)) distance = (word_ids.unsqueeze(1) - word_ids[top_indices]).clamp_min_(min=1) log_distance = distance.to(torch.float).log2().floor_() log_distance = log_distance.clamp_max_(max=6).to(torch.long) distance = torch.where(distance < 5, distance - 1, log_distance + 2) distance = self.distance_emb(distance) return self.dropout(distance)