//- 💫 DOCS > USAGE > VISUALIZERS > HTML p | If you don't need the web server and just want to generate the markup | – for example, to export it to a file or serve it in a custom | way – you can use #[+api("displacy#render") #[code displacy.render]]. | It works the same way, but returns a string containing the markup. +code("Example"). import spacy from spacy import displacy nlp = spacy.load('en') doc1 = nlp(u'This is a sentence.') doc2 = nlp(u'This is another sentence.') html = displacy.render([doc1, doc2], style='dep', page=True) p | #[code page=True] renders the markup wrapped as a full HTML page. | For minified and more compact HTML markup, you can set #[code minify=True]. | If you're rendering a dependency parse, you can also export it as an | #[code .svg] file. +aside("What's SVG?") | Unlike other image formats, the SVG (Scalable Vector Graphics) uses XML | markup that's easy to manipulate | #[+a("https://www.smashingmagazine.com/2014/11/styling-and-animating-svgs-with-css/") using CSS] or | #[+a("https://css-tricks.com/smil-is-dead-long-live-smil-a-guide-to-alternatives-to-smil-features/") JavaScript]. | Essentially, SVG lets you design with code, which makes it a perfect fit | for visualizing dependency trees. SVGs can be embedded online in an | #[code <img>] tag, or inlined in an HTML document. They're also | pretty easy to #[+a("https://convertio.co/image-converter/") convert]. +code. svg = displacy.render(doc, style='dep') output_path = Path('/images/sentence.svg') output_path.open('w', encoding='utf-8').write(svg) +infobox("Important note") | Since each visualization is generated as a separate SVG, exporting | #[code .svg] files only works if you're rendering #[strong one single doc] | at a time. (This makes sense – after all, each visualization should be | a standalone graphic.) So instead of rendering all #[code Doc]s at one, | loop over them and export them separately. +h(3, "examples-export-svg") Example: Export SVG graphics of dependency parses +code("Example"). import spacy from spacy import displacy from pathlib import Path nlp = spacy.load('en') sentences = ["This is an example.", "This is another one."] for sent in sentences: doc = nlp(sentence) svg = displacy.render(doc, style='dep') file_name = '-'.join([w.text for w in doc if not w.is_punct]) + '.svg' output_path = Path('/images/' + file_name) output_path.open('w', encoding='utf-8').write(svg) p | The above code will generate the dependency visualizations as | two files, #[code This-is-an-example.svg] and #[code This-is-another-one.svg]. +h(3, "manual-usage") Rendering data manually p | You can also use displaCy to manually render data. This can be useful if | you want to visualize output from other libraries, like | #[+a("http://www.nltk.org") NLTK] or | #[+a("https://github.com/tensorflow/models/tree/master/research/syntaxnet") SyntaxNet]. | If you set #[code manual=True] on either #[code render()] or | #[code serve()], you can pass in data in displaCy's format (instead of | #[code Doc] objects). When setting #[code ents] manually, make sure to | supply them in the right order, i.e. starting with the lowest start | position. +aside-code("Example"). ex = [{'text': 'But Google is starting from behind.', 'ents': [{'start': 4, 'end': 10, 'label': 'ORG'}], 'title': None}] html = displacy.render(ex, style='ent', manual=True) +code("DEP input"). { 'words': [ {'text': 'This', 'tag': 'DT'}, {'text': 'is', 'tag': 'VBZ'}, {'text': 'a', 'tag': 'DT'}, {'text': 'sentence', 'tag': 'NN'}], 'arcs': [ {'start': 0, 'end': 1, 'label': 'nsubj', 'dir': 'left'}, {'start': 2, 'end': 3, 'label': 'det', 'dir': 'left'}, {'start': 1, 'end': 3, 'label': 'attr', 'dir': 'right'}] } +code("ENT input"). { 'text': 'But Google is starting from behind.', 'ents': [{'start': 4, 'end': 10, 'label': 'ORG'}], 'title': None } +h(3, "webapp") Using displaCy in a web application p | If you want to use the visualizers as part of a web application, for | example to create something like our | #[+a(DEMOS_URL + "/displacy") online demo], it's not recommended to | only wrap and serve the displaCy renderer. Instead, you should only | rely on the server to perform spaCy's processing capabilities, and use | #[+a(gh("displacy")) displaCy.js] to render the JSON-formatted output. +aside("Why not return the HTML by the server?") | It's certainly possible to just have your server return the markup. | But outputting raw, unsanitised HTML is risky and makes your app vulnerable to | #[+a("https://en.wikipedia.org/wiki/Cross-site_scripting") cross-site scripting] | (XSS). All your user needs to do is find a way to make spaCy return text | like #[code <script src="malicious-code.js"><script>], which | is pretty easy in NER mode. Instead of relying on the server to render | and sanitise HTML, you can do this on the client in JavaScript. | displaCy.js creates the markup as DOM nodes and will never insert raw | HTML. p | The #[code parse_deps] function takes a #[code Doc] object and returns | a dictionary in a format that can be rendered by displaCy. +code("Example"). import spacy from spacy import displacy nlp = spacy.load('en') def displacy_service(text): doc = nlp(text) return displacy.parse_deps(doc) p | Using a library like #[+a("https://falconframework.org/") Falcon] or | #[+a("http://www.hug.rest/") Hug], you can easily turn the above code | into a simple REST API that receives a text and returns a JSON-formatted | parse. In your front-end, include #[+a(gh("displacy")) displacy.js] and | initialise it with the API URL and the ID or query selector of the | container to render the visualisation in, e.g. #[code '#displacy'] for | #[code <div id="displacy">]. +code("script.js", "javascript"). var displacy = new displaCy('http://localhost:8080', { container: '#displacy' }) function parse(text) { displacy.parse(text); } p | When you call #[code parse()], it will make a request to your API, | receive the JSON-formatted parse and render it in your container. To | create an interactive experience, you could trigger this function by | a button and read the text from an #[code <input>] field.