//- 💫 DOCS > USAGE > VISUALIZERS > HTML
p
| If you don't need the web server and just want to generate the markup
| – for example, to export it to a file or serve it in a custom
| way – you can use #[+api("displacy#render") #[code displacy.render]].
| It works the same way, but returns a string containing the markup.
+code("Example").
import spacy
from spacy import displacy
nlp = spacy.load('en')
doc1 = nlp(u'This is a sentence.')
doc2 = nlp(u'This is another sentence.')
html = displacy.render([doc1, doc2], style='dep', page=True)
p
| #[code page=True] renders the markup wrapped as a full HTML page.
| For minified and more compact HTML markup, you can set #[code minify=True].
| If you're rendering a dependency parse, you can also export it as an
| #[code .svg] file.
+aside("What's SVG?")
| Unlike other image formats, the SVG (Scalable Vector Graphics) uses XML
| markup that's easy to manipulate
| #[+a("https://www.smashingmagazine.com/2014/11/styling-and-animating-svgs-with-css/") using CSS] or
| #[+a("https://css-tricks.com/smil-is-dead-long-live-smil-a-guide-to-alternatives-to-smil-features/") JavaScript].
| Essentially, SVG lets you design with code, which makes it a perfect fit
| for visualizing dependency trees. SVGs can be embedded online in an
| #[code <img>] tag, or inlined in an HTML document. They're also
| pretty easy to #[+a("https://convertio.co/image-converter/") convert].
+code.
svg = displacy.render(doc, style='dep')
output_path = Path('/images/sentence.svg')
output_path.open('w', encoding='utf-8').write(svg)
+infobox("Important note")
| Since each visualization is generated as a separate SVG, exporting
| #[code .svg] files only works if you're rendering #[strong one single doc]
| at a time. (This makes sense – after all, each visualization should be
| a standalone graphic.) So instead of rendering all #[code Doc]s at one,
| loop over them and export them separately.
+h(3, "examples-export-svg") Example: Export SVG graphics of dependency parses
+code("Example").
import spacy
from spacy import displacy
from pathlib import Path
nlp = spacy.load('en')
sentences = ["This is an example.", "This is another one."]
for sent in sentences:
doc = nlp(sentence)
svg = displacy.render(doc, style='dep')
file_name = '-'.join([w.text for w in doc if not w.is_punct]) + '.svg'
output_path = Path('/images/' + file_name)
output_path.open('w', encoding='utf-8').write(svg)
p
| The above code will generate the dependency visualizations as
| two files, #[code This-is-an-example.svg] and #[code This-is-another-one.svg].
+h(3, "manual-usage") Rendering data manually
p
| You can also use displaCy to manually render data. This can be useful if
| you want to visualize output from other libraries, like
| #[+a("http://www.nltk.org") NLTK] or
| #[+a("https://github.com/tensorflow/models/tree/master/research/syntaxnet") SyntaxNet].
| If you set #[code manual=True] on either #[code render()] or
| #[code serve()], you can pass in data in displaCy's format (instead of
| #[code Doc] objects). When setting #[code ents] manually, make sure to
| supply them in the right order, i.e. starting with the lowest start
| position.
+aside-code("Example").
ex = [{'text': 'But Google is starting from behind.',
'ents': [{'start': 4, 'end': 10, 'label': 'ORG'}],
'title': None}]
html = displacy.render(ex, style='ent', manual=True)
+code("DEP input").
{
'words': [
{'text': 'This', 'tag': 'DT'},
{'text': 'is', 'tag': 'VBZ'},
{'text': 'a', 'tag': 'DT'},
{'text': 'sentence', 'tag': 'NN'}],
'arcs': [
{'start': 0, 'end': 1, 'label': 'nsubj', 'dir': 'left'},
{'start': 2, 'end': 3, 'label': 'det', 'dir': 'left'},
{'start': 1, 'end': 3, 'label': 'attr', 'dir': 'right'}]
}
+code("ENT input").
{
'text': 'But Google is starting from behind.',
'ents': [{'start': 4, 'end': 10, 'label': 'ORG'}],
'title': None
}
+h(3, "webapp") Using displaCy in a web application
p
| If you want to use the visualizers as part of a web application, for
| example to create something like our
| #[+a(DEMOS_URL + "/displacy") online demo], it's not recommended to
| only wrap and serve the displaCy renderer. Instead, you should only
| rely on the server to perform spaCy's processing capabilities, and use
| #[+a(gh("displacy")) displaCy.js] to render the JSON-formatted output.
+aside("Why not return the HTML by the server?")
| It's certainly possible to just have your server return the markup.
| But outputting raw, unsanitised HTML is risky and makes your app vulnerable to
| #[+a("https://en.wikipedia.org/wiki/Cross-site_scripting") cross-site scripting]
| (XSS). All your user needs to do is find a way to make spaCy return text
| like #[code <script src="malicious-code.js"><script>], which
| is pretty easy in NER mode. Instead of relying on the server to render
| and sanitise HTML, you can do this on the client in JavaScript.
| displaCy.js creates the markup as DOM nodes and will never insert raw
| HTML.
p
| The #[code parse_deps] function takes a #[code Doc] object and returns
| a dictionary in a format that can be rendered by displaCy.
+code("Example").
import spacy
from spacy import displacy
nlp = spacy.load('en')
def displacy_service(text):
doc = nlp(text)
return displacy.parse_deps(doc)
p
| Using a library like #[+a("https://falconframework.org/") Falcon] or
| #[+a("http://www.hug.rest/") Hug], you can easily turn the above code
| into a simple REST API that receives a text and returns a JSON-formatted
| parse. In your front-end, include #[+a(gh("displacy")) displacy.js] and
| initialise it with the API URL and the ID or query selector of the
| container to render the visualisation in, e.g. #[code '#displacy'] for
| #[code <div id="displacy">].
+code("script.js", "javascript").
var displacy = new displaCy('http://localhost:8080', {
container: '#displacy'
})
function parse(text) {
displacy.parse(text);
}
p
| When you call #[code parse()], it will make a request to your API,
| receive the JSON-formatted parse and render it in your container. To
| create an interactive experience, you could trigger this function by
| a button and read the text from an #[code <input>] field.