from thinc.api import Model from ..attrs import LOWER from ..util import registry @registry.layers("spacy.extract_ngrams.v1") def extract_ngrams(ngram_size: int, attr: int = LOWER) -> Model: model: Model = Model("extract_ngrams", forward) model.attrs["ngram_size"] = ngram_size model.attrs["attr"] = attr return model def forward(model: Model, docs, is_train: bool): batch_keys = [] batch_vals = [] for doc in docs: unigrams = model.ops.asarray(doc.to_array([model.attrs["attr"]])) ngrams = [unigrams] for n in range(2, model.attrs["ngram_size"] + 1): ngrams.append(model.ops.ngrams(n, unigrams)) # type: ignore[arg-type] keys = model.ops.xp.concatenate(ngrams) keys, vals = model.ops.xp.unique(keys, return_counts=True) batch_keys.append(keys) batch_vals.append(vals) lengths = model.ops.asarray([arr.shape[0] for arr in batch_keys], dtype="int32") batch_keys = model.ops.xp.concatenate(batch_keys) batch_vals = model.ops.asarray(model.ops.xp.concatenate(batch_vals), dtype="f") def backprop(dY): return [] return (batch_keys, batch_vals, lengths), backprop