# cython: infer_types=True, profile=True cimport numpy as np import numpy import srsly from thinc.api import to_categorical from ..tokens.doc cimport Doc from ..vocab cimport Vocab from ..morphology cimport Morphology from ..parts_of_speech import IDS as POS_IDS from ..symbols import POS from .. import util from ..language import component from ..util import link_vectors_to_models, create_default_optimizer from ..errors import Errors, TempErrors from .pipes import Tagger, _load_cfg from .. import util @component("morphologizer", assigns=["token.morph", "token.pos"]) class Morphologizer(Tagger): def __init__(self, vocab, model, **cfg): self.vocab = vocab self.model = model self._rehearsal_model = None self.cfg = dict(sorted(cfg.items())) self.cfg.setdefault("labels", {}) self.cfg.setdefault("morph_pos", {}) @property def labels(self): return tuple(self.cfg["labels"].keys()) def add_label(self, label): if not isinstance(label, str): raise ValueError(Errors.E187) if label in self.labels: return 0 morph = Morphology.feats_to_dict(label) norm_morph_pos = self.vocab.strings[self.vocab.morphology.add(morph)] pos = morph.get("POS", "") if norm_morph_pos not in self.cfg["labels"]: self.cfg["labels"][norm_morph_pos] = norm_morph_pos self.cfg["morph_pos"][norm_morph_pos] = POS_IDS[pos] return 1 def begin_training(self, get_examples=lambda: [], pipeline=None, sgd=None, **kwargs): for example in get_examples(): for i, morph in enumerate(example.token_annotation.morphs): pos = example.token_annotation.get_pos(i) morph = Morphology.feats_to_dict(morph) norm_morph = self.vocab.strings[self.vocab.morphology.add(morph)] if pos: morph["POS"] = pos norm_morph_pos = self.vocab.strings[self.vocab.morphology.add(morph)] if norm_morph_pos not in self.cfg["labels"]: self.cfg["labels"][norm_morph_pos] = norm_morph self.cfg["morph_pos"][norm_morph_pos] = POS_IDS[pos] self.set_output(len(self.labels)) self.model.initialize() link_vectors_to_models(self.vocab) if sgd is None: sgd = self.create_optimizer() return sgd def set_annotations(self, docs, batch_tag_ids): if isinstance(docs, Doc): docs = [docs] cdef Doc doc cdef Vocab vocab = self.vocab for i, doc in enumerate(docs): doc_tag_ids = batch_tag_ids[i] if hasattr(doc_tag_ids, "get"): doc_tag_ids = doc_tag_ids.get() for j, tag_id in enumerate(doc_tag_ids): morph = self.labels[tag_id] doc.c[j].morph = self.vocab.morphology.add(self.cfg["labels"][morph]) doc.c[j].pos = self.cfg["morph_pos"][morph] doc.is_morphed = True def get_loss(self, examples, scores): scores = self.model.ops.flatten(scores) tag_index = {tag: i for i, tag in enumerate(self.labels)} cdef int idx = 0 correct = numpy.zeros((scores.shape[0],), dtype="i") guesses = scores.argmax(axis=1) known_labels = numpy.ones((scores.shape[0], 1), dtype="f") for ex in examples: gold = ex.gold for i in range(len(gold.morphs)): pos = gold.pos[i] if i < len(gold.pos) else "" morph = gold.morphs[i] feats = Morphology.feats_to_dict(morph) if pos: feats["POS"] = pos if len(feats) > 0: morph = self.vocab.strings[self.vocab.morphology.add(feats)] if morph == "": morph = Morphology.EMPTY_MORPH if morph is None: correct[idx] = guesses[idx] elif morph in tag_index: correct[idx] = tag_index[morph] else: correct[idx] = 0 known_labels[idx] = 0. idx += 1 correct = self.model.ops.xp.array(correct, dtype="i") d_scores = scores - to_categorical(correct, n_classes=scores.shape[1]) d_scores *= self.model.ops.asarray(known_labels) loss = (d_scores**2).sum() docs = [ex.doc for ex in examples] d_scores = self.model.ops.unflatten(d_scores, [len(d) for d in docs]) return float(loss), d_scores def to_bytes(self, exclude=tuple(), **kwargs): serialize = {} serialize["model"] = self.model.to_bytes serialize["vocab"] = self.vocab.to_bytes serialize["cfg"] = lambda: srsly.json_dumps(self.cfg) exclude = util.get_serialization_exclude(serialize, exclude, kwargs) return util.to_bytes(serialize, exclude) def from_bytes(self, bytes_data, exclude=tuple(), **kwargs): def load_model(b): try: self.model.from_bytes(b) except AttributeError: raise ValueError(Errors.E149) deserialize = { "vocab": lambda b: self.vocab.from_bytes(b), "cfg": lambda b: self.cfg.update(srsly.json_loads(b)), "model": lambda b: load_model(b), } exclude = util.get_serialization_exclude(deserialize, exclude, kwargs) util.from_bytes(bytes_data, deserialize, exclude) return self def to_disk(self, path, exclude=tuple(), **kwargs): serialize = { "vocab": lambda p: self.vocab.to_disk(p), "model": lambda p: p.open("wb").write(self.model.to_bytes()), "cfg": lambda p: srsly.write_json(p, self.cfg), } exclude = util.get_serialization_exclude(serialize, exclude, kwargs) util.to_disk(path, serialize, exclude) def from_disk(self, path, exclude=tuple(), **kwargs): def load_model(p): with p.open("rb") as file_: try: self.model.from_bytes(file_.read()) except AttributeError: raise ValueError(Errors.E149) deserialize = { "vocab": lambda p: self.vocab.from_disk(p), "cfg": lambda p: self.cfg.update(_load_cfg(p)), "model": load_model, } exclude = util.get_serialization_exclude(deserialize, exclude, kwargs) util.from_disk(path, deserialize, exclude) return self