import logging from pathlib import Path from typing import Optional import typer from wasabi import msg from .. import util from ..util import get_sourced_components, load_model_from_config from ._util import ( Arg, Opt, app, import_code, parse_config_overrides, show_validation_error, ) @app.command( "assemble", context_settings={"allow_extra_args": True, "ignore_unknown_options": True}, ) def assemble_cli( # fmt: off ctx: typer.Context, # This is only used to read additional arguments config_path: Path = Arg(..., help="Path to config file", exists=True, allow_dash=True), output_path: Path = Arg(..., help="Output directory to store assembled pipeline in"), code_path: Optional[Path] = Opt(None, "--code", "-c", help="Path to Python file with additional code (registered functions) to be imported"), verbose: bool = Opt(False, "--verbose", "-V", "-VV", help="Display more information for debugging purposes"), # fmt: on ): """ Assemble a spaCy pipeline from a config file. The config file includes all settings for initializing the pipeline. To override settings in the config, e.g. settings that point to local paths or that you want to experiment with, you can override them as command line options. The --code argument lets you pass in a Python file that can be used to register custom functions that are referenced in the config. DOCS: https://spacy.io/api/cli#assemble """ if verbose: util.logger.setLevel(logging.DEBUG) # Make sure all files and paths exists if they are needed if not config_path or (str(config_path) != "-" and not config_path.exists()): msg.fail("Config file not found", config_path, exits=1) overrides = parse_config_overrides(ctx.args) import_code(code_path) with show_validation_error(config_path): config = util.load_config(config_path, overrides=overrides, interpolate=False) msg.divider("Initializing pipeline") nlp = load_model_from_config(config, auto_fill=True) config = config.interpolate() sourced = get_sourced_components(config) # Make sure that listeners are defined before initializing further nlp._link_components() with nlp.select_pipes(disable=[*sourced]): nlp.initialize() msg.good("Initialized pipeline") msg.divider("Serializing to disk") if output_path is not None and not output_path.exists(): output_path.mkdir(parents=True) msg.good(f"Created output directory: {output_path}") nlp.to_disk(output_path)