#!/usr/bin/env python # coding: utf8 """Example of training spaCy dependency parser, starting off with an existing model or a blank model. For more details, see the documentation: * Training: https://spacy.io/usage/training * Dependency Parse: https://spacy.io/usage/linguistic-features#dependency-parse Compatible with: spaCy v2.0.0+ Last tested with: v2.1.0 """ from __future__ import unicode_literals, print_function import plac import random from pathlib import Path import spacy from spacy.util import minibatch, compounding # training data TRAIN_DATA = [ ( "They trade mortgage-backed securities.", { "heads": [1, 1, 4, 4, 5, 1, 1], "deps": ["nsubj", "ROOT", "compound", "punct", "nmod", "dobj", "punct"], }, ), ( "I like London and Berlin.", { "heads": [1, 1, 1, 2, 2, 1], "deps": ["nsubj", "ROOT", "dobj", "cc", "conj", "punct"], }, ), ] @plac.annotations( model=("Model name. Defaults to blank 'en' model.", "option", "m", str), output_dir=("Optional output directory", "option", "o", Path), n_iter=("Number of training iterations", "option", "n", int), ) def main(model=None, output_dir=None, n_iter=15): """Load the model, set up the pipeline and train the parser.""" if model is not None: nlp = spacy.load(model) # load existing spaCy model print("Loaded model '%s'" % model) else: nlp = spacy.blank("en") # create blank Language class print("Created blank 'en' model") # add the parser to the pipeline if it doesn't exist # nlp.create_pipe works for built-ins that are registered with spaCy if "parser" not in nlp.pipe_names: parser = nlp.create_pipe("parser") nlp.add_pipe(parser, first=True) # otherwise, get it, so we can add labels to it else: parser = nlp.get_pipe("parser") # add labels to the parser for _, annotations in TRAIN_DATA: for dep in annotations.get("deps", []): parser.add_label(dep) # get names of other pipes to disable them during training other_pipes = [pipe for pipe in nlp.pipe_names if pipe != "parser"] with nlp.disable_pipes(*other_pipes): # only train parser optimizer = nlp.begin_training() for itn in range(n_iter): random.shuffle(TRAIN_DATA) losses = {} # batch up the examples using spaCy's minibatch batches = minibatch(TRAIN_DATA, size=compounding(4.0, 32.0, 1.001)) for batch in batches: nlp.update(batch, sgd=optimizer, losses=losses) print("Losses", losses) # test the trained model test_text = "I like securities." doc = nlp(test_text) print("Dependencies", [(t.text, t.dep_, t.head.text) for t in doc]) # save model to output directory if output_dir is not None: output_dir = Path(output_dir) if not output_dir.exists(): output_dir.mkdir() nlp.to_disk(output_dir) print("Saved model to", output_dir) # test the saved model print("Loading from", output_dir) nlp2 = spacy.load(output_dir) doc = nlp2(test_text) print("Dependencies", [(t.text, t.dep_, t.head.text) for t in doc]) if __name__ == "__main__": plac.call(main) # expected result: # [ # ('I', 'nsubj', 'like'), # ('like', 'ROOT', 'like'), # ('securities', 'dobj', 'like'), # ('.', 'punct', 'like') # ]