{ "cells": [ { "cell_type": "code", "execution_count": 2, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "{'cells': [{'cell_type': 'markdown',\n", " 'metadata': {},\n", " 'source': ['# Pure Logistic Regression Text Categorizer\\n',\n", " 'This tutorial demonstrates how to use the custom logistic regression text categorizer.']},\n", " {'cell_type': 'code',\n", " 'execution_count': None,\n", " 'metadata': {},\n", " 'source': ['import spacy\\n',\n", " 'from spacy.training import Example\\n',\n", " '\\n',\n", " '# Load spaCy model\\n',\n", " 'nlp = spacy.load(\"en_core_web_lg\")\\n',\n", " 'nlp.add_pipe(\"pure_logistic_textcat\")\\n',\n", " '\\n',\n", " '# Example training data\\n',\n", " 'TRAIN_DATA = [\\n',\n", " ' (\"This is amazing!\", {\"cats\": {\"positive\": 1.0, \"negative\": 0.0}}),\\n',\n", " ' (\"This is terrible!\", {\"cats\": {\"positive\": 0.0, \"negative\": 1.0}})\\n',\n", " ']\\n',\n", " '\\n',\n", " '# Create training examples\\n',\n", " 'examples = []\\n',\n", " 'for text, annotations in TRAIN_DATA:\\n',\n", " ' doc = nlp.make_doc(text)\\n',\n", " ' example = Example.from_dict(doc, annotations)\\n',\n", " ' examples.append(example)\\n',\n", " '\\n',\n", " '# Train the model\\n',\n", " 'textcat = nlp.get_pipe(\"pure_logistic_textcat\")\\n',\n", " 'losses = textcat.update(examples)\\n',\n", " 'print(f\"Losses: {losses}\")\\n',\n", " '\\n',\n", " '# Test the model\\n',\n", " 'test_text = \"This product is fantastic!\"\\n',\n", " 'doc = nlp(test_text)\\n',\n", " 'print(f\"\\\\nText: {test_text}\")\\n',\n", " 'print(f\"Predictions: {doc.cats}\")']}]}" ] }, "execution_count": 2, "metadata": {}, "output_type": "execute_result" } ], "source": [ "{\n", " \"cells\": [\n", " {\n", " \"cell_type\": \"markdown\",\n", " \"metadata\": {},\n", " \"source\": [\n", " \"# Pure Logistic Regression Text Categorizer\\n\",\n", " \"This tutorial demonstrates how to use the custom logistic regression text categorizer.\"\n", " ]\n", " },\n", " {\n", " \"cell_type\": \"code\",\n", " \"execution_count\": None,\n", " \"metadata\": {},\n", " \"source\": [\n", " \"import spacy\\n\",\n", " \"from spacy.training import Example\\n\",\n", " \"\\n\",\n", " \"# Load spaCy model\\n\",\n", " \"nlp = spacy.load(\\\"en_core_web_lg\\\")\\n\",\n", " \"nlp.add_pipe(\\\"pure_logistic_textcat\\\")\\n\",\n", " \"\\n\",\n", " \"# Example training data\\n\",\n", " \"TRAIN_DATA = [\\n\",\n", " \" (\\\"This is amazing!\\\", {\\\"cats\\\": {\\\"positive\\\": 1.0, \\\"negative\\\": 0.0}}),\\n\",\n", " \" (\\\"This is terrible!\\\", {\\\"cats\\\": {\\\"positive\\\": 0.0, \\\"negative\\\": 1.0}})\\n\",\n", " \"]\\n\",\n", " \"\\n\",\n", " \"# Create training examples\\n\",\n", " \"examples = []\\n\",\n", " \"for text, annotations in TRAIN_DATA:\\n\",\n", " \" doc = nlp.make_doc(text)\\n\",\n", " \" example = Example.from_dict(doc, annotations)\\n\",\n", " \" examples.append(example)\\n\",\n", " \"\\n\",\n", " \"# Train the model\\n\",\n", " \"textcat = nlp.get_pipe(\\\"pure_logistic_textcat\\\")\\n\",\n", " \"losses = textcat.update(examples)\\n\",\n", " \"print(f\\\"Losses: {losses}\\\")\\n\",\n", " \"\\n\",\n", " \"# Test the model\\n\",\n", " \"test_text = \\\"This product is fantastic!\\\"\\n\",\n", " \"doc = nlp(test_text)\\n\",\n", " \"print(f\\\"\\\\nText: {test_text}\\\")\\n\",\n", " \"print(f\\\"Predictions: {doc.cats}\\\")\"\n", " ]\n", " }\n", " ]\n", "}" ] } ], "metadata": { "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.10.5" } }, "nbformat": 4, "nbformat_minor": 2 }