# cython: infer_types=True # cython: profile=True # coding: utf8 from __future__ import unicode_literals from thinc.api import chain, layerize, with_getitem import numpy cimport numpy as np import cytoolz import util from collections import OrderedDict import ujson import msgpack from thinc.api import add, layerize, chain, clone, concatenate, with_flatten from thinc.v2v import Model, Maxout, Softmax, Affine, ReLu, SELU from thinc.i2v import HashEmbed from thinc.t2v import Pooling, max_pool, mean_pool, sum_pool from thinc.t2t import ExtractWindow, ParametricAttention from thinc.misc import Residual from thinc.misc import BatchNorm as BN from thinc.misc import LayerNorm as LN from thinc.neural.util import to_categorical from thinc.neural._classes.difference import Siamese, CauchySimilarity from .tokens.doc cimport Doc from .syntax.parser cimport Parser as LinearParser from .syntax.nn_parser cimport Parser as NeuralParser from .syntax.parser import get_templates as get_feature_templates from .syntax.beam_parser cimport BeamParser from .syntax.ner cimport BiluoPushDown from .syntax.arc_eager cimport ArcEager from .tagger import Tagger from .syntax.stateclass cimport StateClass from .gold cimport GoldParse from .morphology cimport Morphology from .vocab cimport Vocab from .syntax import nonproj from .compat import json_dumps from .attrs import ID, LOWER, PREFIX, SUFFIX, SHAPE, TAG, DEP, POS from ._ml import rebatch, Tok2Vec, flatten from ._ml import build_text_classifier, build_tagger_model from ._ml import link_vectors_to_models from .parts_of_speech import X class SentenceSegmenter(object): """A simple spaCy hook, to allow custom sentence boundary detection logic (that doesn't require the dependency parse). To change the sentence boundary detection strategy, pass a generator function `strategy` on initialization, or assign a new strategy to the .strategy attribute. Sentence detection strategies should be generators that take `Doc` objects and yield `Span` objects for each sentence. """ name = 'sbd' def __init__(self, vocab, strategy=None): self.vocab = vocab if strategy is None or strategy == 'on_punct': strategy = self.split_on_punct self.strategy = strategy def __call__(self, doc): doc.user_hooks['sents'] = self.strategy @staticmethod def split_on_punct(doc): start = 0 seen_period = False for i, word in enumerate(doc): if seen_period and not word.is_punct: yield doc[start : word.i] start = word.i seen_period = False elif word.text in ['.', '!', '?']: seen_period = True if start < len(doc): yield doc[start : len(doc)] class BaseThincComponent(object): name = None @classmethod def Model(cls, *shape, **kwargs): """Initialize a model for the pipe.""" raise NotImplementedError def __init__(self, vocab, model=True, **cfg): """Create a new pipe instance.""" raise NotImplementedError def __call__(self, doc): """Apply the pipe to one document. The document is modified in-place, and returned. Both __call__ and pipe should delegate to the `predict()` and `set_annotations()` methods. """ scores = self.predict([doc]) self.set_annotations([doc], scores) return doc def pipe(self, stream, batch_size=128, n_threads=-1): """Apply the pipe to a stream of documents. Both __call__ and pipe should delegate to the `predict()` and `set_annotations()` methods. """ for docs in cytoolz.partition_all(batch_size, stream): docs = list(docs) scores = self.predict(docs) self.set_annotations(docs, scores) yield from docs def predict(self, docs): """Apply the pipeline's model to a batch of docs, without modifying them. """ raise NotImplementedError def set_annotations(self, docs, scores): """Modify a batch of documents, using pre-computed scores.""" raise NotImplementedError def update(self, docs, golds, drop=0., sgd=None, losses=None): """Learn from a batch of documents and gold-standard information, updating the pipe's model. Delegates to predict() and get_loss(). """ raise NotImplementedError def get_loss(self, docs, golds, scores): """Find the loss and gradient of loss for the batch of documents and their predicted scores.""" raise NotImplementedError def begin_training(self, gold_tuples=tuple(), pipeline=None): """Initialize the pipe for training, using data exampes if available. If no model has been initialized yet, the model is added.""" if self.model is True: self.model = self.Model(**self.cfg) link_vectors_to_models(self.vocab) def use_params(self, params): """Modify the pipe's model, to use the given parameter values. """ with self.model.use_params(params): yield def to_bytes(self, **exclude): """Serialize the pipe to a bytestring.""" serialize = OrderedDict(( ('cfg', lambda: json_dumps(self.cfg)), ('model', lambda: self.model.to_bytes()), ('vocab', lambda: self.vocab.to_bytes()) )) return util.to_bytes(serialize, exclude) def from_bytes(self, bytes_data, **exclude): """Load the pipe from a bytestring.""" def load_model(b): if self.model is True: self.cfg['pretrained_dims'] = self.vocab.vectors_length self.model = self.Model(**self.cfg) self.model.from_bytes(b) deserialize = OrderedDict(( ('cfg', lambda b: self.cfg.update(ujson.loads(b))), ('vocab', lambda b: self.vocab.from_bytes(b)), ('model', load_model), )) util.from_bytes(bytes_data, deserialize, exclude) return self def to_disk(self, path, **exclude): """Serialize the pipe to disk.""" serialize = OrderedDict(( ('cfg', lambda p: p.open('w').write(json_dumps(self.cfg))), ('vocab', lambda p: self.vocab.to_disk(p)), ('model', lambda p: p.open('wb').write(self.model.to_bytes())), )) util.to_disk(path, serialize, exclude) def from_disk(self, path, **exclude): """Load the pipe from disk.""" def load_model(p): if self.model is True: self.cfg['pretrained_dims'] = self.vocab.vectors_length self.model = self.Model(**self.cfg) self.model.from_bytes(p.open('rb').read()) deserialize = OrderedDict(( ('cfg', lambda p: self.cfg.update(_load_cfg(p))), ('vocab', lambda p: self.vocab.from_disk(p)), ('model', load_model), )) util.from_disk(path, deserialize, exclude) return self def _load_cfg(path): if path.exists(): return ujson.load(path.open()) else: return {} class TokenVectorEncoder(BaseThincComponent): """Assign position-sensitive vectors to tokens, using a CNN or RNN.""" name = 'tensorizer' @classmethod def Model(cls, width=128, embed_size=4000, **cfg): """Create a new statistical model for the class. width (int): Output size of the model. embed_size (int): Number of vectors in the embedding table. **cfg: Config parameters. RETURNS (Model): A `thinc.neural.Model` or similar instance. """ width = util.env_opt('token_vector_width', width) embed_size = util.env_opt('embed_size', embed_size) return Tok2Vec(width, embed_size, **cfg) def __init__(self, vocab, model=True, **cfg): """Construct a new statistical model. Weights are not allocated on initialisation. vocab (Vocab): A `Vocab` instance. The model must share the same `Vocab` instance with the `Doc` objects it will process. model (Model): A `Model` instance or `True` allocate one later. **cfg: Config parameters. EXAMPLE: >>> from spacy.pipeline import TokenVectorEncoder >>> tok2vec = TokenVectorEncoder(nlp.vocab) >>> tok2vec.model = tok2vec.Model(128, 5000) """ self.vocab = vocab self.model = model self.cfg = dict(cfg) self.cfg['pretrained_dims'] = self.vocab.vectors.data.shape[1] self.cfg.setdefault('cnn_maxout_pieces', 3) def __call__(self, doc): """Add context-sensitive vectors to a `Doc`, e.g. from a CNN or LSTM model. Vectors are set to the `Doc.tensor` attribute. docs (Doc or iterable): One or more documents to add vectors to. RETURNS (dict or None): Intermediate computations. """ tokvecses = self.predict([doc]) self.set_annotations([doc], tokvecses) return doc def pipe(self, stream, batch_size=128, n_threads=-1): """Process `Doc` objects as a stream. stream (iterator): A sequence of `Doc` objects to process. batch_size (int): Number of `Doc` objects to group. n_threads (int): Number of threads. YIELDS (iterator): A sequence of `Doc` objects, in order of input. """ for docs in cytoolz.partition_all(batch_size, stream): docs = list(docs) tokvecses = self.predict(docs) self.set_annotations(docs, tokvecses) yield from docs def predict(self, docs): """Return a single tensor for a batch of documents. docs (iterable): A sequence of `Doc` objects. RETURNS (object): Vector representations for each token in the documents. """ tokvecs = self.model(docs) return tokvecs def set_annotations(self, docs, tokvecses): """Set the tensor attribute for a batch of documents. docs (iterable): A sequence of `Doc` objects. tokvecs (object): Vector representation for each token in the documents. """ for doc, tokvecs in zip(docs, tokvecses): assert tokvecs.shape[0] == len(doc) doc.tensor = tokvecs def update(self, docs, golds, state=None, drop=0., sgd=None, losses=None): """Update the model. docs (iterable): A batch of `Doc` objects. golds (iterable): A batch of `GoldParse` objects. drop (float): The droput rate. sgd (callable): An optimizer. RETURNS (dict): Results from the update. """ if isinstance(docs, Doc): docs = [docs] tokvecs, bp_tokvecs = self.model.begin_update(docs, drop=drop) return tokvecs, bp_tokvecs def get_loss(self, docs, golds, scores): # TODO: implement raise NotImplementedError def begin_training(self, gold_tuples=tuple(), pipeline=None): """Allocate models, pre-process training data and acquire a trainer and optimizer. gold_tuples (iterable): Gold-standard training data. pipeline (list): The pipeline the model is part of. """ if self.model is True: self.cfg['pretrained_dims'] = self.vocab.vectors_length self.model = self.Model(**self.cfg) link_vectors_to_models(self.vocab) class NeuralTagger(BaseThincComponent): name = 'tagger' def __init__(self, vocab, model=True, **cfg): self.vocab = vocab self.model = model self.cfg = dict(cfg) self.cfg.setdefault('cnn_maxout_pieces', 2) self.cfg.setdefault('pretrained_dims', self.vocab.vectors.data.shape[1]) def __call__(self, doc): tags = self.predict([doc]) self.set_annotations([doc], tags) return doc def pipe(self, stream, batch_size=128, n_threads=-1): for docs in cytoolz.partition_all(batch_size, stream): docs = list(docs) tag_ids = self.predict(docs) self.set_annotations(docs, tag_ids) yield from docs def predict(self, docs): scores = self.model(docs) scores = self.model.ops.flatten(scores) guesses = scores.argmax(axis=1) if not isinstance(guesses, numpy.ndarray): guesses = guesses.get() guesses = self.model.ops.unflatten(guesses, [len(d) for d in docs]) return guesses def set_annotations(self, docs, batch_tag_ids): if isinstance(docs, Doc): docs = [docs] cdef Doc doc cdef int idx = 0 cdef Vocab vocab = self.vocab for i, doc in enumerate(docs): doc_tag_ids = batch_tag_ids[i] if hasattr(doc_tag_ids, 'get'): doc_tag_ids = doc_tag_ids.get() for j, tag_id in enumerate(doc_tag_ids): # Don't clobber preset POS tags if doc.c[j].tag == 0 and doc.c[j].pos == 0: vocab.morphology.assign_tag_id(&doc.c[j], tag_id) idx += 1 doc.is_tagged = True def update(self, docs, golds, drop=0., sgd=None, losses=None): if losses is not None and self.name not in losses: losses[self.name] = 0. tag_scores, bp_tag_scores = self.model.begin_update(docs, drop=drop) loss, d_tag_scores = self.get_loss(docs, golds, tag_scores) bp_tag_scores(d_tag_scores, sgd=sgd) if losses is not None: losses[self.name] += loss def get_loss(self, docs, golds, scores): scores = self.model.ops.flatten(scores) tag_index = {tag: i for i, tag in enumerate(self.vocab.morphology.tag_names)} cdef int idx = 0 correct = numpy.zeros((scores.shape[0],), dtype='i') guesses = scores.argmax(axis=1) for gold in golds: for tag in gold.tags: if tag is None: correct[idx] = guesses[idx] else: correct[idx] = tag_index[tag] idx += 1 correct = self.model.ops.xp.array(correct, dtype='i') d_scores = scores - to_categorical(correct, nb_classes=scores.shape[1]) d_scores /= d_scores.shape[0] loss = (d_scores**2).sum() d_scores = self.model.ops.unflatten(d_scores, [len(d) for d in docs]) return float(loss), d_scores def begin_training(self, gold_tuples=tuple(), pipeline=None): orig_tag_map = dict(self.vocab.morphology.tag_map) new_tag_map = {} for raw_text, annots_brackets in gold_tuples: for annots, brackets in annots_brackets: ids, words, tags, heads, deps, ents = annots for tag in tags: if tag in orig_tag_map: new_tag_map[tag] = orig_tag_map[tag] else: new_tag_map[tag] = {POS: X} if 'SP' not in new_tag_map: new_tag_map['SP'] = orig_tag_map.get('SP', {POS: X}) cdef Vocab vocab = self.vocab if new_tag_map: vocab.morphology = Morphology(vocab.strings, new_tag_map, vocab.morphology.lemmatizer, exc=vocab.morphology.exc) if self.model is True: self.cfg['pretrained_dims'] = self.vocab.vectors.data.shape[1] self.model = self.Model(self.vocab.morphology.n_tags, **self.cfg) link_vectors_to_models(self.vocab) @classmethod def Model(cls, n_tags, **cfg): return build_tagger_model(n_tags, **cfg) def use_params(self, params): with self.model.use_params(params): yield def to_bytes(self, **exclude): serialize = OrderedDict(( ('model', lambda: self.model.to_bytes()), ('vocab', lambda: self.vocab.to_bytes()), ('tag_map', lambda: msgpack.dumps(self.vocab.morphology.tag_map, use_bin_type=True, encoding='utf8')) )) return util.to_bytes(serialize, exclude) def from_bytes(self, bytes_data, **exclude): def load_model(b): if self.model is True: token_vector_width = util.env_opt('token_vector_width', self.cfg.get('token_vector_width', 128)) self.model = self.Model(self.vocab.morphology.n_tags, **self.cfg) self.model.from_bytes(b) def load_tag_map(b): tag_map = msgpack.loads(b, encoding='utf8') self.vocab.morphology = Morphology( self.vocab.strings, tag_map=tag_map, lemmatizer=self.vocab.morphology.lemmatizer, exc=self.vocab.morphology.exc) deserialize = OrderedDict(( ('vocab', lambda b: self.vocab.from_bytes(b)), ('tag_map', load_tag_map), ('model', lambda b: load_model(b)), )) util.from_bytes(bytes_data, deserialize, exclude) return self def to_disk(self, path, **exclude): self.cfg['pretrained_dims'] = self.vocab.vectors.data.shape[1] serialize = OrderedDict(( ('vocab', lambda p: self.vocab.to_disk(p)), ('tag_map', lambda p: p.open('wb').write(msgpack.dumps( self.vocab.morphology.tag_map, use_bin_type=True, encoding='utf8'))), ('model', lambda p: p.open('wb').write(self.model.to_bytes())), ('cfg', lambda p: p.open('w').write(json_dumps(self.cfg))) )) util.to_disk(path, serialize, exclude) def from_disk(self, path, **exclude): def load_model(p): if self.model is True: self.model = self.Model(self.vocab.morphology.n_tags, **self.cfg) self.model.from_bytes(p.open('rb').read()) def load_tag_map(p): with p.open('rb') as file_: tag_map = msgpack.loads(file_.read(), encoding='utf8') self.vocab.morphology = Morphology( self.vocab.strings, tag_map=tag_map, lemmatizer=self.vocab.morphology.lemmatizer, exc=self.vocab.morphology.exc) deserialize = OrderedDict(( ('cfg', lambda p: self.cfg.update(_load_cfg(p))), ('vocab', lambda p: self.vocab.from_disk(p)), ('tag_map', load_tag_map), ('model', load_model), )) util.from_disk(path, deserialize, exclude) return self class NeuralLabeller(NeuralTagger): name = 'nn_labeller' def __init__(self, vocab, model=True, target='dep_tag_offset', **cfg): self.vocab = vocab self.model = model if target == 'dep': self.make_label = self.make_dep elif target == 'tag': self.make_label = self.make_tag elif target == 'ent': self.make_label = self.make_ent elif target == 'dep_tag_offset': self.make_label = self.make_dep_tag_offset elif target == 'ent_tag': self.make_label = self.make_ent_tag elif hasattr(target, '__call__'): self.make_label = target else: raise ValueError( "NeuralLabeller target should be function or one of " "['dep', 'tag', 'ent', 'dep_tag_offset', 'ent_tag']") self.cfg = dict(cfg) self.cfg.setdefault('cnn_maxout_pieces', 2) self.cfg.setdefault('pretrained_dims', self.vocab.vectors.data.shape[1]) @property def labels(self): return self.cfg.setdefault('labels', {}) @labels.setter def labels(self, value): self.cfg['labels'] = value def set_annotations(self, docs, dep_ids): pass def begin_training(self, gold_tuples=tuple(), pipeline=None, tok2vec=None): gold_tuples = nonproj.preprocess_training_data(gold_tuples) for raw_text, annots_brackets in gold_tuples: for annots, brackets in annots_brackets: ids, words, tags, heads, deps, ents = annots for i in range(len(ids)): label = self.make_label(i, words, tags, heads, deps, ents) if label is not None and label not in self.labels: self.labels[label] = len(self.labels) print(len(self.labels)) if self.model is True: token_vector_width = util.env_opt('token_vector_width') self.model = chain( tok2vec, Softmax(len(self.labels), token_vector_width) ) link_vectors_to_models(self.vocab) @classmethod def Model(cls, n_tags, tok2vec=None, **cfg): return build_tagger_model(n_tags, tok2vec=tok2vec, **cfg) def get_loss(self, docs, golds, scores): cdef int idx = 0 correct = numpy.zeros((scores.shape[0],), dtype='i') guesses = scores.argmax(axis=1) for gold in golds: for i in range(len(gold.labels)): label = self.make_label(i, gold.words, gold.tags, gold.heads, gold.labels, gold.ents) if label is None or label not in self.labels: correct[idx] = guesses[idx] else: correct[idx] = self.labels[label] idx += 1 correct = self.model.ops.xp.array(correct, dtype='i') d_scores = scores - to_categorical(correct, nb_classes=scores.shape[1]) d_scores /= d_scores.shape[0] loss = (d_scores**2).sum() return float(loss), d_scores @staticmethod def make_dep(i, words, tags, heads, deps, ents): if deps[i] is None or heads[i] is None: return None return deps[i] @staticmethod def make_tag(i, words, tags, heads, deps, ents): return tags[i] @staticmethod def make_ent(i, words, tags, heads, deps, ents): if ents is None: return None return ents[i] @staticmethod def make_dep_tag_offset(i, words, tags, heads, deps, ents): if deps[i] is None or heads[i] is None: return None offset = heads[i] - i offset = min(offset, 2) offset = max(offset, -2) return '%s-%s:%d' % (deps[i], tags[i], offset) @staticmethod def make_ent_tag(i, words, tags, heads, deps, ents): if ents is None or ents[i] is None: return None else: return '%s-%s' % (tags[i], ents[i]) class SimilarityHook(BaseThincComponent): """ Experimental A pipeline component to install a hook for supervised similarity into Doc objects. Requires a Tensorizer to pre-process documents. The similarity model can be any object obeying the Thinc Model interface. By default, the model concatenates the elementwise mean and elementwise max of the two tensors, and compares them using the Cauchy-like similarity function from Chen (2013): similarity = 1. / (1. + (W * (vec1-vec2)**2).sum()) Where W is a vector of dimension weights, initialized to 1. """ name = 'similarity' def __init__(self, vocab, model=True, **cfg): self.vocab = vocab self.model = model self.cfg = dict(cfg) @classmethod def Model(cls, length): return Siamese(Pooling(max_pool, mean_pool), CauchySimilarity(length)) def __call__(self, doc): """Install similarity hook""" doc.user_hooks['similarity'] = self.predict return doc def pipe(self, docs, **kwargs): for doc in docs: yield self(doc) def predict(self, doc1, doc2): return self.model.predict([(doc1, doc2)]) def update(self, doc1_doc2, golds, sgd=None, drop=0.): sims, bp_sims = self.model.begin_update(doc1_doc2, drop=drop) def begin_training(self, _=tuple(), pipeline=None): """ Allocate model, using width from tensorizer in pipeline. gold_tuples (iterable): Gold-standard training data. pipeline (list): The pipeline the model is part of. """ if self.model is True: self.model = self.Model(pipeline[0].model.nO) link_vectors_to_models(self.vocab) class TextCategorizer(BaseThincComponent): name = 'textcat' @classmethod def Model(cls, nr_class=1, width=64, **cfg): return build_text_classifier(nr_class, width, **cfg) def __init__(self, vocab, model=True, **cfg): self.vocab = vocab self.model = model self.cfg = dict(cfg) @property def labels(self): return self.cfg.get('labels', ['LABEL']) @labels.setter def labels(self, value): self.cfg['labels'] = value def __call__(self, doc): scores = self.predict([doc]) self.set_annotations([doc], scores) return doc def pipe(self, stream, batch_size=128, n_threads=-1): for docs in cytoolz.partition_all(batch_size, stream): docs = list(docs) scores = self.predict(docs) self.set_annotations(docs, scores) yield from docs def predict(self, docs): scores = self.model(docs) scores = self.model.ops.asarray(scores) return scores def set_annotations(self, docs, scores): for i, doc in enumerate(docs): for j, label in enumerate(self.labels): doc.cats[label] = float(scores[i, j]) def update(self, docs, golds, state=None, drop=0., sgd=None, losses=None): scores, bp_scores = self.model.begin_update(docs, drop=drop) loss, d_scores = self.get_loss(docs, golds, scores) bp_scores(d_scores, sgd=sgd) if losses is not None: losses.setdefault(self.name, 0.0) losses[self.name] += loss def get_loss(self, docs, golds, scores): truths = numpy.zeros((len(golds), len(self.labels)), dtype='f') for i, gold in enumerate(golds): for j, label in enumerate(self.labels): truths[i, j] = label in gold.cats truths = self.model.ops.asarray(truths) d_scores = (scores-truths) / scores.shape[0] mean_square_error = ((scores-truths)**2).sum(axis=1).mean() return mean_square_error, d_scores def begin_training(self, gold_tuples=tuple(), pipeline=None): if pipeline and getattr(pipeline[0], 'name', None) == 'tensorizer': token_vector_width = pipeline[0].model.nO else: token_vector_width = 64 if self.model is True: self.cfg['pretrained_dims'] = self.vocab.vectors_length self.model = self.Model(len(self.labels), token_vector_width, **self.cfg) link_vectors_to_models(self.vocab) cdef class EntityRecognizer(LinearParser): """Annotate named entities on Doc objects.""" TransitionSystem = BiluoPushDown feature_templates = get_feature_templates('ner') def add_label(self, label): LinearParser.add_label(self, label) if isinstance(label, basestring): label = self.vocab.strings[label] cdef class BeamEntityRecognizer(BeamParser): """Annotate named entities on Doc objects.""" TransitionSystem = BiluoPushDown feature_templates = get_feature_templates('ner') def add_label(self, label): LinearParser.add_label(self, label) if isinstance(label, basestring): label = self.vocab.strings[label] cdef class DependencyParser(LinearParser): TransitionSystem = ArcEager feature_templates = get_feature_templates('basic') def add_label(self, label): LinearParser.add_label(self, label) if isinstance(label, basestring): label = self.vocab.strings[label] cdef class NeuralDependencyParser(NeuralParser): name = 'parser' TransitionSystem = ArcEager def init_multitask_objectives(self, gold_tuples, pipeline, **cfg): for target in []: labeller = NeuralLabeller(self.vocab, target=target) tok2vec = self.model[0] labeller.begin_training(gold_tuples, pipeline=pipeline, tok2vec=tok2vec) pipeline.append(labeller) self._multitasks.append(labeller) def __reduce__(self): return (NeuralDependencyParser, (self.vocab, self.moves, self.model), None, None) cdef class NeuralEntityRecognizer(NeuralParser): name = 'ner' TransitionSystem = BiluoPushDown nr_feature = 6 def init_multitask_objectives(self, gold_tuples, pipeline, **cfg): for target in []: labeller = NeuralLabeller(self.vocab, target=target) tok2vec = self.model[0] labeller.begin_training(gold_tuples, pipeline=pipeline, tok2vec=tok2vec) pipeline.append(labeller) self._multitasks.append(labeller) def __reduce__(self): return (NeuralEntityRecognizer, (self.vocab, self.moves, self.model), None, None) cdef class BeamDependencyParser(BeamParser): TransitionSystem = ArcEager feature_templates = get_feature_templates('basic') def add_label(self, label): Parser.add_label(self, label) if isinstance(label, basestring): label = self.vocab.strings[label] __all__ = ['Tagger', 'DependencyParser', 'EntityRecognizer', 'BeamDependencyParser', 'BeamEntityRecognizer', 'TokenVectorEnoder']