# coding: utf8 from __future__ import unicode_literals, division, print_function import json from pathlib import Path from ..scorer import Scorer from ..tagger import Tagger from ..syntax.parser import Parser from ..gold import GoldParse, merge_sents from ..gold import read_json_file as read_gold_json from .. import util def train(language, output_dir, train_data, dev_data, n_iter, tagger, parser, ner): output_path = Path(output_dir) train_path = Path(train_data) dev_path = Path(dev_data) check_dirs(output_path, data_path, dev_path) lang = util.get_lang_class(language) parser_cfg = dict(locals()) tagger_cfg = dict(locals()) entity_cfg = dict(locals()) parser_cfg['features'] = lang.Defaults.parser_features entity_cfg['features'] = lang.Defaults.entity_features gold_train = list(read_gold_json(train_path)) gold_dev = list(read_gold_json(dev_path)) train_model(lang, gold_train, gold_dev, output_path, tagger_cfg, parser_cfg, entity_cfg, n_iter) scorer = evaluate(lang, list(read_gold_json(dev_loc)), output_path) print_results(scorer) def train_config(config): config_path = Path(config) if not config_path.is_file(): util.sys_exit(config_path.as_posix(), title="Config file not found") config = json.load(config_path) for setting in []: if setting not in config.keys(): util.sys_exit("{s} not found in config file.".format(s=setting), title="Missing setting") def train_model(Language, train_data, dev_data, output_path, tagger_cfg, parser_cfg, entity_cfg, n_iter): print("Itn.\tN weight\tN feats\tUAS\tNER F.\tTag %\tToken %") with Language.train(output_path, train_data, tagger_cfg, parser_cfg, entity_cfg) as trainer: loss = 0 for itn, epoch in enumerate(trainer.epochs(n_iter, augment_data=None)): for doc, gold in epoch: trainer.update(doc, gold) dev_scores = trainer.evaluate(dev_data) print_progress(itn, trainer.nlp.parser.model.nr_weight, trainer.nlp.parser.model.nr_active_feat, **dev_scores.scores) def evaluate(Language, gold_tuples, output_path): print("Load parser", output_path) nlp = Language(path=output_path) scorer = Scorer() for raw_text, sents in gold_tuples: sents = merge_sents(sents) for annot_tuples, brackets in sents: if raw_text is None: tokens = nlp.tokenizer.tokens_from_list(annot_tuples[1]) nlp.tagger(tokens) nlp.parser(tokens) nlp.entity(tokens) else: tokens = nlp(raw_text) gold = GoldParse.from_annot_tuples(tokens, annot_tuples) scorer.score(tokens, gold) return scorer def check_dirs(input_path, train_path, dev_path): if not output_path.exists(): util.sys_exit(output_path.as_posix(), title="Output directory not found") if not train_path.exists() and train_path.is_file(): util.sys_exit(train_path.as_posix(), title="Training data not found") def print_progress(itn, nr_weight, nr_active_feat, **scores): tpl = '{:d}\t{:d}\t{:d}\t{uas:.3f}\t{ents_f:.3f}\t{tags_acc:.3f}\t{token_acc:.3f}' print(tpl.format(itn, nr_weight, nr_active_feat, **scores)) def print_results(scorer): results = {'TOK': scorer.token_acc, 'POS': scorer.tags_acc, 'UAS': scorer.uas, 'LAS': scorer.las, 'NER P': scorer.ents_p, 'NER R': scorer.ents_r, 'NER F': scorer.ents_f} util.print_table(results, title="Results")