--- title: GoldParse teaser: A collection for training annotations tag: class source: spacy/gold.pyx --- ## GoldParse.\_\_init\_\_ {#init tag="method"} Create a `GoldParse`. Unlike annotations in `entities`, label annotations in `cats` can overlap, i.e. a single word can be covered by multiple labelled spans. The [`TextCategorizer`](/api/textcategorizer) component expects true examples of a label to have the value `1.0`, and negative examples of a label to have the value `0.0`. Labels not in the dictionary are treated as missing – the gradient for those labels will be zero. | Name | Type | Description | | ----------- | ----------- | -------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- | | `doc` | `Doc` | The document the annotations refer to. | | `words` | iterable | A sequence of unicode word strings. | | `tags` | iterable | A sequence of strings, representing tag annotations. | | `heads` | iterable | A sequence of integers, representing syntactic head offsets. | | `deps` | iterable | A sequence of strings, representing the syntactic relation types. | | `entities` | iterable | A sequence of named entity annotations, either as BILUO tag strings, or as `(start_char, end_char, label)` tuples, representing the entity positions. If BILUO tag strings, you can specify missing values by setting the tag to None. | | `cats` | dict | Labels for text classification. Each key in the dictionary may be a string or an int, or a `(start_char, end_char, label)` tuple, indicating that the label is applied to only part of the document (usually a sentence). | | `links` | dict | Labels for entity linking. A dict with `(start_char, end_char)` keys, and the values being dicts with `kb_id:value` entries, representing external KB IDs mapped to either 1.0 (positive) or 0.0 (negative). | | **RETURNS** | `GoldParse` | The newly constructed object. | ## GoldParse.\_\_len\_\_ {#len tag="method"} Get the number of gold-standard tokens. | Name | Type | Description | | ----------- | ---- | ----------------------------------- | | **RETURNS** | int | The number of gold-standard tokens. | ## GoldParse.is_projective {#is_projective tag="property"} Whether the provided syntactic annotations form a projective dependency tree. | Name | Type | Description | | ----------- | ---- | ----------------------------------------- | | **RETURNS** | bool | Whether annotations form projective tree. | ## Attributes {#attributes} | Name | Type | Description | | ------------------------------------ | ---- | -------------------------------------------------------------------------------------------------------------------------------------------------------- | | `words` | list | The words. | | `tags` | list | The part-of-speech tag annotations. | | `heads` | list | The syntactic head annotations. | | `labels` | list | The syntactic relation-type annotations. | | `ner` | list | The named entity annotations as BILUO tags. | | `cand_to_gold` | list | The alignment from candidate tokenization to gold tokenization. | | `gold_to_cand` | list | The alignment from gold tokenization to candidate tokenization. | | `cats` 2 | list | Entries in the list should be either a label, or a `(start, end, label)` triple. The tuple form is used for categories applied to spans of the document. | | `links` 2.2 | dict | Keys in the dictionary are `(start_char, end_char)` triples, and the values are dictionaries with `kb_id:value` entries. | ## Utilities {#util} ### gold.docs_to_json {#docs_to_json tag="function"} Convert a list of Doc objects into the [JSON-serializable format](/api/annotation#json-input) used by the [`spacy train`](/api/cli#train) command. > #### Example > > ```python > from spacy.gold import docs_to_json > > doc = nlp(u"I like London") > json_data = docs_to_json([doc]) > ``` | Name | Type | Description | | ----------- | ---------------- | ------------------------------------------ | | `docs` | iterable / `Doc` | The `Doc` object(s) to convert. | | `id` | int | ID to assign to the JSON. Defaults to `0`. | | **RETURNS** | list | The data in spaCy's JSON format. | ### gold.align {#align tag="function"} Calculate alignment tables between two tokenizations, using the Levenshtein algorithm. The alignment is case-insensitive. The current implementation of the alignment algorithm assumes that both tokenizations add up to the same string. For example, you'll be able to align `["I", "'", "m"]` and `["I", "'m"]`, which both add up to `"I'm"`, but not `["I", "'m"]` and `["I", "am"]`. > #### Example > > ```python > from spacy.gold import align > > bert_tokens = ["obama", "'", "s", "podcast"] > spacy_tokens = ["obama", "'s", "podcast"] > alignment = align(bert_tokens, spacy_tokens) > cost, a2b, b2a, a2b_multi, b2a_multi = alignment > ``` | Name | Type | Description | | ----------- | ----- | -------------------------------------------------------------------------- | | `tokens_a` | list | String values of candidate tokens to align. | | `tokens_b` | list | String values of reference tokens to align. | | **RETURNS** | tuple | A `(cost, a2b, b2a, a2b_multi, b2a_multi)` tuple describing the alignment. | The returned tuple contains the following alignment information: > #### Example > > ```python > a2b = array([0, -1, -1, 2]) > b2a = array([0, 2, 3]) > a2b_multi = {1: 1, 2: 1} > b2a_multi = {} > ``` > > If `a2b[3] == 2`, that means that `tokens_a[3]` aligns to `tokens_b[2]`. If > there's no one-to-one alignment for a token, it has the value `-1`. | Name | Type | Description | | ----------- | -------------------------------------- | ----------------------------------------------------------------------------------------------------------------------------------------------- | | `cost` | int | The number of misaligned tokens. | | `a2b` | `numpy.ndarray[ndim=1, dtype='int32']` | One-to-one mappings of indices in `tokens_a` to indices in `tokens_b`. | | `b2a` | `numpy.ndarray[ndim=1, dtype='int32']` | One-to-one mappings of indices in `tokens_b` to indices in `tokens_a`. | | `a2b_multi` | dict | A dictionary mapping indices in `tokens_a` to indices in `tokens_b`, where multiple tokens of `tokens_a` align to the same token of `tokens_b`. | | `b2a_multi` | dict | A dictionary mapping indices in `tokens_b` to indices in `tokens_a`, where multiple tokens of `tokens_b` align to the same token of `tokens_a`. | ### gold.biluo_tags_from_offsets {#biluo_tags_from_offsets tag="function"} Encode labelled spans into per-token tags, using the [BILUO scheme](/api/annotation#biluo) (Begin, In, Last, Unit, Out). Returns a list of unicode strings, describing the tags. Each tag string will be of the form of either `""`, `"O"` or `"{action}-{label}"`, where action is one of `"B"`, `"I"`, `"L"`, `"U"`. The string `"-"` is used where the entity offsets don't align with the tokenization in the `Doc` object. The training algorithm will view these as missing values. `O` denotes a non-entity token. `B` denotes the beginning of a multi-token entity, `I` the inside of an entity of three or more tokens, and `L` the end of an entity of two or more tokens. `U` denotes a single-token entity. > #### Example > > ```python > from spacy.gold import biluo_tags_from_offsets > > doc = nlp(u"I like London.") > entities = [(7, 13, "LOC")] > tags = biluo_tags_from_offsets(doc, entities) > assert tags == ["O", "O", "U-LOC", "O"] > ``` | Name | Type | Description | | ----------- | -------- | ----------------------------------------------------------------------------------------------------------------------------------------------- | | `doc` | `Doc` | The document that the entity offsets refer to. The output tags will refer to the token boundaries within the document. | | `entities` | iterable | A sequence of `(start, end, label)` triples. `start` and `end` should be character-offset integers denoting the slice into the original string. | | **RETURNS** | list | Unicode strings, describing the [BILUO](/api/annotation#biluo) tags. | ### gold.offsets_from_biluo_tags {#offsets_from_biluo_tags tag="function"} Encode per-token tags following the [BILUO scheme](/api/annotation#biluo) into entity offsets. > #### Example > > ```python > from spacy.gold import offsets_from_biluo_tags > > doc = nlp(u"I like London.") > tags = ["O", "O", "U-LOC", "O"] > entities = offsets_from_biluo_tags(doc, tags) > assert entities == [(7, 13, "LOC")] > ``` | Name | Type | Description | | ----------- | -------- | --------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- | | `doc` | `Doc` | The document that the BILUO tags refer to. | | `entities` | iterable | A sequence of [BILUO](/api/annotation#biluo) tags with each tag describing one token. Each tag string will be of the form of either `""`, `"O"` or `"{action}-{label}"`, where action is one of `"B"`, `"I"`, `"L"`, `"U"`. | | **RETURNS** | list | A sequence of `(start, end, label)` triples. `start` and `end` will be character-offset integers denoting the slice into the original string. | ### gold.spans_from_biluo_tags {#spans_from_biluo_tags tag="function" new="2.1"} Encode per-token tags following the [BILUO scheme](/api/annotation#biluo) into [`Span`](/api/span) objects. This can be used to create entity spans from token-based tags, e.g. to overwrite the `doc.ents`. > #### Example > > ```python > from spacy.gold import spans_from_biluo_tags > > doc = nlp(u"I like London.") > tags = ["O", "O", "U-LOC", "O"] > doc.ents = spans_from_biluo_tags(doc, tags) > ``` | Name | Type | Description | | ----------- | -------- | --------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- | | `doc` | `Doc` | The document that the BILUO tags refer to. | | `entities` | iterable | A sequence of [BILUO](/api/annotation#biluo) tags with each tag describing one token. Each tag string will be of the form of either `""`, `"O"` or `"{action}-{label}"`, where action is one of `"B"`, `"I"`, `"L"`, `"U"`. | | **RETURNS** | list | A sequence of `Span` objects with added entity labels. |