'''This script is experimental. Try pre-training the CNN component of the text categorizer using a cheap language modelling-like objective. Specifically, we load pre-trained vectors (from something like word2vec, GloVe, FastText etc), and use the CNN to predict the tokens' pre-trained vectors. This isn't as easy as it sounds: we're not merely doing compression here, because heavy dropout is applied, including over the input words. This means the model must often (50% of the time) use the context in order to predict the word. To evaluate the technique, we're pre-training with the 50k texts from the IMDB corpus, and then training with only 100 labels. Note that it's a bit dirty to pre-train with the development data, but also not *so* terrible: we're not using the development labels, after all --- only the unlabelled text. ''' import plac import random import spacy import thinc.extra.datasets from spacy.util import minibatch, use_gpu, compounding import tqdm from spacy._ml import Tok2Vec from spacy.pipeline import TextCategorizer import numpy def load_texts(limit=0): train, dev = thinc.extra.datasets.imdb() train_texts, train_labels = zip(*train) dev_texts, dev_labels = zip(*train) train_texts = list(train_texts) dev_texts = list(dev_texts) random.shuffle(train_texts) random.shuffle(dev_texts) if limit >= 1: return train_texts[:limit] else: return list(train_texts) + list(dev_texts) def load_textcat_data(limit=0): """Load data from the IMDB dataset.""" # Partition off part of the train data for evaluation train_data, eval_data = thinc.extra.datasets.imdb() random.shuffle(train_data) train_data = train_data[-limit:] texts, labels = zip(*train_data) eval_texts, eval_labels = zip(*eval_data) cats = [{'POSITIVE': bool(y), 'NEGATIVE': not bool(y)} for y in labels] eval_cats = [{'POSITIVE': bool(y), 'NEGATIVE': not bool(y)} for y in eval_labels] return (texts, cats), (eval_texts, eval_cats) def prefer_gpu(): used = spacy.util.use_gpu(0) if used is None: return False else: import cupy.random cupy.random.seed(0) return True def build_textcat_model(tok2vec, nr_class, width): from thinc.v2v import Model, Softmax, Maxout from thinc.api import flatten_add_lengths, chain from thinc.t2v import Pooling, sum_pool, mean_pool, max_pool from thinc.misc import Residual, LayerNorm from spacy._ml import logistic, zero_init with Model.define_operators({'>>': chain}): model = ( tok2vec >> flatten_add_lengths >> Pooling(mean_pool) >> Softmax(nr_class, width) ) model.tok2vec = tok2vec return model def block_gradients(model): from thinc.api import wrap def forward(X, drop=0.): Y, _ = model.begin_update(X, drop=drop) return Y, None return wrap(forward, model) def create_pipeline(width, embed_size, vectors_model): print("Load vectors") nlp = spacy.load(vectors_model) print("Start training") textcat = TextCategorizer(nlp.vocab, labels=['POSITIVE', 'NEGATIVE'], model=build_textcat_model( Tok2Vec(width=width, embed_size=embed_size), 2, width)) nlp.add_pipe(textcat) return nlp def train_tensorizer(nlp, texts, dropout, n_iter): tensorizer = nlp.create_pipe('tensorizer') nlp.add_pipe(tensorizer) optimizer = nlp.begin_training() for i in range(n_iter): losses = {} for i, batch in enumerate(minibatch(tqdm.tqdm(texts))): docs = [nlp.make_doc(text) for text in batch] tensorizer.update(docs, None, losses=losses, sgd=optimizer, drop=dropout) print(losses) return optimizer def train_textcat(nlp, n_texts, n_iter=10): textcat = nlp.get_pipe('textcat') tok2vec_weights = textcat.model.tok2vec.to_bytes() (train_texts, train_cats), (dev_texts, dev_cats) = load_textcat_data(limit=n_texts) print("Using {} examples ({} training, {} evaluation)" .format(n_texts, len(train_texts), len(dev_texts))) train_data = list(zip(train_texts, [{'cats': cats} for cats in train_cats])) # get names of other pipes to disable them during training other_pipes = [pipe for pipe in nlp.pipe_names if pipe != 'textcat'] with nlp.disable_pipes(*other_pipes): # only train textcat optimizer = nlp.begin_training() textcat.model.tok2vec.from_bytes(tok2vec_weights) print("Training the model...") print('{:^5}\t{:^5}\t{:^5}\t{:^5}'.format('LOSS', 'P', 'R', 'F')) for i in range(n_iter): losses = {'textcat': 0.0} # batch up the examples using spaCy's minibatch batches = minibatch(tqdm.tqdm(train_data), size=2) for batch in batches: texts, annotations = zip(*batch) nlp.update(texts, annotations, sgd=optimizer, drop=0.2, losses=losses) with textcat.model.use_params(optimizer.averages): # evaluate on the dev data split off in load_data() scores = evaluate_textcat(nlp.tokenizer, textcat, dev_texts, dev_cats) print('{0:.3f}\t{1:.3f}\t{2:.3f}\t{3:.3f}' # print a simple table .format(losses['textcat'], scores['textcat_p'], scores['textcat_r'], scores['textcat_f'])) def evaluate_textcat(tokenizer, textcat, texts, cats): docs = (tokenizer(text) for text in texts) tp = 1e-8 fp = 1e-8 tn = 1e-8 fn = 1e-8 for i, doc in enumerate(textcat.pipe(docs)): gold = cats[i] for label, score in doc.cats.items(): if label not in gold: continue if score >= 0.5 and gold[label] >= 0.5: tp += 1. elif score >= 0.5 and gold[label] < 0.5: fp += 1. elif score < 0.5 and gold[label] < 0.5: tn += 1 elif score < 0.5 and gold[label] >= 0.5: fn += 1 precision = tp / (tp + fp) recall = tp / (tp + fn) f_score = 2 * (precision * recall) / (precision + recall) return {'textcat_p': precision, 'textcat_r': recall, 'textcat_f': f_score} @plac.annotations( width=("Width of CNN layers", "positional", None, int), embed_size=("Embedding rows", "positional", None, int), pretrain_iters=("Number of iterations to pretrain", "option", "pn", int), train_iters=("Number of iterations to pretrain", "option", "tn", int), train_examples=("Number of labelled examples", "option", "eg", int), vectors_model=("Name or path to vectors model to learn from") ) def main(width: int, embed_size: int, vectors_model, pretrain_iters=30, train_iters=30, train_examples=1000): random.seed(0) numpy.random.seed(0) use_gpu = prefer_gpu() print("Using GPU?", use_gpu) nlp = create_pipeline(width, embed_size, vectors_model) print("Load data") texts = load_texts(limit=0) print("Train tensorizer") optimizer = train_tensorizer(nlp, texts, dropout=0.2, n_iter=pretrain_iters) print("Train textcat") train_textcat(nlp, train_examples, n_iter=train_iters) if __name__ == '__main__': plac.call(main)