import pytest from spacy.ml.models.tok2vec import build_Tok2Vec_model from spacy.ml.models.tok2vec import MultiHashEmbed, MaxoutWindowEncoder from spacy.pipeline.tok2vec import Tok2Vec, Tok2VecListener from spacy.vocab import Vocab from spacy.tokens import Doc from spacy.training import Example from spacy import util from spacy.lang.en import English from spacy.util import registry from thinc.api import Config, get_current_ops from numpy.testing import assert_array_equal from ..util import get_batch, make_tempdir, add_vecs_to_vocab def test_empty_doc(): width = 128 embed_size = 2000 vocab = Vocab() doc = Doc(vocab, words=[]) tok2vec = build_Tok2Vec_model( MultiHashEmbed( width=width, rows=[embed_size, embed_size, embed_size, embed_size], include_static_vectors=False, attrs=["NORM", "PREFIX", "SUFFIX", "SHAPE"], ), MaxoutWindowEncoder(width=width, depth=4, window_size=1, maxout_pieces=3), ) tok2vec.initialize() vectors, backprop = tok2vec.begin_update([doc]) assert len(vectors) == 1 assert vectors[0].shape == (0, width) @pytest.mark.parametrize( "batch_size,width,embed_size", [[1, 128, 2000], [2, 128, 2000], [3, 8, 63]] ) def test_tok2vec_batch_sizes(batch_size, width, embed_size): batch = get_batch(batch_size) tok2vec = build_Tok2Vec_model( MultiHashEmbed( width=width, rows=[embed_size] * 4, include_static_vectors=False, attrs=["NORM", "PREFIX", "SUFFIX", "SHAPE"], ), MaxoutWindowEncoder(width=width, depth=4, window_size=1, maxout_pieces=3), ) tok2vec.initialize() vectors, backprop = tok2vec.begin_update(batch) assert len(vectors) == len(batch) for doc_vec, doc in zip(vectors, batch): assert doc_vec.shape == (len(doc), width) @pytest.mark.slow @pytest.mark.parametrize("width", [8]) @pytest.mark.parametrize( "embed_arch,embed_config", # fmt: off [ ("spacy.MultiHashEmbed.v1", {"rows": [100, 100], "attrs": ["SHAPE", "LOWER"], "include_static_vectors": False}), ("spacy.MultiHashEmbed.v1", {"rows": [100, 20], "attrs": ["ORTH", "PREFIX"], "include_static_vectors": False}), ("spacy.CharacterEmbed.v1", {"rows": 100, "nM": 64, "nC": 8, "include_static_vectors": False}), ("spacy.CharacterEmbed.v1", {"rows": 100, "nM": 16, "nC": 2, "include_static_vectors": False}), ], # fmt: on ) @pytest.mark.parametrize( "tok2vec_arch,encode_arch,encode_config", # fmt: off [ ("spacy.Tok2Vec.v1", "spacy.MaxoutWindowEncoder.v1", {"window_size": 1, "maxout_pieces": 3, "depth": 2}), ("spacy.Tok2Vec.v2", "spacy.MaxoutWindowEncoder.v2", {"window_size": 1, "maxout_pieces": 3, "depth": 2}), ("spacy.Tok2Vec.v1", "spacy.MishWindowEncoder.v1", {"window_size": 1, "depth": 6}), ("spacy.Tok2Vec.v2", "spacy.MishWindowEncoder.v2", {"window_size": 1, "depth": 6}), ], # fmt: on ) def test_tok2vec_configs( width, tok2vec_arch, embed_arch, embed_config, encode_arch, encode_config ): embed = registry.get("architectures", embed_arch) encode = registry.get("architectures", encode_arch) tok2vec_model = registry.get("architectures", tok2vec_arch) embed_config["width"] = width encode_config["width"] = width docs = get_batch(3) tok2vec = tok2vec_model(embed(**embed_config), encode(**encode_config)) tok2vec.initialize(docs) vectors, backprop = tok2vec.begin_update(docs) assert len(vectors) == len(docs) assert vectors[0].shape == (len(docs[0]), width) backprop(vectors) def test_init_tok2vec(): # Simple test to initialize the default tok2vec nlp = English() tok2vec = nlp.add_pipe("tok2vec") assert tok2vec.listeners == [] nlp.initialize() assert tok2vec.model.get_dim("nO") cfg_string = """ [nlp] lang = "en" pipeline = ["tok2vec","tagger"] [components] [components.tagger] factory = "tagger" [components.tagger.model] @architectures = "spacy.Tagger.v2" nO = null [components.tagger.model.tok2vec] @architectures = "spacy.Tok2VecListener.v1" width = ${components.tok2vec.model.encode.width} [components.tok2vec] factory = "tok2vec" [components.tok2vec.model] @architectures = "spacy.Tok2Vec.v2" [components.tok2vec.model.embed] @architectures = "spacy.MultiHashEmbed.v1" width = ${components.tok2vec.model.encode.width} rows = [2000, 1000, 1000, 1000] attrs = ["NORM", "PREFIX", "SUFFIX", "SHAPE"] include_static_vectors = false [components.tok2vec.model.encode] @architectures = "spacy.MaxoutWindowEncoder.v2" width = 96 depth = 4 window_size = 1 maxout_pieces = 3 """ TRAIN_DATA = [ ( "I like green eggs", {"tags": ["N", "V", "J", "N"], "cats": {"preference": 1.0, "imperative": 0.0}}, ), ( "Eat blue ham", {"tags": ["V", "J", "N"], "cats": {"preference": 0.0, "imperative": 1.0}}, ), ] @pytest.mark.parametrize("with_vectors", (False, True)) def test_tok2vec_listener(with_vectors): orig_config = Config().from_str(cfg_string) orig_config["components"]["tok2vec"]["model"]["embed"][ "include_static_vectors" ] = with_vectors nlp = util.load_model_from_config(orig_config, auto_fill=True, validate=True) if with_vectors: ops = get_current_ops() vectors = [ ("apple", ops.asarray([1, 2, 3])), ("orange", ops.asarray([-1, -2, -3])), ("and", ops.asarray([-1, -1, -1])), ("juice", ops.asarray([5, 5, 10])), ("pie", ops.asarray([7, 6.3, 8.9])), ] add_vecs_to_vocab(nlp.vocab, vectors) assert nlp.pipe_names == ["tok2vec", "tagger"] tagger = nlp.get_pipe("tagger") tok2vec = nlp.get_pipe("tok2vec") tagger_tok2vec = tagger.model.get_ref("tok2vec") assert isinstance(tok2vec, Tok2Vec) assert isinstance(tagger_tok2vec, Tok2VecListener) train_examples = [] for t in TRAIN_DATA: train_examples.append(Example.from_dict(nlp.make_doc(t[0]), t[1])) for tag in t[1]["tags"]: tagger.add_label(tag) # Check that the Tok2Vec component finds it listeners assert tok2vec.listeners == [] optimizer = nlp.initialize(lambda: train_examples) assert tok2vec.listeners == [tagger_tok2vec] for i in range(5): losses = {} nlp.update(train_examples, sgd=optimizer, losses=losses) doc = nlp("Running the pipeline as a whole.") doc_tensor = tagger_tok2vec.predict([doc])[0] ops = get_current_ops() assert_array_equal(ops.to_numpy(doc.tensor), ops.to_numpy(doc_tensor)) # test with empty doc doc = nlp("") # TODO: should this warn or error? nlp.select_pipes(disable="tok2vec") assert nlp.pipe_names == ["tagger"] nlp("Running the pipeline with the Tok2Vec component disabled.") def test_tok2vec_listener_callback(): orig_config = Config().from_str(cfg_string) nlp = util.load_model_from_config(orig_config, auto_fill=True, validate=True) assert nlp.pipe_names == ["tok2vec", "tagger"] tagger = nlp.get_pipe("tagger") tok2vec = nlp.get_pipe("tok2vec") nlp._link_components() docs = [nlp.make_doc("A random sentence")] tok2vec.model.initialize(X=docs) gold_array = [[1.0 for tag in ["V", "Z"]] for word in docs] label_sample = [tagger.model.ops.asarray(gold_array, dtype="float32")] tagger.model.initialize(X=docs, Y=label_sample) docs = [nlp.make_doc("Another entirely random sentence")] tok2vec.update([Example.from_dict(x, {}) for x in docs]) Y, get_dX = tagger.model.begin_update(docs) # assure that the backprop call works (and doesn't hit a 'None' callback) assert get_dX(Y) is not None def test_tok2vec_listener_overfitting(): """ Test that a pipeline with a listener properly overfits, even if 'tok2vec' is in the annotating components """ orig_config = Config().from_str(cfg_string) nlp = util.load_model_from_config(orig_config, auto_fill=True, validate=True) train_examples = [] for t in TRAIN_DATA: train_examples.append(Example.from_dict(nlp.make_doc(t[0]), t[1])) optimizer = nlp.initialize(get_examples=lambda: train_examples) for i in range(50): losses = {} nlp.update(train_examples, sgd=optimizer, losses=losses, annotates=["tok2vec"]) assert losses["tagger"] < 0.00001 # test the trained model test_text = "I like blue eggs" doc = nlp(test_text) assert doc[0].tag_ == "N" assert doc[1].tag_ == "V" assert doc[2].tag_ == "J" assert doc[3].tag_ == "N" # Also test the results are still the same after IO with make_tempdir() as tmp_dir: nlp.to_disk(tmp_dir) nlp2 = util.load_model_from_path(tmp_dir) doc2 = nlp2(test_text) assert doc2[0].tag_ == "N" assert doc2[1].tag_ == "V" assert doc2[2].tag_ == "J" assert doc2[3].tag_ == "N" def test_tok2vec_frozen_not_annotating(): """ Test that a pipeline with a frozen tok2vec raises an error when the tok2vec is not annotating """ orig_config = Config().from_str(cfg_string) nlp = util.load_model_from_config(orig_config, auto_fill=True, validate=True) train_examples = [] for t in TRAIN_DATA: train_examples.append(Example.from_dict(nlp.make_doc(t[0]), t[1])) optimizer = nlp.initialize(get_examples=lambda: train_examples) for i in range(2): losses = {} with pytest.raises(ValueError, match=r"the tok2vec embedding layer is not updated"): nlp.update(train_examples, sgd=optimizer, losses=losses, exclude=["tok2vec"]) def test_tok2vec_frozen_overfitting(): """ Test that a pipeline with a frozen & annotating tok2vec can still overfit """ orig_config = Config().from_str(cfg_string) nlp = util.load_model_from_config(orig_config, auto_fill=True, validate=True) train_examples = [] for t in TRAIN_DATA: train_examples.append(Example.from_dict(nlp.make_doc(t[0]), t[1])) optimizer = nlp.initialize(get_examples=lambda: train_examples) for i in range(100): losses = {} nlp.update(train_examples, sgd=optimizer, losses=losses, exclude=["tok2vec"], annotates=["tok2vec"]) assert losses["tagger"] < 0.0001 # test the trained model test_text = "I like blue eggs" doc = nlp(test_text) assert doc[0].tag_ == "N" assert doc[1].tag_ == "V" assert doc[2].tag_ == "J" assert doc[3].tag_ == "N" # Also test the results are still the same after IO with make_tempdir() as tmp_dir: nlp.to_disk(tmp_dir) nlp2 = util.load_model_from_path(tmp_dir) doc2 = nlp2(test_text) assert doc2[0].tag_ == "N" assert doc2[1].tag_ == "V" assert doc2[2].tag_ == "J" assert doc2[3].tag_ == "N" def test_replace_listeners(): orig_config = Config().from_str(cfg_string) nlp = util.load_model_from_config(orig_config, auto_fill=True, validate=True) examples = [Example.from_dict(nlp.make_doc("x y"), {"tags": ["V", "Z"]})] nlp.initialize(lambda: examples) tok2vec = nlp.get_pipe("tok2vec") tagger = nlp.get_pipe("tagger") assert isinstance(tagger.model.layers[0], Tok2VecListener) assert tok2vec.listener_map["tagger"][0] == tagger.model.layers[0] assert ( nlp.config["components"]["tok2vec"]["model"]["@architectures"] == "spacy.Tok2Vec.v2" ) assert ( nlp.config["components"]["tagger"]["model"]["tok2vec"]["@architectures"] == "spacy.Tok2VecListener.v1" ) nlp.replace_listeners("tok2vec", "tagger", ["model.tok2vec"]) assert not isinstance(tagger.model.layers[0], Tok2VecListener) t2v_cfg = nlp.config["components"]["tok2vec"]["model"] assert t2v_cfg["@architectures"] == "spacy.Tok2Vec.v2" assert nlp.config["components"]["tagger"]["model"]["tok2vec"] == t2v_cfg with pytest.raises(ValueError): nlp.replace_listeners("invalid", "tagger", ["model.tok2vec"]) with pytest.raises(ValueError): nlp.replace_listeners("tok2vec", "parser", ["model.tok2vec"]) with pytest.raises(ValueError): nlp.replace_listeners("tok2vec", "tagger", ["model.yolo"]) with pytest.raises(ValueError): nlp.replace_listeners("tok2vec", "tagger", ["model.tok2vec", "model.yolo"]) # attempt training with the new pipeline optimizer = nlp.initialize(lambda: examples) for i in range(2): losses = {} nlp.update(examples, sgd=optimizer, losses=losses) assert losses["tok2vec"] == 0.0 assert losses["tagger"] > 0.0 cfg_string_multi = """ [nlp] lang = "en" pipeline = ["tok2vec","tagger", "ner"] [components] [components.tagger] factory = "tagger" [components.tagger.model] @architectures = "spacy.Tagger.v2" nO = null [components.tagger.model.tok2vec] @architectures = "spacy.Tok2VecListener.v1" width = ${components.tok2vec.model.encode.width} [components.ner] factory = "ner" [components.ner.model] @architectures = "spacy.TransitionBasedParser.v2" [components.ner.model.tok2vec] @architectures = "spacy.Tok2VecListener.v1" width = ${components.tok2vec.model.encode.width} [components.tok2vec] factory = "tok2vec" [components.tok2vec.model] @architectures = "spacy.Tok2Vec.v2" [components.tok2vec.model.embed] @architectures = "spacy.MultiHashEmbed.v1" width = ${components.tok2vec.model.encode.width} rows = [2000, 1000, 1000, 1000] attrs = ["NORM", "PREFIX", "SUFFIX", "SHAPE"] include_static_vectors = false [components.tok2vec.model.encode] @architectures = "spacy.MaxoutWindowEncoder.v2" width = 96 depth = 4 window_size = 1 maxout_pieces = 3 """ def test_replace_listeners_from_config(): orig_config = Config().from_str(cfg_string_multi) nlp = util.load_model_from_config(orig_config, auto_fill=True) annots = {"tags": ["V", "Z"], "entities": [(0, 1, "A"), (1, 2, "B")]} examples = [Example.from_dict(nlp.make_doc("x y"), annots)] nlp.initialize(lambda: examples) tok2vec = nlp.get_pipe("tok2vec") tagger = nlp.get_pipe("tagger") ner = nlp.get_pipe("ner") assert tok2vec.listening_components == ["tagger", "ner"] assert any(isinstance(node, Tok2VecListener) for node in ner.model.walk()) assert any(isinstance(node, Tok2VecListener) for node in tagger.model.walk()) with make_tempdir() as dir_path: nlp.to_disk(dir_path) base_model = str(dir_path) new_config = { "nlp": {"lang": "en", "pipeline": ["tok2vec", "tagger", "ner"]}, "components": { "tok2vec": {"source": base_model}, "tagger": { "source": base_model, "replace_listeners": ["model.tok2vec"], }, "ner": {"source": base_model}, }, } new_nlp = util.load_model_from_config(new_config, auto_fill=True) new_nlp.initialize(lambda: examples) tok2vec = new_nlp.get_pipe("tok2vec") tagger = new_nlp.get_pipe("tagger") ner = new_nlp.get_pipe("ner") assert tok2vec.listening_components == ["ner"] assert any(isinstance(node, Tok2VecListener) for node in ner.model.walk()) assert not any(isinstance(node, Tok2VecListener) for node in tagger.model.walk()) t2v_cfg = new_nlp.config["components"]["tok2vec"]["model"] assert t2v_cfg["@architectures"] == "spacy.Tok2Vec.v2" assert new_nlp.config["components"]["tagger"]["model"]["tok2vec"] == t2v_cfg assert ( new_nlp.config["components"]["ner"]["model"]["tok2vec"]["@architectures"] == "spacy.Tok2VecListener.v1" ) cfg_string_multi_textcat = """ [nlp] lang = "en" pipeline = ["tok2vec","textcat_multilabel","tagger"] [components] [components.textcat_multilabel] factory = "textcat_multilabel" [components.textcat_multilabel.model] @architectures = "spacy.TextCatEnsemble.v2" nO = null [components.textcat_multilabel.model.tok2vec] @architectures = "spacy.Tok2VecListener.v1" width = ${components.tok2vec.model.encode.width} [components.textcat_multilabel.model.linear_model] @architectures = "spacy.TextCatBOW.v1" exclusive_classes = false ngram_size = 1 no_output_layer = false [components.tagger] factory = "tagger" [components.tagger.model] @architectures = "spacy.Tagger.v2" nO = null [components.tagger.model.tok2vec] @architectures = "spacy.Tok2VecListener.v1" width = ${components.tok2vec.model.encode.width} [components.tok2vec] factory = "tok2vec" [components.tok2vec.model] @architectures = "spacy.Tok2Vec.v2" [components.tok2vec.model.embed] @architectures = "spacy.MultiHashEmbed.v1" width = ${components.tok2vec.model.encode.width} rows = [2000, 1000, 1000, 1000] attrs = ["NORM", "PREFIX", "SUFFIX", "SHAPE"] include_static_vectors = false [components.tok2vec.model.encode] @architectures = "spacy.MaxoutWindowEncoder.v2" width = 96 depth = 4 window_size = 1 maxout_pieces = 3 """ def test_tok2vec_listeners_textcat(): orig_config = Config().from_str(cfg_string_multi_textcat) nlp = util.load_model_from_config(orig_config, auto_fill=True, validate=True) assert nlp.pipe_names == ["tok2vec", "textcat_multilabel", "tagger"] tagger = nlp.get_pipe("tagger") textcat = nlp.get_pipe("textcat_multilabel") tok2vec = nlp.get_pipe("tok2vec") tagger_tok2vec = tagger.model.get_ref("tok2vec") textcat_tok2vec = textcat.model.get_ref("tok2vec") assert isinstance(tok2vec, Tok2Vec) assert isinstance(tagger_tok2vec, Tok2VecListener) assert isinstance(textcat_tok2vec, Tok2VecListener) train_examples = [] for t in TRAIN_DATA: train_examples.append(Example.from_dict(nlp.make_doc(t[0]), t[1])) optimizer = nlp.initialize(lambda: train_examples) for i in range(50): losses = {} nlp.update(train_examples, sgd=optimizer, losses=losses) docs = list(nlp.pipe(["Eat blue ham", "I like green eggs"])) cats0 = docs[0].cats assert cats0["preference"] < 0.1 assert cats0["imperative"] > 0.9 cats1 = docs[1].cats assert cats1["preference"] > 0.1 assert cats1["imperative"] < 0.9 assert [t.tag_ for t in docs[0]] == ["V", "J", "N"] assert [t.tag_ for t in docs[1]] == ["N", "V", "J", "N"]