from spacy.lang.en import English from spacy.util import fix_random_seed def test_issue5551(): """Test that after fixing the random seed, the results of the pipeline are truly identical""" component = "textcat" pipe_cfg = {"exclusive_classes": False} results = [] for i in range(3): fix_random_seed(0) nlp = English() example = ( "Once hot, form ping-pong-ball-sized balls of the mixture, each weighing roughly 25 g.", {"cats": {"Labe1": 1.0, "Label2": 0.0, "Label3": 0.0}}, ) nlp.add_pipe(nlp.create_pipe(component, config=pipe_cfg), last=True) pipe = nlp.get_pipe(component) for label in set(example[1]["cats"]): pipe.add_label(label) nlp.begin_training(component_cfg={component: pipe_cfg}) # Store the result of each iteration result = pipe.model.predict([nlp.make_doc(example[0])]) results.append(list(result[0])) # All results should be the same because of the fixed seed assert len(results) == 3 assert results[0] == results[1] assert results[0] == results[2]