import numpy as np from spacy.attrs import HEAD, DEP from spacy.symbols import nsubj, dobj, punct, amod, nmod, conj, cc, root from spacy.en import English from spacy.syntax.iterators import EnglishNounChunks def test_not_nested(): nlp = English(parser=False, entity=False) sent = u'''Peter has chronic command and control issues'''.strip() tokens = nlp(sent) tokens.from_array( [HEAD, DEP], np.asarray( [ [1, nsubj], [0, root], [4, amod], [3, nmod], [-1, cc], [-2, conj], [-5, dobj] ], dtype='int32')) tokens.noun_chunks = EnglishNounChunks for chunk in tokens.noun_chunks: print(chunk.text) word_occurred = {} for chunk in tokens.noun_chunks: for word in chunk: word_occurred.setdefault(word.text, 0) word_occurred[word.text] += 1 for word, freq in word_occurred.items(): assert freq == 1, (word, [chunk.text for chunk in tokens.noun_chunks])