from timeit import default_timer as timer from wasabi import msg from ..gold import GoldCorpus from .. import util from .. import displacy def evaluate( # fmt: off model: ("Model name or path", "positional", None, str), data_path: ("Location of JSON-formatted evaluation data", "positional", None, str), gpu_id: ("Use GPU", "option", "g", int) = -1, gold_preproc: ("Use gold preprocessing", "flag", "G", bool) = False, displacy_path: ("Directory to output rendered parses as HTML", "option", "dp", str) = None, displacy_limit: ("Limit of parses to render as HTML", "option", "dl", int) = 25, return_scores: ("Return dict containing model scores", "flag", "R", bool) = False, # fmt: on ): """ Evaluate a model. To render a sample of parses in a HTML file, set an output directory as the displacy_path argument. """ util.fix_random_seed() if gpu_id >= 0: util.use_gpu(gpu_id) util.set_env_log(False) data_path = util.ensure_path(data_path) displacy_path = util.ensure_path(displacy_path) if not data_path.exists(): msg.fail("Evaluation data not found", data_path, exits=1) if displacy_path and not displacy_path.exists(): msg.fail("Visualization output directory not found", displacy_path, exits=1) corpus = GoldCorpus(data_path, data_path) if model.startswith("blank:"): nlp = util.get_lang_class(model.replace("blank:", ""))() else: nlp = util.load_model(model) dev_dataset = list(corpus.dev_dataset(nlp, gold_preproc=gold_preproc)) begin = timer() scorer = nlp.evaluate(dev_dataset, verbose=False) end = timer() nwords = sum(len(ex.doc) for ex in dev_dataset) results = { "Time": f"{end - begin:.2f} s", "Words": nwords, "Words/s": f"{nwords / (end - begin):.0f}", "TOK": f"{scorer.token_acc:.2f}", "TAG": f"{scorer.tags_acc:.2f}", "POS": f"{scorer.pos_acc:.2f}", "MORPH": f"{scorer.morphs_acc:.2f}", "UAS": f"{scorer.uas:.2f}", "LAS": f"{scorer.las:.2f}", "NER P": f"{scorer.ents_p:.2f}", "NER R": f"{scorer.ents_r:.2f}", "NER F": f"{scorer.ents_f:.2f}", "Textcat": f"{scorer.textcat_score:.2f}", "Sent P": f"{scorer.sent_p:.2f}", "Sent R": f"{scorer.sent_r:.2f}", "Sent F": f"{scorer.sent_f:.2f}", } msg.table(results, title="Results") if displacy_path: docs = [ex.doc for ex in dev_dataset] render_deps = "parser" in nlp.meta.get("pipeline", []) render_ents = "ner" in nlp.meta.get("pipeline", []) render_parses( docs, displacy_path, model_name=model, limit=displacy_limit, deps=render_deps, ents=render_ents, ) msg.good(f"Generated {displacy_limit} parses as HTML", displacy_path) if return_scores: return scorer.scores def render_parses(docs, output_path, model_name="", limit=250, deps=True, ents=True): docs[0].user_data["title"] = model_name if ents: html = displacy.render(docs[:limit], style="ent", page=True) with (output_path / "entities.html").open("w", encoding="utf8") as file_: file_.write(html) if deps: html = displacy.render( docs[:limit], style="dep", page=True, options={"compact": True} ) with (output_path / "parses.html").open("w", encoding="utf8") as file_: file_.write(html)