Quick Start =========== Install ------- .. py:currentmodule:: spacy .. code:: bash $ pip install spacy $ python -m spacy.en.download To compile from source: .. code:: bash $ git clone https://github.com/honnibal/spaCy.git $ virtualenv .env && source .env/bin/activate $ pip install -r requirements.txt $ python -m spacy.en.download $ fab make test The download command fetches and installs about 300mb of data, for the `parser model_` and `word vectors`_, which it installs within the spacy.en package directory. .. _word vectors: http://s3-us-west-1.amazonaws.com/media.spacynlp.com/vec.bin .. _parser model: http://s3-us-west-1.amazonaws.com/media.spacynlp.com/en_deps-0.30.tgz Usage ----- The main entry-point is :meth:`en.English.__call__`, which accepts a unicode string as an argument, and returns a :py:class:`tokens.Tokens` object. You can iterate over it to get :py:class:`tokens.Token` objects, which provide a convenient API: >>> from spacy.en import English >>> nlp = English() >>> tokens = nlp(u'I ate the pizza with anchovies.') >>> pizza = tokens[3] >>> (pizza.orth, pizza.orth_, pizza.head.lemma, pizza.head.lemma_) ... (14702, u'pizza', 14702, u'ate') spaCy maps all strings to sequential integer IDs --- a common idiom in NLP. If an attribute `Token.foo` is an integer ID, then `Token.foo_` is the string, e.g. `pizza.orth_` and `pizza.orth` provide the integer ID and the string of the original orthographic form of the word, with no string normalizations applied. .. note:: en.English.__call__ is stateful --- it has an important **side-effect**. When it processes a previously unseen word, it increments the ID counter, assigns the ID to the string, and writes the mapping in :py:data:`English.vocab.strings` (instance of :py:class:`strings.StringStore`). Future releases will feature a way to reconcile mappings, but for now, you should only work with one instance of the pipeline at a time. (Most of the) API at a glance ----------------------------- **Process the string:** .. py:class:: spacy.en.English(self, data_dir=join(dirname(__file__), 'data')) .. py:method:: __call__(self, text: unicode, tag=True, parse=False) --> Tokens +-----------------+--------------+--------------+ | Attribute | Type | Its API | +=================+==============+==============+ | vocab | Vocab | __getitem__ | +-----------------+--------------+--------------+ | vocab.strings | StingStore | __getitem__ | +-----------------+--------------+--------------+ | tokenizer | Tokenizer | __call__ | +-----------------+--------------+--------------+ | tagger | EnPosTagger | __call__ | +-----------------+--------------+--------------+ | parser | GreedyParser | __call__ | +-----------------+--------------+--------------+ **Get dict or numpy array:** .. py:method:: tokens.Tokens.to_array(self, attr_ids: List[int]) --> ndarray[ndim=2, dtype=long] .. py:method:: tokens.Tokens.count_by(self, attr_id: int) --> Dict[int, int] **Get Token objects** .. py:method:: tokens.Tokens.__getitem__(self, i) --> Token .. py:method:: tokens.Tokens.__iter__(self) --> Iterator[Token] **Embedded word representenations** .. py:attribute:: tokens.Token.repvec .. py:attribute:: lexeme.Lexeme.repvec **Navigate to tree- or string-neighbor tokens** .. py:method:: nbor(self, i=1) --> Token .. py:method:: child(self, i=1) --> Token .. py:method:: sibling(self, i=1) --> Token .. py:attribute:: head: Token .. py:attribute:: dep: int **Align to original string** .. py:attribute:: string: unicode Padded with original whitespace. .. py:attribute:: length: int Length, in unicode code-points. Equal to len(self.orth_). .. py:attribute:: idx: int Starting offset of word in the original string. Features -------- **Boolean features** >>> lexeme = nlp.vocab[u'Apple'] >>> lexeme.is_alpha, is_upper True, False >>> tokens = nlp(u'Apple computers') >>> tokens[0].is_alpha, tokens[0].is_upper >>> True, False >>> from spact.en.attrs import IS_ALPHA, IS_UPPER >>> tokens.to_array((IS_ALPHA, IS_UPPER))[0] array([1, 0]) +----------+---------------------------------------------------------------+ | is_alpha | :py:meth:`str.isalpha` | +----------+---------------------------------------------------------------+ | is_digit | :py:meth:`str.isdigit` | +----------+---------------------------------------------------------------+ | is_lower | :py:meth:`str.islower` | +----------+---------------------------------------------------------------+ | is_title | :py:meth:`str.istitle` | +----------+---------------------------------------------------------------+ | is_upper | :py:meth:`str.isupper` | +----------+---------------------------------------------------------------+ | is_ascii | all(ord(c) < 128 for c in string) | +----------+---------------------------------------------------------------+ | is_punct | all(unicodedata.category(c).startswith('P') for c in string) | +----------+---------------------------------------------------------------+ | like_url | Using various heuristics, does the string resemble a URL? | +----------+---------------------------------------------------------------+ | like_num | "Two", "10", "1,000", "10.54", "1/2" etc all match | +----------+---------------------------------------------------------------+ **String-transform Features** +----------+---------------------------------------------------------------+ | orth | The original string, unmodified. | +----------+---------------------------------------------------------------+ | lower | The original string, forced to lower-case | +----------+---------------------------------------------------------------+ | norm | The string after additional normalization | +----------+---------------------------------------------------------------+ | shape | Word shape, e.g. 10 --> dd, Garden --> Xxxx, Hi!5 --> Xx!d | +----------+---------------------------------------------------------------+ | prefix | A short slice from the start of the string. | +----------+---------------------------------------------------------------+ | suffix | A short slice from the end of the string. | +----------+---------------------------------------------------------------+ | lemma | The word's lemma, i.e. morphological suffixes removed | +----------+---------------------------------------------------------------+ **Syntactic labels** +----------+---------------------------------------------------------------+ | pos | The word's part-of-speech, from the Google Universal Tag Set | +----------+---------------------------------------------------------------+ | tag | A fine-grained morphosyntactic tag, e.g. VBZ, NNS, etc | +----------+---------------------------------------------------------------+ | dep | Dependency type label between word and its head, e.g. subj | +----------+---------------------------------------------------------------+ **Distributional** +---------+-----------------------------------------------------------+ | cluster | Brown cluster ID of the word | +---------+-----------------------------------------------------------+ | prob | Log probability of word, smoothed with Simple Good-Turing | +---------+-----------------------------------------------------------+