# cython: profile=True # cython: embedsignature=True '''Tokenize English text, using a scheme that differs from the Penn Treebank 3 scheme in several important respects: * Whitespace is added as tokens, except for single spaces. e.g., >>> [w.string for w in EN.tokenize(u'\\nHello \\tThere')] [u'\\n', u'Hello', u' ', u'\\t', u'There'] * Contractions are normalized, e.g. >>> [w.string for w in EN.tokenize(u"isn't ain't won't he's")] [u'is', u'not', u'are', u'not', u'will', u'not', u'he', u"__s"] * Hyphenated words are split, with the hyphen preserved, e.g.: >>> [w.string for w in EN.tokenize(u'New York-based')] [u'New', u'York', u'-', u'based'] Other improvements: * Email addresses, URLs, European-formatted dates and other numeric entities not found in the PTB are tokenized correctly * Heuristic handling of word-final periods (PTB expects sentence boundary detection as a pre-process before tokenization.) Take care to ensure your training and run-time data is tokenized according to the same scheme. Tokenization problems are a major cause of poor performance for NLP tools. If you're using a pre-trained model, the :py:mod:`spacy.ptb3` module provides a fully Penn Treebank 3-compliant tokenizer. ''' # TODO #The script translate_treebank_tokenization can be used to transform a treebank's #annotation to use one of the spacy tokenization schemes. from __future__ import unicode_literals from libc.stdlib cimport malloc, calloc, free from libc.stdint cimport uint64_t cimport lang from spacy.lexeme cimport lexeme_check_flag from spacy.lexeme cimport lexeme_string_view from spacy._hashing cimport PointerHash from spacy import orth cdef class English(Language): """English tokenizer, tightly coupled to lexicon. Attributes: name (unicode): The two letter code used by Wikipedia for the language. lexicon (Lexicon): The lexicon. Exposes the lookup method. """ cdef int _find_prefix(self, Py_UNICODE* chars, size_t length) except -1: cdef Py_UNICODE c0 = chars[0] cdef Py_UNICODE c1 = chars[1] if c0 == ",": return 1 elif c0 == '"': return 1 elif c0 == "(": return 1 elif c0 == "[": return 1 elif c0 == "{": return 1 elif c0 == "*": return 1 elif c0 == "<": return 1 elif c0 == "$": return 1 elif c0 == "£": return 1 elif c0 == "€": return 1 elif c0 == "\u201c": return 1 elif c0 == "'": if c1 == "s": return 2 elif c1 == "S": return 2 elif c1 == "'": return 2 else: return 1 elif c0 == "`": if c1 == "`": return 2 else: return 1 else: return 0 abbreviations = set(['U.S', 'u.s', 'U.N', 'Ms', 'Mr', 'P']) cdef bint _check_punct(Py_UNICODE* characters, size_t i, size_t length): cdef unicode char_i = characters[i] cdef unicode char_i1 = characters[i+1] # Don't count appostrophes as punct if the next char is a letter if characters[i] == "'" and i < (length - 1) and char_i1.isalpha(): return i == 0 if characters[i] == "-": return False #and i < (length - 1) and characters[i+1] == '-': #return False # Don't count commas as punct if the next char is a number if characters[i] == "," and i < (length - 1) and char_i1.isdigit(): return False if characters[i] == "." and i < (length - 1): return False if characters[i] == "." and characters[:i] in abbreviations: return False return not char_i.isalnum() EN = English('en', [], [])