# coding: utf8 from __future__ import unicode_literals import plac from pathlib import Path from wasabi import Printer import srsly import re from .converters import conllu2json, iob2json, conll_ner2json from .converters import ner_jsonl2json # Converters are matched by file extension except for ner/iob, which are # matched by file extension and content. To add a converter, add a new # entry to this dict with the file extension mapped to the converter function # imported from /converters. CONVERTERS = { "conllubio": conllu2json, "conllu": conllu2json, "conll": conllu2json, "ner": conll_ner2json, "iob": iob2json, "jsonl": ner_jsonl2json, } # File types FILE_TYPES = ("json", "jsonl", "msg") FILE_TYPES_STDOUT = ("json", "jsonl") @plac.annotations( input_file=("Input file", "positional", None, str), output_dir=("Output directory. '-' for stdout.", "positional", None, str), file_type=("Type of data to produce: {}".format(FILE_TYPES), "option", "t", str), n_sents=("Number of sentences per doc (0 to disable)", "option", "n", int), seg_sents=("Segment sentences (for -c ner)", "flag", "s"), model=("Model for sentence segmentation (for -s)", "option", "b", str), converter=("Converter: {}".format(tuple(CONVERTERS.keys())), "option", "c", str), lang=("Language (if tokenizer required)", "option", "l", str), morphology=("Enable appending morphology to tags", "flag", "m", bool), ner_map_path=("NER tag mapping (as JSON-encoded dict of entity types)", "option", "N", Path), ) def convert( input_file, output_dir="-", file_type="json", n_sents=1, seg_sents=False, model=None, morphology=False, converter="auto", ner_map_path=None, lang=None, ): """ Convert files into JSON format for use with train command and other experiment management functions. If no output_dir is specified, the data is written to stdout, so you can pipe them forward to a JSON file: $ spacy convert some_file.conllu > some_file.json """ no_print = output_dir == "-" msg = Printer(no_print=no_print) input_path = Path(input_file) if file_type not in FILE_TYPES: msg.fail( "Unknown file type: '{}'".format(file_type), "Supported file types: '{}'".format(", ".join(FILE_TYPES)), exits=1, ) if file_type not in FILE_TYPES_STDOUT and output_dir == "-": # TODO: support msgpack via stdout in srsly? msg.fail( "Can't write .{} data to stdout.".format(file_type), "Please specify an output directory.", exits=1, ) if not input_path.exists(): msg.fail("Input file not found", input_path, exits=1) if output_dir != "-" and not Path(output_dir).exists(): msg.fail("Output directory not found", output_dir, exits=1) input_data = input_path.open("r", encoding="utf-8").read() if converter == "auto": converter = input_path.suffix[1:] if converter == "ner" or converter == "iob": converter_autodetect = autodetect_ner_format(input_data) if converter_autodetect == "ner": msg.info("Auto-detected token-per-line NER format") converter = converter_autodetect elif converter_autodetect == "iob": msg.info("Auto-detected sentence-per-line NER format") converter = converter_autodetect else: msg.warn( "Can't automatically detect NER format. Conversion may not succeed. See https://spacy.io/api/cli#convert" ) if converter not in CONVERTERS: msg.fail("Can't find converter for {}".format(converter), exits=1) ner_map = None if ner_map_path is not None: ner_map = srsly.read_json(ner_map_path) # Use converter function to convert data func = CONVERTERS[converter] data = func( input_data, n_sents=n_sents, seg_sents=seg_sents, use_morphology=morphology, lang=lang, model=model, no_print=no_print, ner_map=ner_map, ) if output_dir != "-": # Export data to a file suffix = ".{}".format(file_type) output_file = Path(output_dir) / Path(input_path.parts[-1]).with_suffix(suffix) if file_type == "json": srsly.write_json(output_file, data) elif file_type == "jsonl": srsly.write_jsonl(output_file, data) elif file_type == "msg": srsly.write_msgpack(output_file, data) msg.good( "Generated output file ({} documents): {}".format(len(data), output_file) ) else: # Print to stdout if file_type == "json": srsly.write_json("-", data) elif file_type == "jsonl": srsly.write_jsonl("-", data) def autodetect_ner_format(input_data): # guess format from the first 20 lines lines = input_data.split("\n")[:20] format_guesses = {"ner": 0, "iob": 0} iob_re = re.compile(r"\S+\|(O|[IB]-\S+)") ner_re = re.compile(r"\S+\s+(O|[IB]-\S+)$") for line in lines: line = line.strip() if iob_re.search(line): format_guesses["iob"] += 1 if ner_re.search(line): format_guesses["ner"] += 1 if format_guesses["iob"] == 0 and format_guesses["ner"] > 0: return "ner" if format_guesses["ner"] == 0 and format_guesses["iob"] > 0: return "iob" return None