//- 💫 DOCS > API > ANNOTATION SPECS include ../_includes/_mixins p This document describes the target annotations spaCy is trained to predict. +section("tokenization") +h(2, "tokenization") Tokenization p | Tokenization standards are based on the | #[+a("https://catalog.ldc.upenn.edu/LDC2013T19") OntoNotes 5] corpus. | The tokenizer differs from most by including tokens for significant | whitespace. Any sequence of whitespace characters beyond a single space | (#[code ' ']) is included as a token. +aside-code("Example"). from spacy.lang.en import English nlp = English() tokens = nlp('Some\nspaces and\ttab characters') tokens_text = [t.text for t in tokens] assert tokens_text == ['Some', '\n', 'spaces', ' ', 'and', '\t', 'tab', 'characters'] p | The whitespace tokens are useful for much the same reason punctuation is | – it's often an important delimiter in the text. By preserving it in the | token output, we are able to maintain a simple alignment between the | tokens and the original string, and we ensure that no information is | lost during processing. +section("sbd") +h(2, "sentence-boundary") Sentence boundary detection p | Sentence boundaries are calculated from the syntactic parse tree, so | features such as punctuation and capitalisation play an important but | non-decisive role in determining the sentence boundaries. Usually this | means that the sentence boundaries will at least coincide with clause | boundaries, even given poorly punctuated text. +section("pos-tagging") +h(2, "pos-tagging") Part-of-speech Tagging +aside("Tip: Understanding tags") | You can also use #[code spacy.explain()] to get the description for the | string representation of a tag. For example, | #[code spacy.explain("RB")] will return "adverb". include _annotation/_pos-tags +section("lemmatization") +h(2, "lemmatization") Lemmatization p A "lemma" is the uninflected form of a word. In English, this means: +list +item #[strong Adjectives]: The form like "happy", not "happier" or "happiest" +item #[strong Adverbs]: The form like "badly", not "worse" or "worst" +item #[strong Nouns]: The form like "dog", not "dogs"; like "child", not "children" +item #[strong Verbs]: The form like "write", not "writes", "writing", "wrote" or "written" p | The lemmatization data is taken from | #[+a("https://wordnet.princeton.edu") WordNet]. However, we also add a | special case for pronouns: all pronouns are lemmatized to the special | token #[code -PRON-]. +infobox("About spaCy's custom pronoun lemma") | Unlike verbs and common nouns, there's no clear base form of a personal | pronoun. Should the lemma of "me" be "I", or should we normalize person | as well, giving "it" — or maybe "he"? spaCy's solution is to introduce a | novel symbol, #[code -PRON-], which is used as the lemma for | all personal pronouns. +section("dependency-parsing") +h(2, "dependency-parsing") Syntactic Dependency Parsing +aside("Tip: Understanding labels") | You can also use #[code spacy.explain()] to get the description for the | string representation of a label. For example, | #[code spacy.explain("prt")] will return "particle". include _annotation/_dep-labels +section("named-entities") +h(2, "named-entities") Named Entity Recognition +aside("Tip: Understanding entity types") | You can also use #[code spacy.explain()] to get the description for the | string representation of an entity label. For example, | #[code spacy.explain("LANGUAGE")] will return "any named language". include _annotation/_named-entities +h(3, "biluo") BILUO Scheme include _annotation/_biluo +section("training") +h(2, "training") Models and training data include _annotation/_training