from typing import Optional from enum import Enum from pathlib import Path from wasabi import Printer import srsly import re from ._app import app, Arg, Opt from .converters import conllu2json, iob2json, conll_ner2json from .converters import ner_jsonl2json # Converters are matched by file extension except for ner/iob, which are # matched by file extension and content. To add a converter, add a new # entry to this dict with the file extension mapped to the converter function # imported from /converters. CONVERTERS = { "conllubio": conllu2json, "conllu": conllu2json, "conll": conllu2json, "ner": conll_ner2json, "iob": iob2json, "jsonl": ner_jsonl2json, } # File types FILE_TYPES_STDOUT = ("json", "jsonl") class FileTypes(str, Enum): json = "json" jsonl = "jsonl" msg = "msg" @app.command("convert") def convert_cli( # fmt: off input_file: str = Arg(..., help="Input file", exists=True), output_dir: Path = Arg("-", help="Output directory. '-' for stdout.", allow_dash=True, exists=True), file_type: FileTypes = Opt(FileTypes.json.value, "--file-type", "-t", help="Type of data to produce"), n_sents: int = Opt(1, "--n-sents", "-n", help="Number of sentences per doc (0 to disable)"), seg_sents: bool = Opt(False, "--seg-sents", "-s", help="Segment sentences (for -c ner)"), model: Optional[str] = Opt(None, "--model", "-b", help="Model for sentence segmentation (for -s)"), morphology: bool = Opt(False, "--morphology", "-m", help="Enable appending morphology to tags"), merge_subtokens: bool = Opt(False, "--merge-subtokens", "-T", help="Merge CoNLL-U subtokens"), converter: str = Opt("auto", "--converter", "-c", help=f"Converter: {tuple(CONVERTERS.keys())}"), ner_map_path: Optional[Path] = Opt(None, "--ner-map-path", "-N", help="NER tag mapping (as JSON-encoded dict of entity types)", exists=True), lang: Optional[str] = Opt(None, "--lang", "-l", help="Language (if tokenizer required)"), # fmt: on ): """ Convert files into JSON format for use with train command and other experiment management functions. If no output_dir is specified, the data is written to stdout, so you can pipe them forward to a JSON file: $ spacy convert some_file.conllu > some_file.json """ if isinstance(file_type, FileTypes): # We get an instance of the FileTypes from the CLI so we need its string value file_type = file_type.value silent = output_dir == "-" convert( input_file, output_dir, file_type=file_type, n_sents=n_sents, seg_sents=seg_sents, model=model, morphology=morphology, merge_subtokens=merge_subtokens, converter=converter, ner_map_path=ner_map_path, lang=lang, silent=silent, ) def convert( input_file: Path, output_dir: Path, *, file_type: str = "json", n_sents: int = 1, seg_sents: bool = False, model: Optional[str] = None, morphology: bool = False, merge_subtokens: bool = False, converter: str = "auto", ner_map_path: Optional[Path] = None, lang: Optional[str] = None, silent: bool = True, ) -> None: msg = Printer(no_print=silent, pretty=not silent) input_path = Path(input_file) if file_type not in FILE_TYPES_STDOUT and output_dir == "-": # TODO: support msgpack via stdout in srsly? msg.fail( f"Can't write .{file_type} data to stdout", "Please specify an output directory.", exits=1, ) if not input_path.exists(): msg.fail("Input file not found", input_path, exits=1) if output_dir != "-" and not Path(output_dir).exists(): msg.fail("Output directory not found", output_dir, exits=1) input_data = input_path.open("r", encoding="utf-8").read() if converter == "auto": converter = input_path.suffix[1:] if converter == "ner" or converter == "iob": converter_autodetect = autodetect_ner_format(input_data) if converter_autodetect == "ner": msg.info("Auto-detected token-per-line NER format") converter = converter_autodetect elif converter_autodetect == "iob": msg.info("Auto-detected sentence-per-line NER format") converter = converter_autodetect else: msg.warn( "Can't automatically detect NER format. Conversion may not " "succeed. See https://spacy.io/api/cli#convert" ) if converter not in CONVERTERS: msg.fail(f"Can't find converter for {converter}", exits=1) ner_map = None if ner_map_path is not None: ner_map = srsly.read_json(ner_map_path) # Use converter function to convert data func = CONVERTERS[converter] data = func( input_data, n_sents=n_sents, seg_sents=seg_sents, append_morphology=morphology, merge_subtokens=merge_subtokens, lang=lang, model=model, no_print=silent, ner_map=ner_map, ) if output_dir != "-": # Export data to a file suffix = f".{file_type}" output_file = Path(output_dir) / Path(input_path.parts[-1]).with_suffix(suffix) if file_type == "json": srsly.write_json(output_file, data) elif file_type == "jsonl": srsly.write_jsonl(output_file, data) elif file_type == "msg": srsly.write_msgpack(output_file, data) msg.good(f"Generated output file ({len(data)} documents): {output_file}") else: # Print to stdout if file_type == "json": srsly.write_json("-", data) elif file_type == "jsonl": srsly.write_jsonl("-", data) def autodetect_ner_format(input_data: str) -> str: # guess format from the first 20 lines lines = input_data.split("\n")[:20] format_guesses = {"ner": 0, "iob": 0} iob_re = re.compile(r"\S+\|(O|[IB]-\S+)") ner_re = re.compile(r"\S+\s+(O|[IB]-\S+)$") for line in lines: line = line.strip() if iob_re.search(line): format_guesses["iob"] += 1 if ner_re.search(line): format_guesses["ner"] += 1 if format_guesses["iob"] == 0 and format_guesses["ner"] > 0: return "ner" if format_guesses["ner"] == 0 and format_guesses["iob"] > 0: return "iob" return None