//- 💫 DOCS > API > ANNOTATION > TRAINING +h(3, "json-input") JSON input format for training p | spaCy takes training data in JSON format. The built-in | #[+api("cli#convert") #[code convert]] command helps you convert the | #[code .conllu] format used by the | #[+a("https://github.com/UniversalDependencies") Universal Dependencies corpora] | to spaCy's training format. +aside("Annotating entities") | Named entities are provided in the #[+a("/api/annotation#biluo") BILUO] | notation. Tokens outside an entity are set to #[code "O"] and tokens | that are part of an entity are set to the entity label, prefixed by the | BILUO marker. For example #[code "B-ORG"] describes the first token of | a multi-token #[code ORG] entity and #[code "U-PERSON"] a single | token representing a #[code PERSON] entity. The | #[+api("goldparse#biluo_tags_from_offsets") #[code biluo_tags_from_offsets]] | function can help you convert entity offsets to the right format. +code("Example structure"). [{ "id": int, # ID of the document within the corpus "paragraphs": [{ # list of paragraphs in the corpus "raw": string, # raw text of the paragraph "sentences": [{ # list of sentences in the paragraph "tokens": [{ # list of tokens in the sentence "id": int, # index of the token in the document "dep": string, # dependency label "head": int, # offset of token head relative to token index "tag": string, # part-of-speech tag "orth": string, # verbatim text of the token "ner": string # BILUO label, e.g. "O" or "B-ORG" }], "brackets": [{ # phrase structure (NOT USED by current models) "first": int, # index of first token "last": int, # index of last token "label": string # phrase label }] }] }] }] p | Here's an example of dependencies, part-of-speech tags and names | entities, taken from the English Wall Street Journal portion of the Penn | Treebank: +github("spacy", "examples/training/training-data.json", false, false, "json") +h(3, "vocab-jsonl") Lexical data for vocabulary +tag-new(2) p | The populate a model's vocabulary, you can use the | #[+api("cli#vocab") #[code spacy vocab]] command and load in a | #[+a("https://jsonlines.readthedocs.io/en/latest/") newline-delimited JSON] | (JSONL) file containing one lexical entry per line. The first line | defines the language and vocabulary settings. All other lines are | expected to be JSON objects describing an individual lexeme. The lexical | attributes will be then set as attributes on spaCy's | #[+api("lexeme#attributes") #[code Lexeme]] object. The #[code vocab] | command outputs a ready-to-use spaCy model with a #[code Vocab] | containing the lexical data. +code("First line"). {"lang": "en", "settings": {"oov_prob": -20.502029418945312}} +code("Entry structure"). { "orth": string, "id": int, "lower": string, "norm": string, "shape": string "prefix": string, "suffix": string, "length": int, "cluster": string, "prob": float, "is_alpha": bool, "is_ascii": bool, "is_digit": bool, "is_lower": bool, "is_punct": bool, "is_space": bool, "is_title": bool, "is_upper": bool, "like_url": bool, "like_num": bool, "like_email": bool, "is_stop": bool, "is_oov": bool, "is_quote": bool, "is_left_punct": bool, "is_right_punct": bool } p | Here's an example of the 500 most frequent lexemes in the English | training data: +github("spacy", "examples/training/vocab-data.json", false, false, "json")