# coding: utf8
from __future__ import unicode_literals, division, print_function

import plac
from timeit import default_timer as timer
from wasabi import msg

from ..gold import GoldCorpus
from .. import util
from .. import displacy


@plac.annotations(
    model=("Model name or path", "positional", None, str),
    data_path=("Location of JSON-formatted evaluation data", "positional", None, str),
    gold_preproc=("Use gold preprocessing", "flag", "G", bool),
    gpu_id=("Use GPU", "option", "g", int),
    displacy_path=("Directory to output rendered parses as HTML", "option", "dp", str),
    displacy_limit=("Limit of parses to render as HTML", "option", "dl", int),
    return_scores=("Return dict containing model scores", "flag", "R", bool),
)
def evaluate(
    model,
    data_path,
    gpu_id=-1,
    gold_preproc=False,
    displacy_path=None,
    displacy_limit=25,
    return_scores=False,
):
    """
    Evaluate a model. To render a sample of parses in a HTML file, set an
    output directory as the displacy_path argument.
    """
    util.fix_random_seed()
    if gpu_id >= 0:
        util.use_gpu(gpu_id)
    util.set_env_log(False)
    data_path = util.ensure_path(data_path)
    displacy_path = util.ensure_path(displacy_path)
    if not data_path.exists():
        msg.fail("Evaluation data not found", data_path, exits=1)
    if displacy_path and not displacy_path.exists():
        msg.fail("Visualization output directory not found", displacy_path, exits=1)
    corpus = GoldCorpus(data_path, data_path)
    if model.startswith("blank:"):
        nlp = util.get_lang_class(model.replace("blank:", ""))()
    else:
        nlp = util.load_model(model)
    dev_docs = list(corpus.dev_docs(nlp, gold_preproc=gold_preproc))
    begin = timer()
    scorer = nlp.evaluate(dev_docs, verbose=False)
    end = timer()
    nwords = sum(len(doc_gold[0]) for doc_gold in dev_docs)
    results = {
        "Time": "%.2f s" % (end - begin),
        "Words": nwords,
        "Words/s": "%.0f" % (nwords / (end - begin)),
        "TOK": "%.2f" % scorer.token_acc,
        "POS": "%.2f" % scorer.tags_acc,
        "UAS": "%.2f" % scorer.uas,
        "LAS": "%.2f" % scorer.las,
        "NER P": "%.2f" % scorer.ents_p,
        "NER R": "%.2f" % scorer.ents_r,
        "NER F": "%.2f" % scorer.ents_f,
        "Textcat": "%.2f" % scorer.textcat_score,
    }
    msg.table(results, title="Results")

    if displacy_path:
        docs, golds = zip(*dev_docs)
        render_deps = "parser" in nlp.meta.get("pipeline", [])
        render_ents = "ner" in nlp.meta.get("pipeline", [])
        render_parses(
            docs,
            displacy_path,
            model_name=model,
            limit=displacy_limit,
            deps=render_deps,
            ents=render_ents,
        )
        msg.good("Generated {} parses as HTML".format(displacy_limit), displacy_path)
    if return_scores:
        return scorer.scores


def render_parses(docs, output_path, model_name="", limit=250, deps=True, ents=True):
    docs[0].user_data["title"] = model_name
    if ents:
        html = displacy.render(docs[:limit], style="ent", page=True)
        with (output_path / "entities.html").open("w", encoding="utf8") as file_:
            file_.write(html)
    if deps:
        html = displacy.render(
            docs[:limit], style="dep", page=True, options={"compact": True}
        )
        with (output_path / "parses.html").open("w", encoding="utf8") as file_:
            file_.write(html)