#!/usr/bin/env python # coding: utf8 """Example of multi-processing with Joblib. Here, we're exporting part-of-speech-tagged, true-cased, (very roughly) sentence-separated text, with each "sentence" on a newline, and spaces between tokens. Data is loaded from the IMDB movie reviews dataset and will be loaded automatically via Thinc's built-in dataset loader. Compatible with: spaCy 2.0.0a18+ """ from __future__ import print_function, unicode_literals from toolz import partition_all from pathlib import Path from joblib import Parallel, delayed import thinc.extra.datasets import plac import spacy @plac.annotations( output_dir=("Output directory", "positional", None, Path), model=("Model name (needs tagger)", "positional", None, str), n_jobs=("Number of workers", "option", "n", int), batch_size=("Batch-size for each process", "option", "b", int), limit=("Limit of entries from the dataset", "option", "l", int)) def main(output_dir, model='en_core_web_sm', n_jobs=4, batch_size=1000, limit=10000): nlp = spacy.load(model) # load spaCy model print("Loaded model '%s'" % model) if not output_dir.exists(): output_dir.mkdir() # load and pre-process the IMBD dataset print("Loading IMDB data...") data, _ = thinc.extra.datasets.imdb() texts, _ = zip(*data[-limit:]) print("Processing texts...") partitions = partition_all(batch_size, texts) executor = Parallel(n_jobs=n_jobs) do = delayed(transform_texts) tasks = (do(nlp, i, batch, output_dir) for i, batch in enumerate(partitions)) executor(tasks) def transform_texts(nlp, batch_id, texts, output_dir): print(nlp.pipe_names) out_path = Path(output_dir) / ('%d.txt' % batch_id) if out_path.exists(): # return None in case same batch is called again return None print('Processing batch', batch_id) with out_path.open('w', encoding='utf8') as f: for doc in nlp.pipe(texts): f.write(' '.join(represent_word(w) for w in doc if not w.is_space)) f.write('\n') print('Saved {} texts to {}.txt'.format(len(texts), batch_id)) def represent_word(word): text = word.text # True-case, i.e. try to normalize sentence-initial capitals. # Only do this if the lower-cased form is more probable. if text.istitle() and is_sent_begin(word) \ and word.prob < word.doc.vocab[text.lower()].prob: text = text.lower() return text + '|' + word.tag_ def is_sent_begin(word): if word.i == 0: return True elif word.i >= 2 and word.nbor(-1).text in ('.', '!', '?', '...'): return True else: return False if __name__ == '__main__': plac.call(main)