#!/usr/bin/env python from __future__ import division from __future__ import unicode_literals import os from os import path import shutil import codecs import random import plac import cProfile import pstats import re from spacy.en import English def score_model(nlp, semcor_docs): n_right = 0 n_wrong = 0 n_multi = 0 for dnum, paras in semcor_docs: for pnum, para in paras: for snum, sent in para: words = [t.orth for t in sent] tokens = nlp.tokenizer.tokens_from_list(words) nlp.tagger(tokens) nlp.senser(tokens) for i, token in enumerate(tokens): if '_' in sent[i].orth: n_multi += 1 elif sent[i].supersense != 'NO_SENSE': n_right += token.sense_ == sent[i].supersense n_wrong += token.sense_ != sent[i].supersense return n_multi, n_right, n_wrong def train(Language, model_dir, docs, annotations, report_every=1000, n_docs=1000): wsd_model_dir = path.join(model_dir, 'wsd') if path.exists(pos_model_dir): shutil.rmtree(pos_model_dir) os.mkdir(wsd_model_dir) Config.write(wsd_model_dir, 'config', seed=seed) nlp = Language(data_dir=model_dir) for doc in corpus: tokens = nlp(doc, senser=False) loss += nlp.senser.train(tokens) if i and not i % report_every: acc = score_model(nlp, dev_docs) print loss, n_right / (n_right + n_wrong) nlp.senser.end_training() nlp.vocab.strings.dump(path.join(model_dir, 'vocab', 'strings.txt')) @plac.annotations( docs_db_loc=("Location of the documents SQLite database"), model_dir=("Location of the models directory"), n_docs=("Number of training documents", "option", "n", int), verbose=("Verbose error reporting", "flag", "v", bool), debug=("Debug mode", "flag", "d", bool), ) def main(train_loc, dev_loc, model_dir, n_docs=0): train_docs = DocsDB(train_loc) dev_docs = read_semcor(dev_loc) train(English, model_dir, train_docs, dev_docs, report_every=10, n_docs=1000): if __name__ == '__main__': plac.call(main)