--- title: Morphologizer tag: class source: spacy/pipeline/morphologizer.pyx version: 3 teaser: 'Pipeline component for predicting morphological features' api_base_class: /api/tagger api_string_name: morphologizer api_trainable: true --- A trainable pipeline component to predict morphological features and coarse-grained POS tags following the Universal Dependencies [UPOS](https://universaldependencies.org/u/pos/index.html) and [FEATS](https://universaldependencies.org/format.html#morphological-annotation) annotation guidelines. ## Assigned Attributes {id="assigned-attributes"} Predictions are saved to `Token.morph` and `Token.pos`. | Location | Value | | ------------- | ----------------------------------------- | | `Token.pos` | The UPOS part of speech (hash). ~~int~~ | | `Token.pos_` | The UPOS part of speech. ~~str~~ | | `Token.morph` | Morphological features. ~~MorphAnalysis~~ | ## Config and implementation {id="config"} The default config is defined by the pipeline component factory and describes how the component should be configured. You can override its settings via the `config` argument on [`nlp.add_pipe`](/api/language#add_pipe) or in your [`config.cfg` for training](/usage/training#config). See the [model architectures](/api/architectures) documentation for details on the architectures and their arguments and hyperparameters. > #### Example > > ```python > from spacy.pipeline.morphologizer import DEFAULT_MORPH_MODEL > config = {"model": DEFAULT_MORPH_MODEL} > nlp.add_pipe("morphologizer", config=config) > ``` | Setting | Description | | ----------------------------------------------- | ---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- | | `model` | The model to use. Defaults to [Tagger](/api/architectures#Tagger). ~~Model[List[Doc], List[Floats2d]]~~ | | `overwrite` 3.2 | Whether the values of existing features are overwritten. Defaults to `False`. ~~bool~~ | | `extend` 3.2 | Whether existing feature types (whose values may or may not be overwritten depending on `overwrite`) are preserved. Defaults to `False`. ~~bool~~ | | `scorer` 3.2 | The scoring method. Defaults to [`Scorer.score_token_attr`](/api/scorer#score_token_attr) for the attributes `"pos"` and `"morph"` and [`Scorer.score_token_attr_per_feat`](/api/scorer#score_token_attr_per_feat) for the attribute `"morph"`. ~~Optional[Callable]~~ | | `save_activations` 4.0 | Save activations in `Doc` when annotating. Saved activations are `"probabilities"` and `"label_ids"`. ~~Union[bool, list[str]]~~ | ```python %%GITHUB_SPACY/spacy/pipeline/morphologizer.pyx ``` ## Morphologizer.\_\_init\_\_ {id="init",tag="method"} Create a new pipeline instance. In your application, you would normally use a shortcut for this and instantiate the component using its string name and [`nlp.add_pipe`](/api/language#add_pipe). The `overwrite` and `extend` settings determine how existing annotation is handled (with the example for existing annotation `A=B|C=D` + predicted annotation `C=E|X=Y`): - `overwrite=True, extend=True`: overwrite values of existing features, add any new features (`A=B|C=D` + `C=E|X=Y` → `A=B|C=E|X=Y`) - `overwrite=True, extend=False`: overwrite completely, removing any existing features (`A=B|C=D` + `C=E|X=Y` → `C=E|X=Y`) - `overwrite=False, extend=True`: keep values of existing features, add any new features (`A=B|C=D` + `C=E|X=Y` → `A=B|C=D|X=Y`) - `overwrite=False, extend=False`: do not modify the existing annotation if set (`A=B|C=D` + `C=E|X=Y` → `A=B|C=D`) > #### Example > > ```python > # Construction via add_pipe with default model > morphologizer = nlp.add_pipe("morphologizer") > > # Construction via create_pipe with custom model > config = {"model": {"@architectures": "my_morphologizer"}} > morphologizer = nlp.add_pipe("morphologizer", config=config) > > # Construction from class > from spacy.pipeline import Morphologizer > morphologizer = Morphologizer(nlp.vocab, model) > ``` | Name | Description | | ---------------------------------------- | ---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- | | `vocab` | The shared vocabulary. ~~Vocab~~ | | `model` | The [`Model`](https://thinc.ai/docs/api-model) powering the pipeline component. ~~Model[List[Doc], List[Floats2d]]~~ | | `name` | String name of the component instance. Used to add entries to the `losses` during training. ~~str~~ | | _keyword-only_ | | | `overwrite` 3.2 | Whether the values of existing features are overwritten. Defaults to `True`. ~~bool~~ | | `extend` 3.2 | Whether existing feature types (whose values may or may not be overwritten depending on `overwrite`) are preserved. Defaults to `False`. ~~bool~~ | | `scorer` 3.2 | The scoring method. Defaults to [`Scorer.score_token_attr`](/api/scorer#score_token_attr) for the attributes `"pos"` and `"morph"` and [`Scorer.score_token_attr_per_feat`](/api/scorer#score_token_attr_per_feat) for the attribute `"morph"`. ~~Optional[Callable]~~ | ## Morphologizer.\_\_call\_\_ {id="call",tag="method"} Apply the pipe to one document. The document is modified in place, and returned. This usually happens under the hood when the `nlp` object is called on a text and all pipeline components are applied to the `Doc` in order. Both [`__call__`](/api/morphologizer#call) and [`pipe`](/api/morphologizer#pipe) delegate to the [`predict`](/api/morphologizer#predict) and [`set_annotations`](/api/morphologizer#set_annotations) methods. > #### Example > > ```python > doc = nlp("This is a sentence.") > morphologizer = nlp.add_pipe("morphologizer") > # This usually happens under the hood > processed = morphologizer(doc) > ``` | Name | Description | | ----------- | -------------------------------- | | `doc` | The document to process. ~~Doc~~ | | **RETURNS** | The processed document. ~~Doc~~ | ## Morphologizer.distill {id="distill", tag="method,experimental", version="4"} Train a pipe (the student) on the predictions of another pipe (the teacher). The student is typically trained on the probability distribution of the teacher, but details may differ per pipe. The goal of distillation is to transfer knowledge from the teacher to the student. The distillation is performed on ~~Example~~ objects. The `Example.reference` and `Example.predicted` ~~Doc~~s must have the same number of tokens and the same orthography. Even though the reference does not need have to have gold annotations, the teacher could adds its own annotations when necessary. This feature is experimental. > #### Example > > ```python > teacher_pipe = teacher.add_pipe("morphologizer") > student_pipe = student.add_pipe("morphologizer") > optimizer = nlp.resume_training() > losses = student.distill(teacher_pipe, examples, sgd=optimizer) > ``` | Name | Description | | -------------- | ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- | | `teacher_pipe` | The teacher pipe to learn from. ~~Optional[TrainablePipe]~~ | | `examples` | A batch of [`Example`](/api/example) distillation examples. The reference (teacher) and predicted (student) docs must have the same number of tokens and orthography. ~~Iterable[Example]~~ | | _keyword-only_ | | | `drop` | Dropout rate. ~~float~~ | | `sgd` | An optimizer. Will be created via [`create_optimizer`](#create_optimizer) if not set. ~~Optional[Optimizer]~~ | | `losses` | Optional record of the loss during distillation. Updated using the component name as the key. ~~Optional[Dict[str, float]]~~ | | **RETURNS** | The updated `losses` dictionary. ~~Dict[str, float]~~ | ## Morphologizer.pipe {id="pipe",tag="method"} Apply the pipe to a stream of documents. This usually happens under the hood when the `nlp` object is called on a text and all pipeline components are applied to the `Doc` in order. Both [`__call__`](/api/morphologizer#call) and [`pipe`](/api/morphologizer#pipe) delegate to the [`predict`](/api/morphologizer#predict) and [`set_annotations`](/api/morphologizer#set_annotations) methods. > #### Example > > ```python > morphologizer = nlp.add_pipe("morphologizer") > for doc in morphologizer.pipe(docs, batch_size=50): > pass > ``` | Name | Description | | -------------- | ------------------------------------------------------------- | | `stream` | A stream of documents. ~~Iterable[Doc]~~ | | _keyword-only_ | | | `batch_size` | The number of documents to buffer. Defaults to `128`. ~~int~~ | | **YIELDS** | The processed documents in order. ~~Doc~~ | ## Morphologizer.initialize {id="initialize",tag="method"} Initialize the component for training. `get_examples` should be a function that returns an iterable of [`Example`](/api/example) objects. **At least one example should be supplied.** The data examples are used to **initialize the model** of the component and can either be the full training data or a representative sample. Initialization includes validating the network, [inferring missing shapes](https://thinc.ai/docs/usage-models#validation) and setting up the label scheme based on the data. This method is typically called by [`Language.initialize`](/api/language#initialize) and lets you customize arguments it receives via the [`[initialize.components]`](/api/data-formats#config-initialize) block in the config. > #### Example > > ```python > morphologizer = nlp.add_pipe("morphologizer") > morphologizer.initialize(lambda: examples, nlp=nlp) > ``` > > ```ini > ### config.cfg > [initialize.components.morphologizer] > > [initialize.components.morphologizer.labels] > @readers = "spacy.read_labels.v1" > path = "corpus/labels/morphologizer.json > ``` | Name | Description | | -------------- | ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- | | `get_examples` | Function that returns gold-standard annotations in the form of [`Example`](/api/example) objects. Must contain at least one `Example`. ~~Callable[[], Iterable[Example]]~~ | | _keyword-only_ | | | `nlp` | The current `nlp` object. Defaults to `None`. ~~Optional[Language]~~ | | `labels` | The label information to add to the component, as provided by the [`label_data`](#label_data) property after initialization. To generate a reusable JSON file from your data, you should run the [`init labels`](/api/cli#init-labels) command. If no labels are provided, the `get_examples` callback is used to extract the labels from the data, which may be a lot slower. ~~Optional[dict]~~ | ## Morphologizer.predict {id="predict",tag="method"} Apply the component's model to a batch of [`Doc`](/api/doc) objects, without modifying them. > #### Example > > ```python > morphologizer = nlp.add_pipe("morphologizer") > scores = morphologizer.predict([doc1, doc2]) > ``` | Name | Description | | ----------- | ------------------------------------------- | | `docs` | The documents to predict. ~~Iterable[Doc]~~ | | **RETURNS** | The model's prediction for each document. | ## Morphologizer.set_annotations {id="set_annotations",tag="method"} Modify a batch of [`Doc`](/api/doc) objects, using pre-computed scores. > #### Example > > ```python > morphologizer = nlp.add_pipe("morphologizer") > scores = morphologizer.predict([doc1, doc2]) > morphologizer.set_annotations([doc1, doc2], scores) > ``` | Name | Description | | -------- | ------------------------------------------------------- | | `docs` | The documents to modify. ~~Iterable[Doc]~~ | | `scores` | The scores to set, produced by `Morphologizer.predict`. | ## Morphologizer.update {id="update",tag="method"} Learn from a batch of [`Example`](/api/example) objects containing the predictions and gold-standard annotations, and update the component's model. Delegates to [`predict`](/api/morphologizer#predict) and [`get_loss`](/api/morphologizer#get_loss). > #### Example > > ```python > morphologizer = nlp.add_pipe("morphologizer") > optimizer = nlp.initialize() > losses = morphologizer.update(examples, sgd=optimizer) > ``` | Name | Description | | -------------- | ------------------------------------------------------------------------------------------------------------------------ | | `examples` | A batch of [`Example`](/api/example) objects to learn from. ~~Iterable[Example]~~ | | _keyword-only_ | | | `drop` | The dropout rate. ~~float~~ | | `sgd` | An optimizer. Will be created via [`create_optimizer`](#create_optimizer) if not set. ~~Optional[Optimizer]~~ | | `losses` | Optional record of the loss during training. Updated using the component name as the key. ~~Optional[Dict[str, float]]~~ | | **RETURNS** | The updated `losses` dictionary. ~~Dict[str, float]~~ | ## Morphologizer.get_loss {id="get_loss",tag="method"} Find the loss and gradient of loss for the batch of documents and their predicted scores. > #### Example > > ```python > morphologizer = nlp.add_pipe("morphologizer") > scores = morphologizer.predict([eg.predicted for eg in examples]) > loss, d_loss = morphologizer.get_loss(examples, scores) > ``` | Name | Description | | ----------- | --------------------------------------------------------------------------- | | `examples` | The batch of examples. ~~Iterable[Example]~~ | | `scores` | Scores representing the model's predictions. | | **RETURNS** | The loss and the gradient, i.e. `(loss, gradient)`. ~~Tuple[float, float]~~ | ## Morphologizer.get_teacher_student_loss {id="get_teacher_student_loss", tag="method", version="4"} Calculate the loss and its gradient for the batch of student scores relative to the teacher scores. > #### Example > > ```python > teacher_morphologizer = teacher.get_pipe("morphologizer") > student_morphologizer = student.add_pipe("morphologizer") > student_scores = student_morphologizer.predict([eg.predicted for eg in examples]) > teacher_scores = teacher_morphologizer.predict([eg.predicted for eg in examples]) > loss, d_loss = student_morphologizer.get_teacher_student_loss(teacher_scores, student_scores) > ``` | Name | Description | | ---------------- | --------------------------------------------------------------------------- | | `teacher_scores` | Scores representing the teacher model's predictions. | | `student_scores` | Scores representing the student model's predictions. | | **RETURNS** | The loss and the gradient, i.e. `(loss, gradient)`. ~~Tuple[float, float]~~ | ## Morphologizer.create_optimizer {id="create_optimizer",tag="method"} Create an optimizer for the pipeline component. > #### Example > > ```python > morphologizer = nlp.add_pipe("morphologizer") > optimizer = morphologizer.create_optimizer() > ``` | Name | Description | | ----------- | ---------------------------- | | **RETURNS** | The optimizer. ~~Optimizer~~ | ## Morphologizer.use_params {id="use_params",tag="method, contextmanager"} Modify the pipe's model, to use the given parameter values. At the end of the context, the original parameters are restored. > #### Example > > ```python > morphologizer = nlp.add_pipe("morphologizer") > with morphologizer.use_params(optimizer.averages): > morphologizer.to_disk("/best_model") > ``` | Name | Description | | -------- | -------------------------------------------------- | | `params` | The parameter values to use in the model. ~~dict~~ | ## Morphologizer.add_label {id="add_label",tag="method"} Add a new label to the pipe. If the `Morphologizer` should set annotations for both `pos` and `morph`, the label should include the UPOS as the feature `POS`. Raises an error if the output dimension is already set, or if the model has already been fully [initialized](#initialize). Note that you don't have to call this method if you provide a **representative data sample** to the [`initialize`](#initialize) method. In this case, all labels found in the sample will be automatically added to the model, and the output dimension will be [inferred](/usage/layers-architectures#thinc-shape-inference) automatically. > #### Example > > ```python > morphologizer = nlp.add_pipe("morphologizer") > morphologizer.add_label("Mood=Ind|POS=VERB|Tense=Past|VerbForm=Fin") > ``` | Name | Description | | ----------- | ----------------------------------------------------------- | | `label` | The label to add. ~~str~~ | | **RETURNS** | `0` if the label is already present, otherwise `1`. ~~int~~ | ## Morphologizer.to_disk {id="to_disk",tag="method"} Serialize the pipe to disk. > #### Example > > ```python > morphologizer = nlp.add_pipe("morphologizer") > morphologizer.to_disk("/path/to/morphologizer") > ``` | Name | Description | | -------------- | ------------------------------------------------------------------------------------------------------------------------------------------ | | `path` | A path to a directory, which will be created if it doesn't exist. Paths may be either strings or `Path`-like objects. ~~Union[str, Path]~~ | | _keyword-only_ | | | `exclude` | String names of [serialization fields](#serialization-fields) to exclude. ~~Iterable[str]~~ | ## Morphologizer.from_disk {id="from_disk",tag="method"} Load the pipe from disk. Modifies the object in place and returns it. > #### Example > > ```python > morphologizer = nlp.add_pipe("morphologizer") > morphologizer.from_disk("/path/to/morphologizer") > ``` | Name | Description | | -------------- | ----------------------------------------------------------------------------------------------- | | `path` | A path to a directory. Paths may be either strings or `Path`-like objects. ~~Union[str, Path]~~ | | _keyword-only_ | | | `exclude` | String names of [serialization fields](#serialization-fields) to exclude. ~~Iterable[str]~~ | | **RETURNS** | The modified `Morphologizer` object. ~~Morphologizer~~ | ## Morphologizer.to_bytes {id="to_bytes",tag="method"} > #### Example > > ```python > morphologizer = nlp.add_pipe("morphologizer") > morphologizer_bytes = morphologizer.to_bytes() > ``` Serialize the pipe to a bytestring. | Name | Description | | -------------- | ------------------------------------------------------------------------------------------- | | _keyword-only_ | | | `exclude` | String names of [serialization fields](#serialization-fields) to exclude. ~~Iterable[str]~~ | | **RETURNS** | The serialized form of the `Morphologizer` object. ~~bytes~~ | ## Morphologizer.from_bytes {id="from_bytes",tag="method"} Load the pipe from a bytestring. Modifies the object in place and returns it. > #### Example > > ```python > morphologizer_bytes = morphologizer.to_bytes() > morphologizer = nlp.add_pipe("morphologizer") > morphologizer.from_bytes(morphologizer_bytes) > ``` | Name | Description | | -------------- | ------------------------------------------------------------------------------------------- | | `bytes_data` | The data to load from. ~~bytes~~ | | _keyword-only_ | | | `exclude` | String names of [serialization fields](#serialization-fields) to exclude. ~~Iterable[str]~~ | | **RETURNS** | The `Morphologizer` object. ~~Morphologizer~~ | ## Morphologizer.labels {id="labels",tag="property"} The labels currently added to the component in the Universal Dependencies [FEATS](https://universaldependencies.org/format.html#morphological-annotation) format. Note that even for a blank component, this will always include the internal empty label `_`. If POS features are used, the labels will include the coarse-grained POS as the feature `POS`. > #### Example > > ```python > morphologizer.add_label("Mood=Ind|POS=VERB|Tense=Past|VerbForm=Fin") > assert "Mood=Ind|POS=VERB|Tense=Past|VerbForm=Fin" in morphologizer.labels > ``` | Name | Description | | ----------- | --------------------------------------------------------- | | **RETURNS** | The labels added to the component. ~~Iterable[str, ...]~~ | ## Morphologizer.label_data {id="label_data",tag="property",version="3"} The labels currently added to the component and their internal meta information. This is the data generated by [`init labels`](/api/cli#init-labels) and used by [`Morphologizer.initialize`](/api/morphologizer#initialize) to initialize the model with a pre-defined label set. > #### Example > > ```python > labels = morphologizer.label_data > morphologizer.initialize(lambda: [], nlp=nlp, labels=labels) > ``` | Name | Description | | ----------- | ----------------------------------------------- | | **RETURNS** | The label data added to the component. ~~dict~~ | ## Serialization fields {id="serialization-fields"} During serialization, spaCy will export several data fields used to restore different aspects of the object. If needed, you can exclude them from serialization by passing in the string names via the `exclude` argument. > #### Example > > ```python > data = morphologizer.to_disk("/path", exclude=["vocab"]) > ``` | Name | Description | | ------- | -------------------------------------------------------------- | | `vocab` | The shared [`Vocab`](/api/vocab). | | `cfg` | The config file. You usually don't want to exclude this. | | `model` | The binary model data. You usually don't want to exclude this. |