# cython: embedsignature=True # coding: utf8 from __future__ import unicode_literals from cython.operator cimport dereference as deref from cython.operator cimport preincrement as preinc from cymem.cymem cimport Pool from preshed.maps cimport PreshMap import regex as re from .strings cimport hash_string from . import util cimport cython from .tokens.doc cimport Doc cdef class Tokenizer: """Segment text, and create Doc objects with the discovered segment boundaries. """ def __init__(self, Vocab vocab, rules, prefix_search, suffix_search, infix_finditer, token_match=None): """Create a `Tokenizer`, to create `Doc` objects given unicode text. vocab (Vocab): A storage container for lexical types. rules (dict): Exceptions and special-cases for the tokenizer. prefix_search (callable): A function matching the signature of `re.compile(string).search` to match prefixes. suffix_search (callable): A function matching the signature of `re.compile(string).search` to match suffixes. `infix_finditer` (callable): A function matching the signature of `re.compile(string).finditer` to find infixes. token_match (callable): A boolean function matching strings to be recognised as tokens. RETURNS (Tokenizer): The newly constructed object. EXAMPLE: >>> tokenizer = Tokenizer(nlp.vocab) >>> tokenizer = English().Defaults.create_tokenizer(nlp) """ self.mem = Pool() self._cache = PreshMap() self._specials = PreshMap() self.token_match = token_match self.prefix_search = prefix_search self.suffix_search = suffix_search self.infix_finditer = infix_finditer self.vocab = vocab self._rules = {} for chunk, substrings in sorted(rules.items()): self.add_special_case(chunk, substrings) def __reduce__(self): args = (self.vocab, self._rules, self.prefix_search, self.suffix_search, self.infix_finditer, self.token_match) return (self.__class__, args, None, None) cpdef Doc tokens_from_list(self, list strings): return Doc(self.vocab, words=strings) #raise NotImplementedError( # "Method deprecated in 1.0.\n" # "Old: tokenizer.tokens_from_list(strings)\n" # "New: Doc(tokenizer.vocab, words=strings)") @cython.boundscheck(False) def __call__(self, unicode string): """Tokenize a string. string (unicode): The string to tokenize. RETURNS (Doc): A container for linguistic annotations. """ if len(string) >= (2 ** 30): raise ValueError( "String is too long: %d characters. Max is 2**30." % len(string) ) cdef int length = len(string) cdef Doc tokens = Doc(self.vocab) if length == 0: return tokens cdef int i = 0 cdef int start = 0 cdef bint cache_hit cdef bint in_ws = string[0].isspace() cdef unicode span # The task here is much like string.split, but not quite # We find spans of whitespace and non-space characters, and ignore # spans that are exactly ' '. So, our sequences will all be separated # by either ' ' or nothing. for uc in string: if uc.isspace() != in_ws: if start < i: # When we want to make this fast, get the data buffer once # with PyUnicode_AS_DATA, and then maintain a start_byte # and end_byte, so we can call hash64 directly. That way # we don't have to create the slice when we hit the cache. span = string[start:i] key = hash_string(span) cache_hit = self._try_cache(key, tokens) if not cache_hit: self._tokenize(tokens, span, key) if uc == ' ': tokens.c[tokens.length - 1].spacy = True start = i + 1 else: start = i in_ws = not in_ws i += 1 if start < i: span = string[start:] key = hash_string(span) cache_hit = self._try_cache(key, tokens) if not cache_hit: self._tokenize(tokens, span, key) tokens.c[tokens.length - 1].spacy = string[-1] == ' ' and not in_ws return tokens def pipe(self, texts, batch_size=1000, n_threads=2): """Tokenize a stream of texts. texts: A sequence of unicode texts. batch_size (int): The number of texts to accumulate in an internal buffer. n_threads (int): The number of threads to use, if the implementation supports multi-threading. The default tokenizer is single-threaded. YIELDS (Doc): A sequence of Doc objects, in order. """ for text in texts: yield self(text) cdef int _try_cache(self, hash_t key, Doc tokens) except -1: cached = <_Cached*>self._cache.get(key) if cached == NULL: return False cdef int i if cached.is_lex: for i in range(cached.length): tokens.push_back(cached.data.lexemes[i], False) else: for i in range(cached.length): tokens.push_back(&cached.data.tokens[i], False) return True cdef int _tokenize(self, Doc tokens, unicode span, hash_t orig_key) except -1: cdef vector[LexemeC*] prefixes cdef vector[LexemeC*] suffixes cdef int orig_size orig_size = tokens.length span = self._split_affixes(tokens.mem, span, &prefixes, &suffixes) self._attach_tokens(tokens, span, &prefixes, &suffixes) self._save_cached(&tokens.c[orig_size], orig_key, tokens.length - orig_size) cdef unicode _split_affixes(self, Pool mem, unicode string, vector[const LexemeC*] *prefixes, vector[const LexemeC*] *suffixes): cdef size_t i cdef unicode prefix cdef unicode suffix cdef unicode minus_pre cdef unicode minus_suf cdef size_t last_size = 0 while string and len(string) != last_size: if self.token_match and self.token_match(string): break last_size = len(string) pre_len = self.find_prefix(string) if pre_len != 0: prefix = string[:pre_len] minus_pre = string[pre_len:] # Check whether we've hit a special-case if minus_pre and self._specials.get(hash_string(minus_pre)) != NULL: string = minus_pre prefixes.push_back(self.vocab.get(mem, prefix)) break if self.token_match and self.token_match(string): break suf_len = self.find_suffix(string) if suf_len != 0: suffix = string[-suf_len:] minus_suf = string[:-suf_len] # Check whether we've hit a special-case if minus_suf and (self._specials.get(hash_string(minus_suf)) != NULL): string = minus_suf suffixes.push_back(self.vocab.get(mem, suffix)) break if pre_len and suf_len and (pre_len + suf_len) <= len(string): string = string[pre_len:-suf_len] prefixes.push_back(self.vocab.get(mem, prefix)) suffixes.push_back(self.vocab.get(mem, suffix)) elif pre_len: string = minus_pre prefixes.push_back(self.vocab.get(mem, prefix)) elif suf_len: string = minus_suf suffixes.push_back(self.vocab.get(mem, suffix)) if string and (self._specials.get(hash_string(string)) != NULL): break return string cdef int _attach_tokens(self, Doc tokens, unicode string, vector[const LexemeC*] *prefixes, vector[const LexemeC*] *suffixes) except -1: cdef bint cache_hit cdef int split, end cdef const LexemeC* const* lexemes cdef const LexemeC* lexeme cdef unicode span cdef int i if prefixes.size(): for i in range(prefixes.size()): tokens.push_back(prefixes[0][i], False) if string: cache_hit = self._try_cache(hash_string(string), tokens) if cache_hit: pass elif self.token_match and self.token_match(string): # We're always saying 'no' to spaces here -- the caller will # fix up the outermost one, with reference to the original. # See Issue #859 tokens.push_back(self.vocab.get(tokens.mem, string), False) else: matches = self.find_infix(string) if not matches: tokens.push_back(self.vocab.get(tokens.mem, string), False) else: # let's say we have dyn-o-mite-dave # the regex finds the start and end positions of the hyphens start = 0 for match in matches: infix_start = match.start() infix_end = match.end() if infix_start == start: continue span = string[start:infix_start] tokens.push_back(self.vocab.get(tokens.mem, span), False) if infix_start != infix_end: # If infix_start != infix_end, it means the infix # token is non-empty. Empty infix tokens are useful # for tokenization in some languages (see # https://github.com/explosion/spaCy/issues/768) infix_span = string[infix_start:infix_end] tokens.push_back(self.vocab.get(tokens.mem, infix_span), False) start = infix_end span = string[start:] tokens.push_back(self.vocab.get(tokens.mem, span), False) cdef vector[const LexemeC*].reverse_iterator it = suffixes.rbegin() while it != suffixes.rend(): lexeme = deref(it) preinc(it) tokens.push_back(lexeme, False) cdef int _save_cached(self, const TokenC* tokens, hash_t key, int n) except -1: cdef int i for i in range(n): if tokens[i].lex.id == 0: return 0 cached = <_Cached*>self.mem.alloc(1, sizeof(_Cached)) cached.length = n cached.is_lex = True lexemes = self.mem.alloc(n, sizeof(LexemeC**)) for i in range(n): lexemes[i] = tokens[i].lex cached.data.lexemes = lexemes self._cache.set(key, cached) def find_infix(self, unicode string): """Find internal split points of the string, such as hyphens. string (unicode): The string to segment. RETURNS (list): A list of `re.MatchObject` objects that have `.start()` and `.end()` methods, denoting the placement of internal segment separators, e.g. hyphens. """ if self.infix_finditer is None: return 0 return list(self.infix_finditer(string)) def find_prefix(self, unicode string): """Find the length of a prefix that should be segmented from the string, or None if no prefix rules match. string (unicode): The string to segment. RETURNS (int): The length of the prefix if present, otherwise `None`. """ if self.prefix_search is None: return 0 match = self.prefix_search(string) return (match.end() - match.start()) if match is not None else 0 def find_suffix(self, unicode string): """Find the length of a suffix that should be segmented from the string, or None if no suffix rules match. string (unicode): The string to segment. Returns (int): The length of the suffix if present, otherwise `None`. """ if self.suffix_search is None: return 0 match = self.suffix_search(string) return (match.end() - match.start()) if match is not None else 0 def _load_special_tokenization(self, special_cases): """Add special-case tokenization rules.""" for chunk, substrings in sorted(special_cases.items()): self.add_special_case(chunk, substrings) def add_special_case(self, unicode string, substrings): """Add a special-case tokenization rule. string (unicode): The string to specially tokenize. token_attrs (iterable): A sequence of dicts, where each dict describes a token and its attributes. The `ORTH` fields of the attributes must exactly match the string when they are concatenated. """ substrings = list(substrings) cached = <_Cached*>self.mem.alloc(1, sizeof(_Cached)) cached.length = len(substrings) cached.is_lex = False cached.data.tokens = self.vocab.make_fused_token(substrings) key = hash_string(string) self._specials.set(key, cached) self._cache.set(key, cached) self._rules[string] = substrings def to_disk(self, path, **exclude): """Save the current state to a directory. path (unicode or Path): A path to a directory, which will be created if it doesn't exist. Paths may be either strings or `Path`-like objects. """ with path.open('wb') as file_: file_.write(self.to_bytes(**exclude)) def from_disk(self, path, **exclude): """Loads state from a directory. Modifies the object in place and returns it. path (unicode or Path): A path to a directory. Paths may be either strings or `Path`-like objects. RETURNS (Tokenizer): The modified `Tokenizer` object. """ with path.open('rb') as file_: bytes_data = file_.read() self.from_bytes(bytes_data, **exclude) return self def to_bytes(self, **exclude): """Serialize the current state to a binary string. **exclude: Named attributes to prevent from being serialized. RETURNS (bytes): The serialized form of the `Tokenizer` object. """ serializers = { 'vocab': lambda: self.vocab.to_bytes(), 'prefix_search': lambda: self.prefix_search.__self__.pattern, 'suffix_search': lambda: self.suffix_search.__self__.pattern, 'infix_finditer': lambda: self.infix_finditer.__self__.pattern, 'token_match': lambda: self.token_match.__self__.pattern, 'exceptions': lambda: self._rules } return util.to_bytes(serializers, exclude) def from_bytes(self, bytes_data, **exclude): """Load state from a binary string. bytes_data (bytes): The data to load from. **exclude: Named attributes to prevent from being loaded. RETURNS (Tokenizer): The `Tokenizer` object. """ data = {} deserializers = { 'vocab': lambda b: self.vocab.from_bytes(b), 'prefix_search': lambda b: data.setdefault('prefix', b), 'suffix_search': lambda b: data.setdefault('suffix_search', b), 'infix_finditer': lambda b: data.setdefault('infix_finditer', b), 'token_match': lambda b: data.setdefault('token_match', b), 'exceptions': lambda b: data.setdefault('rules', b) } msg = util.from_bytes(bytes_data, deserializers, exclude) if 'prefix_search' in data: self.prefix_search = re.compile(data['prefix_search']).search if 'suffix_search' in data: self.suffix_search = re.compile(data['suffix_search']).search if 'infix_finditer' in data: self.infix_finditer = re.compile(data['infix_finditer']).finditer if 'token_match' in data: self.token_match = re.compile(data['token_match']).search for string, substrings in data.get('rules', {}).items(): self.add_special_case(string, substrings) return self