# coding: utf8 from __future__ import unicode_literals, division, print_function import plac from pathlib import Path import tqdm from thinc.neural._classes.model import Model from timeit import default_timer as timer import shutil from wasabi import Printer from ._messages import Messages from .._ml import create_default_optimizer from ..attrs import PROB, IS_OOV, CLUSTER, LANG from ..gold import GoldCorpus from .. import util from .. import about # Take dropout and batch size as generators of values -- dropout # starts high and decays sharply, to force the optimizer to explore. # Batch size starts at 1 and grows, so that we make updates quickly # at the beginning of training. dropout_rates = util.decaying( util.env_opt("dropout_from", 0.2), util.env_opt("dropout_to", 0.2), util.env_opt("dropout_decay", 0.0), ) batch_sizes = util.compounding( util.env_opt("batch_from", 1000), util.env_opt("batch_to", 1000), util.env_opt("batch_compound", 1.001), ) @plac.annotations( lang=("Model language", "positional", None, str), output_path=("Output directory to store model in", "positional", None, Path), train_path=("Location of JSON-formatted training data", "positional", None, Path), dev_path=("Location of JSON-formatted development data", "positional", None, Path), base_model=("Name of model to update (optional)", "option", "b", str), pipeline=("Comma-separated names of pipeline components", "option", "p", str), vectors=("Model to load vectors from", "option", "v", str), n_iter=("Number of iterations", "option", "n", int), n_examples=("Number of examples", "option", "ns", int), use_gpu=("Use GPU", "option", "g", int), version=("Model version", "option", "V", str), meta_path=("Optional path to meta.json to use as base.", "option", "m", Path), init_tok2vec=( "Path to pretrained weights for the token-to-vector parts of the models. See 'spacy pretrain'. Experimental.", "option", "t2v", Path, ), parser_multitasks=( "Side objectives for parser CNN, e.g. 'dep' or 'dep,tag'", "option", "pt", str, ), entity_multitasks=( "Side objectives for NER CNN, e.g. 'dep' or 'dep,tag'", "option", "et", str, ), noise_level=("Amount of corruption for data augmentation", "option", "nl", float), gold_preproc=("Use gold preprocessing", "flag", "G", bool), learn_tokens=("Make parser learn gold-standard tokenization", "flag", "T", bool), verbose=("Display more information for debug", "flag", "VV", bool), debug=("Run data diagnostics before training", "flag", "D", bool), ) def train( lang, output_path, train_path, dev_path, base_model=None, pipeline="tagger,parser,ner", vectors=None, n_iter=30, n_examples=0, use_gpu=-1, version="0.0.0", meta_path=None, init_tok2vec=None, parser_multitasks="", entity_multitasks="", noise_level=0.0, gold_preproc=False, learn_tokens=False, verbose=False, debug=False, ): """ Train or update a spaCy model. Requires data to be formatted in spaCy's JSON format. To convert data from other formats, use the `spacy convert` command. """ msg = Printer() util.fix_random_seed() util.set_env_log(verbose) # Make sure all files and paths exists if they are needed train_path = util.ensure_path(train_path) dev_path = util.ensure_path(dev_path) meta_path = util.ensure_path(meta_path) if not train_path or not train_path.exists(): msg.fail(Messages.M050, train_path, exits=1) if not dev_path or not dev_path.exists(): msg.fail(Messages.M051, dev_path, exits=1) if meta_path is not None and not meta_path.exists(): msg.fail(Messages.M020, meta_path, exits=1) meta = util.read_json(meta_path) if meta_path else {} if not isinstance(meta, dict): msg.fail(Messages.M052, Messages.M053.format(meta_type=type(meta)), exits=1) if output_path.exists() and [p for p in output_path.iterdir() if p.is_dir()]: msg.fail(Messages.M062, Messages.M065) if not output_path.exists(): output_path.mkdir() # Set up the base model and pipeline. If a base model is specified, load # the model and make sure the pipeline matches the pipeline setting. If # training starts from a blank model, intitalize the language class. pipeline = [p.strip() for p in pipeline.split(",")] msg.text(Messages.M055.format(pipeline=pipeline)) if base_model: msg.text(Messages.M056.format(model=base_model)) nlp = util.load_model(base_model) if nlp.lang != lang: msg.fail(Messages.M072.format(model_lang=nlp.lang, lang=lang), exits=1) other_pipes = [pipe for pipe in nlp.pipe_names if pipe not in pipeline] nlp.disable_pipes(*other_pipes) for pipe in pipeline: if pipe not in nlp.pipe_names: nlp.add_pipe(nlp.create_pipe(pipe)) else: msg.text(Messages.M057.format(model=lang)) lang_cls = util.get_lang_class(lang) nlp = lang_cls() for pipe in pipeline: nlp.add_pipe(nlp.create_pipe(pipe)) if learn_tokens: nlp.add_pipe(nlp.create_pipe("merge_subtokens")) if vectors: msg.text(Messages.M058.format(model=vectors)) _load_vectors(nlp, vectors) # Multitask objectives multitask_options = [("parser", parser_multitasks), ("ner", entity_multitasks)] for pipe_name, multitasks in multitask_options: if multitasks: if pipe_name not in pipeline: msg.fail(Messages.M059.format(pipe=pipe_name)) pipe = nlp.get_pipe(pipe_name) for objective in multitasks.split(","): pipe.add_multitask_objective(objective) # Prepare training corpus msg.text(Messages.M060.format(limit=n_examples)) corpus = GoldCorpus(train_path, dev_path, limit=n_examples) n_train_words = corpus.count_train() if base_model: # Start with an existing model, use default optimizer optimizer = create_default_optimizer(Model.ops) else: # Start with a blank model, call begin_training optimizer = nlp.begin_training(lambda: corpus.train_tuples, device=use_gpu) nlp._optimizer = None # Load in pre-trained weights if init_tok2vec is not None: components = _load_pretrained_tok2vec(nlp, init_tok2vec) msg.text(Messages.M071.format(components=components)) print( "\nItn. Dep Loss NER Loss UAS NER P. NER R. NER F. Tag % Token % CPU WPS GPU WPS" ) try: for i in range(n_iter): train_docs = corpus.train_docs( nlp, noise_level=noise_level, gold_preproc=gold_preproc, max_length=0 ) words_seen = 0 with tqdm.tqdm(total=n_train_words, leave=False) as pbar: losses = {} for batch in util.minibatch_by_words(train_docs, size=batch_sizes): if not batch: continue docs, golds = zip(*batch) nlp.update( docs, golds, sgd=optimizer, drop=next(dropout_rates), losses=losses, ) pbar.update(sum(len(doc) for doc in docs)) words_seen += sum(len(doc) for doc in docs) with nlp.use_params(optimizer.averages): util.set_env_log(False) epoch_model_path = output_path / ("model%d" % i) nlp.to_disk(epoch_model_path) nlp_loaded = util.load_model_from_path(epoch_model_path) dev_docs = list(corpus.dev_docs(nlp_loaded, gold_preproc=gold_preproc)) nwords = sum(len(doc_gold[0]) for doc_gold in dev_docs) start_time = timer() scorer = nlp_loaded.evaluate(dev_docs, debug) end_time = timer() if use_gpu < 0: gpu_wps = None cpu_wps = nwords / (end_time - start_time) else: gpu_wps = nwords / (end_time - start_time) with Model.use_device("cpu"): nlp_loaded = util.load_model_from_path(epoch_model_path) dev_docs = list( corpus.dev_docs(nlp_loaded, gold_preproc=gold_preproc) ) start_time = timer() scorer = nlp_loaded.evaluate(dev_docs) end_time = timer() cpu_wps = nwords / (end_time - start_time) acc_loc = output_path / ("model%d" % i) / "accuracy.json" util.write_json(acc_loc, scorer.scores) # Update model meta.json meta["lang"] = nlp.lang meta["pipeline"] = nlp.pipe_names meta["spacy_version"] = ">=%s" % about.__version__ meta["accuracy"] = scorer.scores meta["speed"] = {"nwords": nwords, "cpu": cpu_wps, "gpu": gpu_wps} meta["vectors"] = { "width": nlp.vocab.vectors_length, "vectors": len(nlp.vocab.vectors), "keys": nlp.vocab.vectors.n_keys, } meta.setdefault("name", "model%d" % i) meta.setdefault("version", version) meta_loc = output_path / ("model%d" % i) / "meta.json" util.write_json(meta_loc, meta) util.set_env_log(verbose) print_progress(i, losses, scorer.scores, cpu_wps=cpu_wps, gpu_wps=gpu_wps) finally: with msg.loading(Messages.M061): with nlp.use_params(optimizer.averages): final_model_path = output_path / "model-final" nlp.to_disk(final_model_path) msg.good(Messages.M066, util.path2str(final_model_path)) _collate_best_model(meta, output_path, nlp.pipe_names) def _load_vectors(nlp, vectors): util.load_model(vectors, vocab=nlp.vocab) for lex in nlp.vocab: values = {} for attr, func in nlp.vocab.lex_attr_getters.items(): # These attrs are expected to be set by data. Others should # be set by calling the language functions. if attr not in (CLUSTER, PROB, IS_OOV, LANG): values[lex.vocab.strings[attr]] = func(lex.orth_) lex.set_attrs(**values) lex.is_oov = False def _load_pretrained_tok2vec(nlp, loc): """Load pre-trained weights for the 'token-to-vector' part of the component models, which is typically a CNN. See 'spacy pretrain'. Experimental. """ with loc.open("rb") as file_: weights_data = file_.read() loaded = [] for name, component in nlp.pipeline: if hasattr(component, "model") and hasattr(component.model, "tok2vec"): component.tok2vec.from_bytes(weights_data) loaded.append(name) return loaded def _collate_best_model(meta, output_path, components): bests = {} for component in components: bests[component] = _find_best(output_path, component) best_dest = output_path / "model-best" shutil.copytree(output_path / "model-final", best_dest) for component, best_component_src in bests.items(): shutil.rmtree(best_dest / component) shutil.copytree(best_component_src / component, best_dest / component) accs = util.read_json(best_component_src / "accuracy.json") for metric in _get_metrics(component): meta["accuracy"][metric] = accs[metric] util.write_json(best_dest / "meta.json", meta) def _find_best(experiment_dir, component): accuracies = [] for epoch_model in experiment_dir.iterdir(): if epoch_model.is_dir() and epoch_model.parts[-1] != "model-final": accs = util.read_json(epoch_model / "accuracy.json") scores = [accs.get(metric, 0.0) for metric in _get_metrics(component)] accuracies.append((scores, epoch_model)) if accuracies: return max(accuracies)[1] else: return None def _get_metrics(component): if component == "parser": return ("las", "uas", "token_acc") elif component == "tagger": return ("tags_acc",) elif component == "ner": return ("ents_f", "ents_p", "ents_r") return ("token_acc",) def print_progress(itn, losses, dev_scores, cpu_wps=0.0, gpu_wps=0.0): scores = {} for col in [ "dep_loss", "tag_loss", "uas", "tags_acc", "token_acc", "ents_p", "ents_r", "ents_f", "cpu_wps", "gpu_wps", ]: scores[col] = 0.0 scores["dep_loss"] = losses.get("parser", 0.0) scores["ner_loss"] = losses.get("ner", 0.0) scores["tag_loss"] = losses.get("tagger", 0.0) scores.update(dev_scores) scores["cpu_wps"] = cpu_wps scores["gpu_wps"] = gpu_wps or 0.0 tpl = "".join( ( "{:<6d}", "{dep_loss:<10.3f}", "{ner_loss:<10.3f}", "{uas:<8.3f}", "{ents_p:<8.3f}", "{ents_r:<8.3f}", "{ents_f:<8.3f}", "{tags_acc:<8.3f}", "{token_acc:<9.3f}", "{cpu_wps:<9.1f}", "{gpu_wps:.1f}", ) ) print(tpl.format(itn, **scores))