import pytest import numpy from numpy.testing import assert_allclose, assert_equal from thinc.api import get_current_ops from spacy.vocab import Vocab from spacy.vectors import Vectors from spacy.tokenizer import Tokenizer from spacy.strings import hash_string # type: ignore from spacy.tokens import Doc from ..util import add_vecs_to_vocab, get_cosine, make_tempdir OPS = get_current_ops() @pytest.fixture def strings(): return ["apple", "orange"] @pytest.fixture def vectors(): return [ ("apple", OPS.asarray([1, 2, 3])), ("orange", OPS.asarray([-1, -2, -3])), ("and", OPS.asarray([-1, -1, -1])), ("juice", OPS.asarray([5, 5, 10])), ("pie", OPS.asarray([7, 6.3, 8.9])), ] @pytest.fixture def ngrams_vectors(): return [ ("apple", OPS.asarray([1, 2, 3])), ("app", OPS.asarray([-0.1, -0.2, -0.3])), ("ppl", OPS.asarray([-0.2, -0.3, -0.4])), ("pl", OPS.asarray([0.7, 0.8, 0.9])), ] @pytest.fixture() def ngrams_vocab(en_vocab, ngrams_vectors): add_vecs_to_vocab(en_vocab, ngrams_vectors) return en_vocab @pytest.fixture def data(): return numpy.asarray([[0.0, 1.0, 2.0], [3.0, -2.0, 4.0]], dtype="f") @pytest.fixture def most_similar_vectors_data(): return numpy.asarray( [[0.0, 1.0, 2.0], [1.0, -2.0, 4.0], [1.0, 1.0, -1.0], [2.0, 3.0, 1.0]], dtype="f", ) @pytest.fixture def most_similar_vectors_keys(): return ["a", "b", "c", "d"] @pytest.fixture def resize_data(): return numpy.asarray([[0.0, 1.0], [2.0, 3.0]], dtype="f") @pytest.fixture() def vocab(en_vocab, vectors): add_vecs_to_vocab(en_vocab, vectors) return en_vocab @pytest.fixture() def tokenizer_v(vocab): return Tokenizer(vocab, {}, None, None, None) def test_init_vectors_with_resize_shape(strings, resize_data): v = Vectors(shape=(len(strings), 3)) v.resize(shape=resize_data.shape) assert v.shape == resize_data.shape assert v.shape != (len(strings), 3) def test_init_vectors_with_resize_data(data, resize_data): v = Vectors(data=data) v.resize(shape=resize_data.shape) assert v.shape == resize_data.shape assert v.shape != data.shape def test_get_vector_resize(strings, data): strings = [hash_string(s) for s in strings] # decrease vector dimension (truncate) v = Vectors(data=data) resized_dim = v.shape[1] - 1 v.resize(shape=(v.shape[0], resized_dim)) for i, string in enumerate(strings): v.add(string, row=i) assert list(v[strings[0]]) == list(data[0, :resized_dim]) assert list(v[strings[1]]) == list(data[1, :resized_dim]) # increase vector dimension (pad with zeros) v = Vectors(data=data) resized_dim = v.shape[1] + 1 v.resize(shape=(v.shape[0], resized_dim)) for i, string in enumerate(strings): v.add(string, row=i) assert list(v[strings[0]]) == list(data[0]) + [0] assert list(v[strings[1]]) == list(data[1]) + [0] def test_init_vectors_with_data(strings, data): v = Vectors(data=data) assert v.shape == data.shape def test_init_vectors_with_shape(strings): v = Vectors(shape=(len(strings), 3)) assert v.shape == (len(strings), 3) def test_get_vector(strings, data): v = Vectors(data=data) strings = [hash_string(s) for s in strings] for i, string in enumerate(strings): v.add(string, row=i) assert list(v[strings[0]]) == list(data[0]) assert list(v[strings[0]]) != list(data[1]) assert list(v[strings[1]]) != list(data[0]) def test_set_vector(strings, data): orig = data.copy() v = Vectors(data=data) strings = [hash_string(s) for s in strings] for i, string in enumerate(strings): v.add(string, row=i) assert list(v[strings[0]]) == list(orig[0]) assert list(v[strings[0]]) != list(orig[1]) v[strings[0]] = data[1] assert list(v[strings[0]]) == list(orig[1]) assert list(v[strings[0]]) != list(orig[0]) def test_vectors_most_similar(most_similar_vectors_data, most_similar_vectors_keys): v = Vectors(data=most_similar_vectors_data, keys=most_similar_vectors_keys) _, best_rows, _ = v.most_similar(v.data, batch_size=2, n=2, sort=True) assert all(row[0] == i for i, row in enumerate(best_rows)) with pytest.raises(ValueError): v.most_similar(v.data, batch_size=2, n=10, sort=True) def test_vectors_most_similar_identical(): """Test that most similar identical vectors are assigned a score of 1.0.""" data = numpy.asarray([[4, 2, 2, 2], [4, 2, 2, 2], [1, 1, 1, 1]], dtype="f") v = Vectors(data=data, keys=["A", "B", "C"]) keys, _, scores = v.most_similar(numpy.asarray([[4, 2, 2, 2]], dtype="f")) assert scores[0][0] == 1.0 # not 1.0000002 data = numpy.asarray([[1, 2, 3], [1, 2, 3], [1, 1, 1]], dtype="f") v = Vectors(data=data, keys=["A", "B", "C"]) keys, _, scores = v.most_similar(numpy.asarray([[1, 2, 3]], dtype="f")) assert scores[0][0] == 1.0 # not 0.9999999 @pytest.mark.parametrize("text", ["apple and orange"]) def test_vectors_token_vector(tokenizer_v, vectors, text): doc = tokenizer_v(text) assert vectors[0][0] == doc[0].text assert all([a == b for a, b in zip(vectors[0][1], doc[0].vector)]) assert vectors[1][0] == doc[2].text assert all([a == b for a, b in zip(vectors[1][1], doc[2].vector)]) @pytest.mark.parametrize("text", ["apple"]) def test_vectors__ngrams_word(ngrams_vocab, ngrams_vectors, text): assert list(ngrams_vocab.get_vector(text)) == list(ngrams_vectors[0][1]) @pytest.mark.parametrize("text", ["applpie"]) def test_vectors__ngrams_subword(ngrams_vocab, ngrams_vectors, text): truth = list(ngrams_vocab.get_vector(text, 1, 6)) test = list( [ ( ngrams_vectors[1][1][i] + ngrams_vectors[2][1][i] + ngrams_vectors[3][1][i] ) / 3 for i in range(len(ngrams_vectors[1][1])) ] ) eps = [abs(truth[i] - test[i]) for i in range(len(truth))] for i in eps: assert i < 1e-6 @pytest.mark.parametrize("text", ["apple", "orange"]) def test_vectors_lexeme_vector(vocab, text): lex = vocab[text] assert list(lex.vector) assert lex.vector_norm @pytest.mark.parametrize("text", [["apple", "and", "orange"]]) def test_vectors_doc_vector(vocab, text): doc = Doc(vocab, words=text) assert list(doc.vector) assert doc.vector_norm @pytest.mark.parametrize("text", [["apple", "and", "orange"]]) def test_vectors_span_vector(vocab, text): span = Doc(vocab, words=text)[0:2] assert list(span.vector) assert span.vector_norm @pytest.mark.parametrize("text", ["apple orange"]) def test_vectors_token_token_similarity(tokenizer_v, text): doc = tokenizer_v(text) assert doc[0].similarity(doc[1]) == doc[1].similarity(doc[0]) assert -1.0 < doc[0].similarity(doc[1]) < 1.0 @pytest.mark.parametrize("text1,text2", [("apple", "orange")]) def test_vectors_token_lexeme_similarity(tokenizer_v, vocab, text1, text2): token = tokenizer_v(text1) lex = vocab[text2] assert token.similarity(lex) == lex.similarity(token) assert -1.0 < token.similarity(lex) < 1.0 @pytest.mark.parametrize("text", [["apple", "orange", "juice"]]) def test_vectors_token_span_similarity(vocab, text): doc = Doc(vocab, words=text) assert doc[0].similarity(doc[1:3]) == doc[1:3].similarity(doc[0]) assert -1.0 < doc[0].similarity(doc[1:3]) < 1.0 @pytest.mark.parametrize("text", [["apple", "orange", "juice"]]) def test_vectors_token_doc_similarity(vocab, text): doc = Doc(vocab, words=text) assert doc[0].similarity(doc) == doc.similarity(doc[0]) assert -1.0 < doc[0].similarity(doc) < 1.0 @pytest.mark.parametrize("text", [["apple", "orange", "juice"]]) def test_vectors_lexeme_span_similarity(vocab, text): doc = Doc(vocab, words=text) lex = vocab[text[0]] assert lex.similarity(doc[1:3]) == doc[1:3].similarity(lex) assert -1.0 < doc.similarity(doc[1:3]) < 1.0 @pytest.mark.parametrize("text1,text2", [("apple", "orange")]) def test_vectors_lexeme_lexeme_similarity(vocab, text1, text2): lex1 = vocab[text1] lex2 = vocab[text2] assert lex1.similarity(lex2) == lex2.similarity(lex1) assert -1.0 < lex1.similarity(lex2) < 1.0 @pytest.mark.parametrize("text", [["apple", "orange", "juice"]]) def test_vectors_lexeme_doc_similarity(vocab, text): doc = Doc(vocab, words=text) lex = vocab[text[0]] assert lex.similarity(doc) == doc.similarity(lex) assert -1.0 < lex.similarity(doc) < 1.0 @pytest.mark.parametrize("text", [["apple", "orange", "juice"]]) def test_vectors_span_span_similarity(vocab, text): doc = Doc(vocab, words=text) with pytest.warns(UserWarning): assert doc[0:2].similarity(doc[1:3]) == doc[1:3].similarity(doc[0:2]) assert -1.0 < doc[0:2].similarity(doc[1:3]) < 1.0 @pytest.mark.parametrize("text", [["apple", "orange", "juice"]]) def test_vectors_span_doc_similarity(vocab, text): doc = Doc(vocab, words=text) with pytest.warns(UserWarning): assert doc[0:2].similarity(doc) == doc.similarity(doc[0:2]) assert -1.0 < doc[0:2].similarity(doc) < 1.0 @pytest.mark.parametrize( "text1,text2", [(["apple", "and", "apple", "pie"], ["orange", "juice"])] ) def test_vectors_doc_doc_similarity(vocab, text1, text2): doc1 = Doc(vocab, words=text1) doc2 = Doc(vocab, words=text2) assert doc1.similarity(doc2) == doc2.similarity(doc1) assert -1.0 < doc1.similarity(doc2) < 1.0 def test_vocab_add_vector(): vocab = Vocab(vectors_name="test_vocab_add_vector") data = OPS.xp.ndarray((5, 3), dtype="f") data[0] = 1.0 data[1] = 2.0 vocab.set_vector("cat", data[0]) vocab.set_vector("dog", data[1]) cat = vocab["cat"] assert list(cat.vector) == [1.0, 1.0, 1.0] dog = vocab["dog"] assert list(dog.vector) == [2.0, 2.0, 2.0] with pytest.raises(ValueError): vocab.vectors.add(vocab["hamster"].orth, row=1000000) def test_vocab_prune_vectors(): vocab = Vocab(vectors_name="test_vocab_prune_vectors") _ = vocab["cat"] # noqa: F841 _ = vocab["dog"] # noqa: F841 _ = vocab["kitten"] # noqa: F841 data = OPS.xp.ndarray((5, 3), dtype="f") data[0] = OPS.asarray([1.0, 1.2, 1.1]) data[1] = OPS.asarray([0.3, 1.3, 1.0]) data[2] = OPS.asarray([0.9, 1.22, 1.05]) vocab.set_vector("cat", data[0]) vocab.set_vector("dog", data[1]) vocab.set_vector("kitten", data[2]) remap = vocab.prune_vectors(2, batch_size=2) assert list(remap.keys()) == ["kitten"] neighbour, similarity = list(remap.values())[0] assert neighbour == "cat", remap cosine = get_cosine(data[0], data[2]) assert_allclose(float(similarity), cosine, atol=1e-4, rtol=1e-3) def test_vectors_serialize(): data = OPS.asarray([[4, 2, 2, 2], [4, 2, 2, 2], [1, 1, 1, 1]], dtype="f") v = Vectors(data=data, keys=["A", "B", "C"]) b = v.to_bytes() v_r = Vectors() v_r.from_bytes(b) assert_equal(OPS.to_numpy(v.data), OPS.to_numpy(v_r.data)) assert v.key2row == v_r.key2row v.resize((5, 4)) v_r.resize((5, 4)) row = v.add("D", vector=OPS.asarray([1, 2, 3, 4], dtype="f")) row_r = v_r.add("D", vector=OPS.asarray([1, 2, 3, 4], dtype="f")) assert row == row_r assert_equal(OPS.to_numpy(v.data), OPS.to_numpy(v_r.data)) assert v.is_full == v_r.is_full with make_tempdir() as d: v.to_disk(d) v_r.from_disk(d) assert_equal(OPS.to_numpy(v.data), OPS.to_numpy(v_r.data)) assert v.key2row == v_r.key2row v.resize((5, 4)) v_r.resize((5, 4)) row = v.add("D", vector=OPS.asarray([10, 20, 30, 40], dtype="f")) row_r = v_r.add("D", vector=OPS.asarray([10, 20, 30, 40], dtype="f")) assert row == row_r assert_equal(OPS.to_numpy(v.data), OPS.to_numpy(v_r.data)) def test_vector_is_oov(): vocab = Vocab(vectors_name="test_vocab_is_oov") data = OPS.xp.ndarray((5, 3), dtype="f") data[0] = 1.0 data[1] = 2.0 vocab.set_vector("cat", data[0]) vocab.set_vector("dog", data[1]) assert vocab["cat"].is_oov is False assert vocab["dog"].is_oov is False assert vocab["hamster"].is_oov is True