"""Thinc layer to do simpler transition-based parsing, NER, etc.""" from typing import Dict, Optional from thinc.api import Ops, Model from thinc.types import Padded, Floats3d def IOB() -> Model[Padded, Padded]: return Model( "biluo", forward, init=init, dims={"nO": None}, attrs={"get_num_actions": get_num_actions}, ) def init(model: Model, X: Optional[Padded] = None, Y: Optional[Padded] = None) -> None: if X is not None and Y is not None: if X.data.shape != Y.data.shape: # TODO: Fix error raise ValueError("Mismatched shapes (TODO: Fix message)") model.set_dim("nO", X.data.shape[2]) elif X is not None: model.set_dim("nO", X.data.shape[2]) elif Y is not None: model.set_dim("nO", Y.data.shape[2]) elif model.get_dim("nO") is None: raise ValueError("Dimension unset for BILUO: nO") def forward(model: Model[Padded, Padded], Xp: Padded, is_train: bool): n_labels = (model.get_dim("nO") - 1) // 2 n_tokens, n_docs, n_actions = Xp.data.shape # At each timestep, we make a validity mask of shape (n_docs, n_actions) # to indicate which actions are valid next for each sequence. To construct # the mask, we have a state of shape (2, n_actions) and a validity table of # shape (2, n_actions+1, n_actions). The first dimension of the state indicates # whether it's the last token, the second dimension indicates the previous # action, plus a special 'null action' for the first entry. valid_transitions = _get_transition_table(model.ops, n_labels) prev_actions = model.ops.alloc1i(n_docs) # Initialize as though prev action was O prev_actions.fill(n_actions - 1) Y = model.ops.alloc3f(*Xp.data.shape) masks = model.ops.alloc3f(*Y.shape) for t in range(Xp.data.shape[0]): masks[t] = valid_transitions[prev_actions] # Don't train the out-of-bounds sequences. masks[t, Xp.size_at_t[t] :] = 0 # Valid actions get 0*10e8, invalid get -1*10e8 Y[t] = Xp.data[t] + ((masks[t] - 1) * 10e8) prev_actions = Y[t].argmax(axis=-1) def backprop_biluo(dY: Padded) -> Padded: # Masking the gradient seems to do poorly here. But why? # dY.data *= masks return dY return Padded(Y, Xp.size_at_t, Xp.lengths, Xp.indices), backprop_biluo def get_num_actions(n_labels: int) -> int: # One BEGIN action per label # One IN action per label # One LAST action per label # One UNIT action per label # One OUT action return n_labels * 2 + 1 def _get_transition_table( ops: Ops, n_labels: int, _cache: Dict[int, Floats3d] = {} ) -> Floats3d: n_actions = get_num_actions(n_labels) if n_actions in _cache: return ops.asarray(_cache[n_actions]) table = ops.alloc2f(n_actions, n_actions) B_start, B_end = (0, n_labels) I_start, I_end = (B_end, B_end + n_labels) O_action = I_end B_range = ops.xp.arange(B_start, B_end) I_range = ops.xp.arange(I_start, I_end) # B and O are always valid table[:, B_start:B_end] = 1 table[:, O_action] = 1 # I can only follow a matching B table[B_range, I_range] = 1 _cache[n_actions] = table return table