# cython: infer_types=True, profile=True, binding=True from typing import Optional, Callable, List, Union from itertools import islice import srsly from thinc.api import Model, SequenceCategoricalCrossentropy, Config from ..tokens.doc cimport Doc from .tagger import Tagger from ..language import Language from ..errors import Errors from ..scorer import Scorer from ..training import validate_examples, validate_get_examples from ..util import registry from .. import util # See #9050 BACKWARD_OVERWRITE = False default_model_config = """ [model] @architectures = "spacy.Tagger.v2" [model.tok2vec] @architectures = "spacy.HashEmbedCNN.v2" pretrained_vectors = null width = 12 depth = 1 embed_size = 2000 window_size = 1 maxout_pieces = 2 subword_features = true """ DEFAULT_SENTER_MODEL = Config().from_str(default_model_config)["model"] @Language.factory( "senter", assigns=["token.is_sent_start"], default_config={ "model": DEFAULT_SENTER_MODEL, "overwrite": False, "scorer": {"@scorers": "spacy.senter_scorer.v1"}, "store_activations": False }, default_score_weights={"sents_f": 1.0, "sents_p": 0.0, "sents_r": 0.0}, ) def make_senter(nlp: Language, name: str, model: Model, overwrite: bool, scorer: Optional[Callable], store_activations: Union[bool, List[str]]): return SentenceRecognizer(nlp.vocab, model, name, overwrite=overwrite, scorer=scorer, store_activations=store_activations) def senter_score(examples, **kwargs): def has_sents(doc): return doc.has_annotation("SENT_START") results = Scorer.score_spans(examples, "sents", has_annotation=has_sents, **kwargs) del results["sents_per_type"] return results @registry.scorers("spacy.senter_scorer.v1") def make_senter_scorer(): return senter_score class SentenceRecognizer(Tagger): """Pipeline component for sentence segmentation. DOCS: https://spacy.io/api/sentencerecognizer """ def __init__( self, vocab, model, name="senter", *, overwrite=BACKWARD_OVERWRITE, scorer=senter_score, store_activations: Union[bool, List[str]] = False, ): """Initialize a sentence recognizer. vocab (Vocab): The shared vocabulary. model (thinc.api.Model): The Thinc Model powering the pipeline component. name (str): The component instance name, used to add entries to the losses during training. scorer (Optional[Callable]): The scoring method. Defaults to Scorer.score_spans for the attribute "sents". store_activations (Union[bool, List[str]]): Model activations to store in Doc when annotating. supported activations are: "probs" and "guesses". DOCS: https://spacy.io/api/sentencerecognizer#init """ self.vocab = vocab self.model = model self.name = name self._rehearsal_model = None self.cfg = {"overwrite": overwrite} self.scorer = scorer self.set_store_activations(store_activations) @property def labels(self): """RETURNS (Tuple[str]): The labels.""" # labels are numbered by index internally, so this matches GoldParse # and Example where the sentence-initial tag is 1 and other positions # are 0 return tuple(["I", "S"]) @property def hide_labels(self): return True @property def label_data(self): return None def set_annotations(self, docs, activations): """Modify a batch of documents, using pre-computed scores. docs (Iterable[Doc]): The documents to modify. batch_tag_ids: The IDs to set, produced by SentenceRecognizer.predict. DOCS: https://spacy.io/api/sentencerecognizer#set_annotations """ batch_tag_ids = activations["guesses"] if isinstance(docs, Doc): docs = [docs] cdef Doc doc cdef bint overwrite = self.cfg["overwrite"] for i, doc in enumerate(docs): doc.activations[self.name] = {} for activation in self.store_activations: doc.activations[self.name][activation] = activations[activation][i] doc_tag_ids = batch_tag_ids[i] if hasattr(doc_tag_ids, "get"): doc_tag_ids = doc_tag_ids.get() for j, tag_id in enumerate(doc_tag_ids): if doc.c[j].sent_start == 0 or overwrite: if tag_id == 1: doc.c[j].sent_start = 1 else: doc.c[j].sent_start = -1 def get_loss(self, examples, scores): """Find the loss and gradient of loss for the batch of documents and their predicted scores. examples (Iterable[Examples]): The batch of examples. scores: Scores representing the model's predictions. RETURNS (Tuple[float, float]): The loss and the gradient. DOCS: https://spacy.io/api/sentencerecognizer#get_loss """ validate_examples(examples, "SentenceRecognizer.get_loss") labels = self.labels loss_func = SequenceCategoricalCrossentropy(names=labels, normalize=False) truths = [] for eg in examples: eg_truth = [] for x in eg.get_aligned("SENT_START"): if x is None: eg_truth.append(None) elif x == 1: eg_truth.append(labels[1]) else: # anything other than 1: 0, -1, -1 as uint64 eg_truth.append(labels[0]) truths.append(eg_truth) d_scores, loss = loss_func(scores, truths) if self.model.ops.xp.isnan(loss): raise ValueError(Errors.E910.format(name=self.name)) return float(loss), d_scores def initialize(self, get_examples, *, nlp=None): """Initialize the pipe for training, using a representative set of data examples. get_examples (Callable[[], Iterable[Example]]): Function that returns a representative sample of gold-standard Example objects. nlp (Language): The current nlp object the component is part of. DOCS: https://spacy.io/api/sentencerecognizer#initialize """ validate_get_examples(get_examples, "SentenceRecognizer.initialize") util.check_lexeme_norms(self.vocab, "senter") doc_sample = [] label_sample = [] assert self.labels, Errors.E924.format(name=self.name) for example in islice(get_examples(), 10): doc_sample.append(example.x) gold_tags = example.get_aligned("SENT_START") gold_array = [[1.0 if tag == gold_tag else 0.0 for tag in self.labels] for gold_tag in gold_tags] label_sample.append(self.model.ops.asarray(gold_array, dtype="float32")) assert len(doc_sample) > 0, Errors.E923.format(name=self.name) assert len(label_sample) > 0, Errors.E923.format(name=self.name) self.model.initialize(X=doc_sample, Y=label_sample) def add_label(self, label, values=None): raise NotImplementedError @property def activations(self): return ["probs", "guesses"]