# cython: infer_types=True, profile=True, binding=True from typing import Callable, List, Optional import srsly from ..tokens.doc cimport Doc from .. import util from ..language import Language from ..scorer import Scorer from .pipe import Pipe from .senter import senter_score @Language.factory( "sentencizer", assigns=["token.is_sent_start", "doc.sents"], default_config={"punct_chars": None, "overwrite": False, "scorer": {"@scorers": "spacy.senter_scorer.v1"}}, default_score_weights={"sents_f": 1.0, "sents_p": 0.0, "sents_r": 0.0}, ) def make_sentencizer( nlp: Language, name: str, punct_chars: Optional[List[str]], overwrite: bool, scorer: Optional[Callable], ): return Sentencizer(name, punct_chars=punct_chars, overwrite=overwrite, scorer=scorer) class Sentencizer(Pipe): """Segment the Doc into sentences using a rule-based strategy. DOCS: https://spacy.io/api/sentencizer """ default_punct_chars = ['!', '.', '?', '։', '؟', '۔', '܀', '܁', '܂', '߹', '।', '॥', '၊', '။', '።', '፧', '፨', '᙮', '᜵', '᜶', '᠃', '᠉', '᥄', '᥅', '᪨', '᪩', '᪪', '᪫', '᭚', '᭛', '᭞', '᭟', '᰻', '᰼', '᱾', '᱿', '‼', '‽', '⁇', '⁈', '⁉', '⸮', '⸼', '꓿', '꘎', '꘏', '꛳', '꛷', '꡶', '꡷', '꣎', '꣏', '꤯', '꧈', '꧉', '꩝', '꩞', '꩟', '꫰', '꫱', '꯫', '﹒', '﹖', '﹗', '!', '.', '?', '𐩖', '𐩗', '𑁇', '𑁈', '𑂾', '𑂿', '𑃀', '𑃁', '𑅁', '𑅂', '𑅃', '𑇅', '𑇆', '𑇍', '𑇞', '𑇟', '𑈸', '𑈹', '𑈻', '𑈼', '𑊩', '𑑋', '𑑌', '𑗂', '𑗃', '𑗉', '𑗊', '𑗋', '𑗌', '𑗍', '𑗎', '𑗏', '𑗐', '𑗑', '𑗒', '𑗓', '𑗔', '𑗕', '𑗖', '𑗗', '𑙁', '𑙂', '𑜼', '𑜽', '𑜾', '𑩂', '𑩃', '𑪛', '𑪜', '𑱁', '𑱂', '𖩮', '𖩯', '𖫵', '𖬷', '𖬸', '𖭄', '𛲟', '𝪈', '。', '。'] def __init__( self, name="sentencizer", *, punct_chars=None, overwrite=False, scorer=senter_score, ): """Initialize the sentencizer. punct_chars (list): Punctuation characters to split on. Will be serialized with the nlp object. overwrite (bool): Whether to overwrite existing annotations. scorer (Optional[Callable]): The scoring method. Defaults to Scorer.score_spans for the attribute "sents". DOCS: https://spacy.io/api/sentencizer#init """ self.name = name if punct_chars: self.punct_chars = set(punct_chars) else: self.punct_chars = set(self.default_punct_chars) self.overwrite = overwrite self.scorer = scorer def __call__(self, doc): """Apply the sentencizer to a Doc and set Token.is_sent_start. doc (Doc): The document to process. RETURNS (Doc): The processed Doc. DOCS: https://spacy.io/api/sentencizer#call """ error_handler = self.get_error_handler() try: tags = self.predict([doc]) self.set_annotations([doc], tags) return doc except Exception as e: error_handler(self.name, self, [doc], e) def predict(self, docs): """Apply the pipe to a batch of docs, without modifying them. docs (Iterable[Doc]): The documents to predict. RETURNS: The predictions for each document. """ if not any(len(doc) for doc in docs): # Handle cases where there are no tokens in any docs. guesses = [[] for doc in docs] return guesses guesses = [] for doc in docs: doc_guesses = [False] * len(doc) if len(doc) > 0: start = 0 seen_period = False doc_guesses[0] = True for i, token in enumerate(doc): is_in_punct_chars = token.text in self.punct_chars if seen_period and not token.is_punct and not is_in_punct_chars: doc_guesses[start] = True start = token.i seen_period = False elif is_in_punct_chars: seen_period = True if start < len(doc): doc_guesses[start] = True guesses.append(doc_guesses) return guesses def set_annotations(self, docs, batch_tag_ids): """Modify a batch of documents, using pre-computed scores. docs (Iterable[Doc]): The documents to modify. scores: The tag IDs produced by Sentencizer.predict. """ if isinstance(docs, Doc): docs = [docs] cdef Doc doc cdef int idx = 0 for i, doc in enumerate(docs): doc_tag_ids = batch_tag_ids[i] for j, tag_id in enumerate(doc_tag_ids): if doc.c[j].sent_start == 0 or self.overwrite: if tag_id: doc.c[j].sent_start = 1 else: doc.c[j].sent_start = -1 def to_bytes(self, *, exclude=tuple()): """Serialize the sentencizer to a bytestring. RETURNS (bytes): The serialized object. DOCS: https://spacy.io/api/sentencizer#to_bytes """ return srsly.msgpack_dumps({"punct_chars": list(self.punct_chars), "overwrite": self.overwrite}) def from_bytes(self, bytes_data, *, exclude=tuple()): """Load the sentencizer from a bytestring. bytes_data (bytes): The data to load. returns (Sentencizer): The loaded object. DOCS: https://spacy.io/api/sentencizer#from_bytes """ cfg = srsly.msgpack_loads(bytes_data) self.punct_chars = set(cfg.get("punct_chars", self.default_punct_chars)) self.overwrite = cfg.get("overwrite", self.overwrite) return self def to_disk(self, path, *, exclude=tuple()): """Serialize the sentencizer to disk. DOCS: https://spacy.io/api/sentencizer#to_disk """ path = util.ensure_path(path) path = path.with_suffix(".json") srsly.write_json(path, {"punct_chars": list(self.punct_chars), "overwrite": self.overwrite}) def from_disk(self, path, *, exclude=tuple()): """Load the sentencizer from disk. DOCS: https://spacy.io/api/sentencizer#from_disk """ path = util.ensure_path(path) path = path.with_suffix(".json") cfg = srsly.read_json(path) self.punct_chars = set(cfg.get("punct_chars", self.default_punct_chars)) self.overwrite = cfg.get("overwrite", self.overwrite) return self