import pytest from spacy.language import Language from spacy.pipeline.functions import merge_subtokens from spacy.tokens import Doc, Span from ..doc.test_underscore import clean_underscore # noqa: F401 @pytest.fixture def doc(en_vocab): # fmt: off words = ["This", "is", "a", "sentence", ".", "This", "is", "another", "sentence", ".", "And", "a", "third", "."] heads = [1, 1, 3, 1, 1, 6, 6, 8, 6, 6, 11, 12, 13, 13] deps = ["nsubj", "ROOT", "subtok", "attr", "punct", "nsubj", "ROOT", "subtok", "attr", "punct", "subtok", "subtok", "subtok", "ROOT"] # fmt: on return Doc(en_vocab, words=words, heads=heads, deps=deps) @pytest.fixture def doc2(en_vocab): words = ["I", "like", "New", "York", "in", "Autumn", "."] heads = [1, 1, 3, 1, 1, 4, 1] tags = ["PRP", "IN", "NNP", "NNP", "IN", "NNP", "."] pos = ["PRON", "VERB", "PROPN", "PROPN", "ADP", "PROPN", "PUNCT"] deps = ["ROOT", "prep", "compound", "pobj", "prep", "pobj", "punct"] doc = Doc(en_vocab, words=words, heads=heads, tags=tags, pos=pos, deps=deps) doc.ents = [Span(doc, 2, 4, label="GPE")] return doc def test_merge_subtokens(doc): doc = merge_subtokens(doc) # Doc doesn't have spaces, so the result is "And a third ." # fmt: off assert [t.text for t in doc] == ["This", "is", "a sentence", ".", "This", "is", "another sentence", ".", "And a third ."] # fmt: on def test_factories_merge_noun_chunks(doc2): assert len(doc2) == 7 nlp = Language() merge_noun_chunks = nlp.create_pipe("merge_noun_chunks") merge_noun_chunks(doc2) assert len(doc2) == 6 assert doc2[2].text == "New York" def test_factories_merge_ents(doc2): assert len(doc2) == 7 assert len(list(doc2.ents)) == 1 nlp = Language() merge_entities = nlp.create_pipe("merge_entities") merge_entities(doc2) assert len(doc2) == 6 assert len(list(doc2.ents)) == 1 assert doc2[2].text == "New York" def test_token_splitter(): nlp = Language() config = {"min_length": 20, "split_length": 5} token_splitter = nlp.add_pipe("token_splitter", config=config) doc = nlp("aaaaabbbbbcccccdddd e f g") assert [t.text for t in doc] == ["aaaaabbbbbcccccdddd", "e", "f", "g"] doc = nlp("aaaaabbbbbcccccdddddeeeeeff g h i") assert [t.text for t in doc] == [ "aaaaa", "bbbbb", "ccccc", "ddddd", "eeeee", "ff", "g", "h", "i", ] assert all(len(t.text) <= token_splitter.split_length for t in doc) @pytest.mark.usefixtures("clean_underscore") def test_factories_doc_cleaner(): nlp = Language() nlp.add_pipe("doc_cleaner") doc = nlp.make_doc("text") doc.tensor = [1, 2, 3] doc = nlp(doc) assert doc.tensor is None nlp = Language() nlp.add_pipe("doc_cleaner", config={"silent": False}) with pytest.warns(UserWarning): doc = nlp("text") Doc.set_extension("test_attr", default=-1) nlp = Language() nlp.add_pipe("doc_cleaner", config={"attrs": {"_.test_attr": 0}}) doc = nlp.make_doc("text") doc._.test_attr = 100 doc = nlp(doc) assert doc._.test_attr == 0