from __future__ import unicode_literals def test_merge_tokens(EN): tokens = EN(u'Los Angeles start.') assert len(tokens) == 4 assert tokens[0].head.orth_ == 'Angeles' assert tokens[1].head.orth_ == 'start' tokens.merge(0, len('Los Angeles'), 'NNP', 'Los Angeles', 'GPE') assert len(tokens) == 3 assert tokens[0].orth_ == 'Los Angeles' assert tokens[0].head.orth_ == 'start' def test_merge_heads(EN): tokens = EN(u'I found a pilates class near work.') assert len(tokens) == 8 tokens.merge(tokens[3].idx, tokens[4].idx + len(tokens[4]), tokens[4].tag_, 'pilates class', 'O') assert len(tokens) == 7 assert tokens[0].head.i == 1 assert tokens[1].head.i == 1 assert tokens[2].head.i == 3 assert tokens[3].head.i == 1 assert tokens[4].head.i in [1, 3] assert tokens[5].head.i == 4 def test_issue_54(): text = u'Talks given by women had a slightly higher number of questions asked (3.2$\pm$0.2) than talks given by men (2.6$\pm$0.1).' tokens = en_nlp(text, merge_mwes=True)