# coding: utf8 from __future__ import unicode_literals from ...symbols import NOUN, PROPN, PRON, VERB # XXX this can probably be pruned a bit labels = [ "nsubj", "nmod", "dobj", "nsubjpass", "pcomp", "pobj", "obj", "obl", "dative", "appos", "attr", "ROOT", ] def noun_chunks(obj): """ Detect base noun phrases from a dependency parse. Works on both Doc and Span. """ doc = obj.doc # Ensure works on both Doc and Span. np_deps = [doc.vocab.strings.add(label) for label in labels] conj = doc.vocab.strings.add("conj") np_label = doc.vocab.strings.add("NP") seen = set() for i, word in enumerate(obj): if word.pos not in (NOUN, PROPN, PRON): continue # Prevent nested chunks from being produced if word.i in seen: continue if word.dep in np_deps: unseen = [w.i for w in word.subtree if w.i not in seen] if not unseen: continue # this takes care of particles etc. seen.update(j.i for j in word.subtree) # This avoids duplicating embedded clauses seen.update(range(word.i + 1)) # if the head of this is a verb, mark that and rights seen # Don't do the subtree as that can hide other phrases if word.head.pos == VERB: seen.add(word.head.i) seen.update(w.i for w in word.head.rights) yield unseen[0], word.i + 1, np_label SYNTAX_ITERATORS = {"noun_chunks": noun_chunks}