from typing import Optional, Union, Dict, Any from pathlib import Path import srsly from collections import namedtuple from .stop_words import STOP_WORDS from .syntax_iterators import SYNTAX_ITERATORS from .tag_map import TAG_MAP from .tag_orth_map import TAG_ORTH_MAP from .tag_bigram_map import TAG_BIGRAM_MAP from ...compat import copy_reg from ...errors import Errors from ...language import Language, BaseDefaults from ...scorer import Scorer from ...symbols import POS from ...tokens import Doc from ...training import validate_examples from ...util import DummyTokenizer, registry, load_config_from_str from ... import util DEFAULT_CONFIG = """ [nlp] [nlp.tokenizer] @tokenizers = "spacy.ja.JapaneseTokenizer" split_mode = null """ @registry.tokenizers("spacy.ja.JapaneseTokenizer") def create_tokenizer(split_mode: Optional[str] = None): def japanese_tokenizer_factory(nlp): return JapaneseTokenizer(nlp, split_mode=split_mode) return japanese_tokenizer_factory class JapaneseTokenizer(DummyTokenizer): def __init__(self, nlp: Language, split_mode: Optional[str] = None) -> None: self.vocab = nlp.vocab self.split_mode = split_mode self.tokenizer = try_sudachi_import(self.split_mode) def __call__(self, text: str) -> Doc: # convert sudachipy.morpheme.Morpheme to DetailedToken and merge continuous spaces sudachipy_tokens = self.tokenizer.tokenize(text) dtokens = self._get_dtokens(sudachipy_tokens) dtokens, spaces = get_dtokens_and_spaces(dtokens, text) # create Doc with tag bi-gram based part-of-speech identification rules words, tags, inflections, lemmas, readings, sub_tokens_list = ( zip(*dtokens) if dtokens else [[]] * 6 ) sub_tokens_list = list(sub_tokens_list) doc = Doc(self.vocab, words=words, spaces=spaces) next_pos = None # for bi-gram rules for idx, (token, dtoken) in enumerate(zip(doc, dtokens)): token.tag_ = dtoken.tag if next_pos: # already identified in previous iteration token.pos = next_pos next_pos = None else: token.pos, next_pos = resolve_pos( token.orth_, dtoken.tag, tags[idx + 1] if idx + 1 < len(tags) else None, ) # if there's no lemma info (it's an unk) just use the surface token.lemma_ = dtoken.lemma if dtoken.lemma else dtoken.surface doc.user_data["inflections"] = inflections doc.user_data["reading_forms"] = readings doc.user_data["sub_tokens"] = sub_tokens_list return doc def _get_dtokens(self, sudachipy_tokens, need_sub_tokens: bool = True): sub_tokens_list = ( self._get_sub_tokens(sudachipy_tokens) if need_sub_tokens else None ) dtokens = [ DetailedToken( token.surface(), # orth "-".join([xx for xx in token.part_of_speech()[:4] if xx != "*"]), # tag ",".join([xx for xx in token.part_of_speech()[4:] if xx != "*"]), # inf token.dictionary_form(), # lemma token.reading_form(), # user_data['reading_forms'] sub_tokens_list[idx] if sub_tokens_list else None, # user_data['sub_tokens'] ) for idx, token in enumerate(sudachipy_tokens) if len(token.surface()) > 0 # remove empty tokens which can be produced with characters like … that ] # Sudachi normalizes internally and outputs each space char as a token. # This is the preparation for get_dtokens_and_spaces() to merge the continuous space tokens return [ t for idx, t in enumerate(dtokens) if idx == 0 or not t.surface.isspace() or t.tag != "空白" or not dtokens[idx - 1].surface.isspace() or dtokens[idx - 1].tag != "空白" ] def _get_sub_tokens(self, sudachipy_tokens): if ( self.split_mode is None or self.split_mode == "A" ): # do nothing for default split mode return None sub_tokens_list = [] # list of (list of list of DetailedToken | None) for token in sudachipy_tokens: sub_a = token.split(self.tokenizer.SplitMode.A) if len(sub_a) == 1: # no sub tokens sub_tokens_list.append(None) elif self.split_mode == "B": sub_tokens_list.append([self._get_dtokens(sub_a, False)]) else: # "C" sub_b = token.split(self.tokenizer.SplitMode.B) if len(sub_a) == len(sub_b): dtokens = self._get_dtokens(sub_a, False) sub_tokens_list.append([dtokens, dtokens]) else: sub_tokens_list.append( [ self._get_dtokens(sub_a, False), self._get_dtokens(sub_b, False), ] ) return sub_tokens_list def score(self, examples): validate_examples(examples, "JapaneseTokenizer.score") return Scorer.score_tokenization(examples) def _get_config(self) -> Dict[str, Any]: return {"split_mode": self.split_mode} def _set_config(self, config: Dict[str, Any] = {}) -> None: self.split_mode = config.get("split_mode", None) def to_bytes(self, **kwargs) -> bytes: serializers = {"cfg": lambda: srsly.json_dumps(self._get_config())} return util.to_bytes(serializers, []) def from_bytes(self, data: bytes, **kwargs) -> "JapaneseTokenizer": deserializers = {"cfg": lambda b: self._set_config(srsly.json_loads(b))} util.from_bytes(data, deserializers, []) self.tokenizer = try_sudachi_import(self.split_mode) return self def to_disk(self, path: Union[str, Path], **kwargs) -> None: path = util.ensure_path(path) serializers = {"cfg": lambda p: srsly.write_json(p, self._get_config())} util.to_disk(path, serializers, []) def from_disk(self, path: Union[str, Path], **kwargs) -> "JapaneseTokenizer": path = util.ensure_path(path) serializers = {"cfg": lambda p: self._set_config(srsly.read_json(p))} util.from_disk(path, serializers, []) self.tokenizer = try_sudachi_import(self.split_mode) return self class JapaneseDefaults(BaseDefaults): config = load_config_from_str(DEFAULT_CONFIG) stop_words = STOP_WORDS syntax_iterators = SYNTAX_ITERATORS writing_system = {"direction": "ltr", "has_case": False, "has_letters": False} class Japanese(Language): lang = "ja" Defaults = JapaneseDefaults # Hold the attributes we need with convenient names DetailedToken = namedtuple( "DetailedToken", ["surface", "tag", "inf", "lemma", "reading", "sub_tokens"] ) def try_sudachi_import(split_mode="A"): """SudachiPy is required for Japanese support, so check for it. It it's not available blow up and explain how to fix it. split_mode should be one of these values: "A", "B", "C", None->"A".""" try: from sudachipy import dictionary, tokenizer split_mode = { None: tokenizer.Tokenizer.SplitMode.A, "A": tokenizer.Tokenizer.SplitMode.A, "B": tokenizer.Tokenizer.SplitMode.B, "C": tokenizer.Tokenizer.SplitMode.C, }[split_mode] tok = dictionary.Dictionary().create(mode=split_mode) return tok except ImportError: raise ImportError( "Japanese support requires SudachiPy and SudachiDict-core " "(https://github.com/WorksApplications/SudachiPy). " "Install with `pip install sudachipy sudachidict_core` or " "install spaCy with `pip install spacy[ja]`." ) from None def resolve_pos(orth, tag, next_tag): """If necessary, add a field to the POS tag for UD mapping. Under Universal Dependencies, sometimes the same Unidic POS tag can be mapped differently depending on the literal token or its context in the sentence. This function returns resolved POSs for both token and next_token by tuple. """ # Some tokens have their UD tag decided based on the POS of the following # token. # apply orth based mapping if tag in TAG_ORTH_MAP: orth_map = TAG_ORTH_MAP[tag] if orth in orth_map: return orth_map[orth], None # current_pos, next_pos # apply tag bi-gram mapping if next_tag: tag_bigram = tag, next_tag if tag_bigram in TAG_BIGRAM_MAP: current_pos, next_pos = TAG_BIGRAM_MAP[tag_bigram] if current_pos is None: # apply tag uni-gram mapping for current_pos return ( TAG_MAP[tag][POS], next_pos, ) # only next_pos is identified by tag bi-gram mapping else: return current_pos, next_pos # apply tag uni-gram mapping return TAG_MAP[tag][POS], None def get_dtokens_and_spaces(dtokens, text, gap_tag="空白"): # Compare the content of tokens and text, first words = [x.surface for x in dtokens] if "".join("".join(words).split()) != "".join(text.split()): raise ValueError(Errors.E194.format(text=text, words=words)) text_dtokens = [] text_spaces = [] text_pos = 0 # handle empty and whitespace-only texts if len(words) == 0: return text_dtokens, text_spaces elif len([word for word in words if not word.isspace()]) == 0: assert text.isspace() text_dtokens = [DetailedToken(text, gap_tag, "", text, None, None)] text_spaces = [False] return text_dtokens, text_spaces # align words and dtokens by referring text, and insert gap tokens for the space char spans for i, (word, dtoken) in enumerate(zip(words, dtokens)): # skip all space tokens if word.isspace(): continue try: word_start = text[text_pos:].index(word) except ValueError: raise ValueError(Errors.E194.format(text=text, words=words)) from None # space token if word_start > 0: w = text[text_pos : text_pos + word_start] text_dtokens.append(DetailedToken(w, gap_tag, "", w, None, None)) text_spaces.append(False) text_pos += word_start # content word text_dtokens.append(dtoken) text_spaces.append(False) text_pos += len(word) # poll a space char after the word if i + 1 < len(dtokens) and dtokens[i + 1].surface == " ": text_spaces[-1] = True text_pos += 1 # trailing space token if text_pos < len(text): w = text[text_pos:] text_dtokens.append(DetailedToken(w, gap_tag, "", w, None, None)) text_spaces.append(False) return text_dtokens, text_spaces def pickle_japanese(instance): return Japanese, tuple() copy_reg.pickle(Japanese, pickle_japanese) __all__ = ["Japanese"]