# copied from coval # https://github.com/ns-moosavi/coval def get_cluster_info(predicted_clusters, gold_clusters): p2g = get_markable_assignments(predicted_clusters, gold_clusters) g2p = get_markable_assignments(gold_clusters, predicted_clusters) # this is the data format used as input by the evaluator return (gold_clusters, predicted_clusters, g2p, p2g) def get_markable_assignments(in_clusters, out_clusters): markable_cluster_ids = {} out_dic = {} for cluster_id, cluster in enumerate(out_clusters): for m in cluster: out_dic[m] = cluster_id for cluster in in_clusters: for im in cluster: for om in out_dic: if im == om: markable_cluster_ids[im] = out_dic[om] break return markable_cluster_ids def f1(p_num, p_den, r_num, r_den, beta=1): p = 0 if p_den == 0 else p_num / float(p_den) r = 0 if r_den == 0 else r_num / float(r_den) return 0 if p + r == 0 else (1 + beta * beta) * p * r / (beta * beta * p + r) class Evaluator: def __init__(self, metric, beta=1, keep_aggregated_values=False): self.p_num = 0 self.p_den = 0 self.r_num = 0 self.r_den = 0 self.metric = metric self.beta = beta self.keep_aggregated_values = keep_aggregated_values if keep_aggregated_values: self.aggregated_p_num = [] self.aggregated_p_den = [] self.aggregated_r_num = [] self.aggregated_r_den = [] def update(self, coref_info): ( key_clusters, sys_clusters, key_mention_sys_cluster, sys_mention_key_cluster, ) = coref_info pn, pd = self.metric(sys_clusters, key_clusters, sys_mention_key_cluster) rn, rd = self.metric(key_clusters, sys_clusters, key_mention_sys_cluster) self.p_num += pn self.p_den += pd self.r_num += rn self.r_den += rd if self.keep_aggregated_values: self.aggregated_p_num.append(pn) self.aggregated_p_den.append(pd) self.aggregated_r_num.append(rn) self.aggregated_r_den.append(rd) def get_f1(self): return f1(self.p_num, self.p_den, self.r_num, self.r_den, beta=self.beta) def get_recall(self): return 0 if self.r_num == 0 else self.r_num / float(self.r_den) def get_precision(self): return 0 if self.p_num == 0 else self.p_num / float(self.p_den) def get_prf(self): return self.get_precision(), self.get_recall(), self.get_f1() def get_counts(self): return self.p_num, self.p_den, self.r_num, self.r_den def get_aggregated_values(self): return ( self.aggregated_p_num, self.aggregated_p_den, self.aggregated_r_num, self.aggregated_r_den, ) def lea(input_clusters, output_clusters, mention_to_gold): num, den = 0, 0 for c in input_clusters: if len(c) == 1: all_links = 1 if ( c[0] in mention_to_gold and len(output_clusters[mention_to_gold[c[0]]]) == 1 ): common_links = 1 else: common_links = 0 else: common_links = 0 all_links = len(c) * (len(c) - 1) / 2.0 for i, m in enumerate(c): if m in mention_to_gold: for m2 in c[i + 1 :]: if ( m2 in mention_to_gold and mention_to_gold[m] == mention_to_gold[m2] ): common_links += 1 num += len(c) * common_links / float(all_links) den += len(c) return num, den